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Abstract.  We present conventional and swath altimetry data from Cryosat-2 revealing a system of subglacial lakes that 

drained between June 2013 and January 2014 under the central part of Thwaites Glacier, West Antarctica.   Much of the 10 

drainage happened in less than six months, with an apparent connection between three lakes spanning more than 130 km.  

Hydropotential analysis of the glacier bed shows a large number of small closed basins that should trap water produced by 

subglacial melt, although the observed large-scale motion of water suggests that water can sometimes locally move against 

the apparent potential gradient, at least during lake-drainage events, suggesting that there are important limitations in the 

ability of hydropotential maps to predict subglacial water flow.  An interpretation based on a map of the melt rate suggests 15 

that lake drainages of this type should take place every 20-80 years, depending on the connectivity of the water flow at the 

bed.  Although we observed an acceleration in the downstream part of TWG immediately before the start of the lake 

drainage, there is no clear connection between the drainage and any speed change of the glacier. 

1. Background 

The Amundsen Sea embayment is one of the fastest-changing part of Antarctica, with large changes since at least 20 

the 1990s (Rignot, 2008).  Increased flow of Thwaites glacier is responsible for around half of the ice-sheet mass loss from 

this sector (Medley et al., 2014); in response to these large changes, NSF’s AGASEA and NASA’s IceBridge programs have 

flown extensive surveys measuring ice thickness and bed elevation in this area, with the twin goals of measuring mass-

balance changes and enabling accurate ice-flow modeling for the region.  As a result, the bed of Thwaites glacier has been 

mapped in detail, allowing mapping of basal shear stress and potential subglacial water flow paths.  These reveal abundant 25 

basal meltwater production, estimated at about 3.5 km3yr-1 and averaging ~19 mm yr-1 (Joughin et al., 2009).  Melt 

production is concentrated in the fast-flowing lower trunk of the glacier, but is locally larger than 20 mm yr-1 even in some 

regions within the slow-flowing catchment.  Interpretations of radar-reflection properties has also led researchers (Schroeder 

et al., 2015; Schroeder et al., 2013) to identify an upstream region where water may drain primarily through a distributed 

network of small pockets, and a downstream region where water may flow through channels.  The combination of radar 30 

observations and estimated melt rates led to a map of geothermal heat flux, based on the assumption that the basal water 

system was in equilibrium with steady-state melt rates (Schroeder et al., 2014).  Some authors have speculated that changes 

in this water system could lead to accelerated grounding-line retreat (Schroeder et al., 2013).   

 Active subglacial lakes (lakes that drain or fill over the course of a few years or less) have been identified 

throughout Antarctica (Smith et al., 2009). Well-documented lake systems have been observed in slow-flowing ice-sheet 35 

tributary regions (Wingham et al., 2006) near ice-shelf grounding lines (Fricker et al., 2007), and around outlet glaciers 

(Stearns et al., 2008). They are commonly associated with fast-flowing glaciers, where meltwater produced by basal sliding 

is abundant, and where surface and subglacial topography combine to produce hydropotential features that trap water at the 

bed (Bindschadler and Choi, 2007).   
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Although active lakes have been identified under many of the large glaciers in Antarctica, none have been found 

under the Amundsen Coast glaciers (Smith et al., 2009).  One explanation for this lack is that the large meltwater production 

by the fast-sliding glaciers in this region has produced a stable, channelized drainage network that prevents water from 

accumulating in lakes.  An alternate explanation is that the laser-altimetry-based survey that identified lakes in other parts of 

Antarctica did not make adequate measurements over the cloudy Amundsen Coast to detect the lakes that were there. 5 

To overcome the limitations of the existing altimetry record, and to extend the altimetry record nearly to the present 

day, here we use Cryosat-2 data to map elevation changes on Thwaites Glacier, West Antarctica (Figure 1). Our results show 

significant water movement beneath the glacier, and imply temporal variability in water flow that is not captured in 

published models of the glacier. 

2. Data and techniques 10 

This study combines surface elevation, ice-thickness, and ice-speed data from a variety of sources.  We describe each below. 

2.1 Surface elevation and elevation-change estimates 

The primary source of elevation data for this study are the Cryosat-2 baseline-B radar altimetry data collected 

between November, 2010 and February 2015, which we refine through a number of steps to derive both POCA (point-of-

closest-approach) and swath-mode elevations.  With POCA processing, estimates are made of the height and location of the 15 

point on the surface that was closest to the satellite when it transmitted a burst of energy, which produces a short-duration, 

high-energy reflection.  Rather than use one of the level-2 retracked products, we apply a maximum-slope retracker to 

measure the height of these points (Gray et al., 2015), smoothing each waveform with a Gaussian window with a s of 4 

samples, and using a threshold of 3.6x10-16 W sample-1 to identify waveform-power slopes significantly above the noise 

floor, and a coherence threshold of 75%.  20 

Like other POCA products, our retracked POCA Cryosat-2 data tend to preferentially measure the heights of local 

rises on the ice sheet, missing local depressions, which can lead to gaps in the coverage of measurements of up to a few km 

in the Thwaites Glacier region.  To help fill these gaps, we derived additional elevation measurements using a swath-

processing strategy to calculate surface heights from the ‘tail’ of the return (Christie et al., 2016; Gray et al., 2013; Hawley et 

al., 2009), which is energy returned after the POCA.  To estimate heights from this part of the waveform, we smoothed the 25 

complex phase for each waveform to about 80% of the instrument bandwidth, using a Gaussian kernel with a s of 5 bins, 

weighted by the coherence values, and calculated a weighted mean of the coherence using the same weights.    For most 

bursts, this resulted in smoothed coherence curves that were high (greater than 75%) over one or more contiguous segments 

after the POCA points.  For any segment longer than 20 bins, we unwrapped the smoothed phase starting at the centre of the 

segment and, geolocated the measurements for three distinct ambiguity shifts of  -2p 0, and 2p.  For each segment, we then 30 

fit a spline curve to the derived elevations as a function of the across-track distance to the resulting height values with a 

resolution of 400 m.  For each 400-m node in the spline, we calculated the median height (and across-track offset) and RDE 

(Robust Dispersion Estimate, equal to the half the difference between the 84th and 14th percentiles) of the residuals to the 

spline within 200 m of the node.  We then compared the median heights to a DEM, and selected the best ambiguity that 

minimized the median absolute difference of the height residuals for each segment.  The swath-height values supplied to our 35 

fitting routine are the median-residual elevations (and their locations) around each node, and the errors are the RDEs of the 

spline residuals.  

Swath-processed data over the Thwaites region are affected by metre-scale biases that are correlated over tens of 

kilometres, and apparently independent from orbit to orbit, possibly because of the time-variable subsurface penetration of 

radar energy.  By combining swath and POCA data, we were able to partially correct for these biases, allowing nearly 40 
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continuous, dense coverage of our study area.   We produced surface-elevation estimates with uniform spacing in space and 

time using a technique that minimizes the misfit between the irregularly sampled data and a smooth surface-height model 

that varies in time.  In this model, the ice-sheet surface is represented as a digital elevation model (DEM) for June 1, 2011, 

combined with a set of correction surfaces that map elevation changes between the 2011 DEM and the surface for 3-month 

increments between 2010 and 2014.  This technique minimizes a residual that depends on the roughness of the surface, the 5 

spatial variability of the elevation change rate, and the misfit between the surface and the data (Appendix A).  With this 

model, we were able to reconstruct the surface height for our region at any time between mid 2010 and late 2014. 

2.2 WorldView photogrammetry elevations 

In addition to Cryosat-2, we derived surface DEMs from WorldView optical stereo data processed with ASP, the 

AMES Stereo Pipeline (Shean et al., 2016). These DEMs have a horizontal resolution of approximately 12 m; experience 10 

with these data suggests that each DEM has a uniform bias of around 4 m (RMS), and that correcting for this bias leaves 

sub-metre vertical errors that are correlated at sub-kilometre  scales (Shean et al., 2016). While these data have far finer 

resolution than Cryosat-2, coverage is much more limited.   We constructed a nearly seamless composite DEM for part of 

our study area from two overlapping pairs of images, both from November of 2014, by correcting for the mean height bias 

between the two in their overlap area.   Two earlier image pairs, from November of 2012 and March of 2013, gave estimates 15 

of the surface height for part of the same area, approximately two years earlier. 

2.3 Bed DEM 

We generated a bed DEM was generated based on the latest available radar-sounding data for the Thwaites region, 

using a smooth-spline interpolant.  As an alternative, we did consider the BEDMAP-2 DEM (Fretwell et al., 2013), but did 

not use it because it does not include the high-resolution 2012 IceBridge radar-sounding campaign. To derive an estimate of 20 

the bed elevation, we used McCords Level-2 (Leuschen et al, 2010) and AGASEA (Blankenship et al, 2012) ice-thickness 

estimates.  Both radar surveys were accompanied by laser-altimetry data sets, so we converted the thickness estimates to 

bed-elevation estimates by subtracting them from the mean of all laser altimetry measurements within 100 m of the posted 

thickness estimate location.  We used only those radar-sounding estimates collected at altitudes less than 3000 m above the 

surface.  25 

To interpolate a bed DEM from these data, we used an algorithm similar to that used for the Cryosat surface 

interpolation (Appendix A), solving for a time-invariant bed elevation model.   The bed-fitting algorithm included adjustable 

parameters that controlled the smoothness and the flatness of the interpolated bed, corresponding to parameters Lx in 

equation A7 and wx0 in equation A8.  A set of constrained, independent parameters allowed for a distinct height bias for each 

day on which data were collected, to account for inconsistencies in radar-system parameters and bed-return picking by 30 

different operators.  The solution gave bias magnitudes less than 6.5 m, 68% of which are less than 2 m; the standard 

deviation of the difference between the recovered bed DEM and the data points is 11.3 m. 

2.4 Hydraulic potential mapping 

To help assess the possible water flow at the glacier bed beneath our study area, we mapped the hydraulic potential.  

This mapping requires surface and bed elevation data.   35 

We estimated the hydraulic potential at the bed of the ice sheet as: 

 

!′ = $% + '%(),            (1) 
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Here Pw is the water pressure, '% is the density of water g is the acceleration due to gravity, z is the elevation of the glacier 

bed above the geoid, and !′ is the hydraulic potential, in units of pressure. If the basal water pressure is equal to the ice 

overburden pressure, as is commonly assumed, we obtain the glaciological hydraulic potential (Shreve, 1972), which we 

divided by the unit weight of water to obtain: 

! = *+

,-.
= ,/

,-
)0 +

,-1,/
,-

)2 ,          (2) 5 

Here  '3 is the density of ice, zs is the surface height of the glacier, and  ! is the hydraulic potential in units of height.   We 

calculated the hydropotential for our field area using the Cryosat-2 surface height estimate for June 1 2011, combined with a 

bed DEMs based on radar sounding data; both are measured relative to the EGM-2008 geoid. 

If the water pressure at the bed is equal to the overburden pressure, water at the bed will tend to flow along paths 

parallel to the gradient of !, from high low.   This allows the potential map to define the general direction that water paths 10 

are likely to follow.   We used a D8 routing scheme (for 8-directional, meaning that each pixel routes water to the lowest of 

its eight neighbours) to calculate the predicted motion of water between nodes in our hydropotential grid (Schwanghart and 

Scherler, 2014).     

At short spatial scales, our potential map contains many locally closed basins. On a bed such as this, long-distance 

water transport cannot take place unless water can seep through subglacial till, through valleys in the bed too small to be 15 

resolved by the radar surveys, or through low-pressure channels that allow water to flow against the local potential gradient.  

To represent the large-scale basal flow pattern, we ‘conditioned’ our hydropotential map, by artificially filling the closed 

depressions within each basin to the potential of the lowest point on the boundary, to yield a potential map through which 

water can steadily flow, because once a basin has been filled, any further water added to it will flow out.  Artificially 

increasing the potential by 1 m is equivalent to raising the bottom of the ice and the surface together by 1 m, or to raising of 20 

the bottom of the ice by about 9 m.  This conditioning had a similar effect to running a transient water-flow model to steady 

state before calculating flow paths (Le Brocq et al., 2009) and is among the common strategies used in mapping subaerial 

flow networks using DEMs that do not resolve the details of every stream valley (Reuter et al., 2009). In some cases, 

adjacent basins merged during the filling process to form larger, but still closed basins; we continued filling the merged 

basins until there are no closed contours in the potential map, and used this merged potential map to derive large-scale flow 25 

paths. 

2.5 Ice-surface velocity mapping 

We derived ice-surface velocity maps from a combination of published SAR (Synthetic Aperture Radar) data 

(Mouginot et al., 2014),  feature-tracked LANDSAT data between 2012 and 2016, and TerraSAR-X (TSX) data pairs 

acquired between July 2011 and August 2014.       30 

To investigate possible changes in glacier speed coincident with the elevation changes, we derived speed estimates 

from Landsat-8 imagery of Thwaites Glacier and surrounding slower-flowing regions. To reduce potential velocity errors 

due to geometric distortions in the imagery, we tracked only pairs of images collected on the same path and row.  This 

should ensure that errors in feature positions due to inaccuracies in the Landsat geolocation model are nearly the same for 

both images in a pair, and their errors should cancel in the velocity estimate.   We used software based on SAR-speckle-35 

tracking algorithms (Joughin, 2002) to estimate offsets between pairs of images and to estimate the contribution of 

geolocation biases in the images to velocity estimates based on control data on slow-flowing ice.   

We also derived velocities for twenty-five periods between June, 2011, and August, 2014, from feature tracking in 

TSX and TanDem-X image pairs (Tedstone et al., 2014) for an area near the grounding line of Thwaites Glacier.   Since 

there is no exposed rock or truly stagnant ice in these image pairs, in the first instance the image coregistration and 40 

geocoding is performed using the satellites orbits and a reference DEM; in order to minimize the impact of orbital errors we 
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feature tracked only image pairs with a minimum of 22 days (2 TerraSAR-X repeat cycles) time-span.  To refine the static 

offsets for each pair, we identified a relatively slowly moving area in the southeast corner of the maps (area C in figure 6) 

that was well covered in every epoch, and where we assumed that the ice speed was constant.  We subtracted the difference 

between the speed for this area and its mean speed before June 1 2012 from each speed map.  We then calculated velocity 

anomalies for each corrected speed map relative to the pre-june-1-2012 mean speed map.  Corrected speed anomalies are 5 

mapped in figure S4. 

2.6 Subglacial melt-rate estimates 

We also used a map of the estimated subglacial melt rate in our area as derived from the surface velocity map, and 

an estimate of the basal shear stress derived using inverse methods and an ice-flow model (Joughin et al., 2009).  This melt-

rate estimate does not include the elevated geothermal heat flux that has been hypothesized based on estimates derived from 10 

radar (Schroeder et al., 2014), hence it may underestimate actual melt volumes.  

3. Results 

3.1 Ice-surface elevation and elevation change 

The derived June 2011 reference DEM we derived for the Thwaites basin does a good job of resolving kilometre-

scale features (see the comparison of surface slope and an optical image mosaic in figure S2).  Point-for-point comparison 15 

between the DEM elevations and scanning laser altimeter data from 2011 and 2012 shows that the DEM is about 0.6 m 

higher than the laser data (based on the median difference) with a scatter of about 3 m (based on half the difference between 

the 16th and 84th percentiles of the distribution).  This comparison suggests that the Cryosat-2-based DEM should provide 

good estimates of relative height differences across our study area, with local errors on the order of 3 m. 

Figure 2A shows the surface elevation change over the 18-month period from June 2011 to January 2013. Overall 20 

there was little elevation change over this period. With possible exception of some thinning in the lower left corner, the area 

shown is far enough upstream that the strong (metres) thinning in response to ice-flow acceleration near the grounding line 

in the late 1990s and early 2000s (Medley et al., 2014; Mouginot et al., 2014) is not evident.  By contrast, Figure 2B shows 

strong, localized elevation change over the period from January 2013 to June 2014.  The most prominent feature in these 

maps are four general oblong-shaped regions where the surface dropped by many metres. The centres of the features are 25 

approximately 70, 124, 142, and 170 km upstream of the grounding line, so we refer to them as Thw70, Thw124, Thw142 and 

Thw170.  The largest feature, Thw124, is roughly oval, about 16 km wide and 39 km long.  Just upstream is Thw142, an 

elongated feature about 20 km east-to-west and about 2 km south-to-north.  Farthest upstream is Thw170, which extends 11 

km south-to-north, and 18 km east-west.  The downstream-most feature, Thw70, is angular in shape, with the largest 

drawdown concentrated in a region elongated in the NW-SE direction.   30 

An independent set of measurements from the Worldview-2 (WV-2) satellites shows the elevation-change pattern 

for a portion of the western sides of THW124 and Thw70. The November-2014 WV-2 DEM shows the surface height after the 

surface change was largely finished.  We subtracted the heights measured in the two earlier DEMs, from November 2012 

and March 2013, and corrected for residual biases and regional elevation change by subtracting the mean elevation 

difference outside the boundaries of Thw124 and Thw70. The resulting elevation-change maps (figure 2C) show small (~0.7 m 35 

RMS) apparently random elevation variations outside the feature boundaries, up to 20-m subsidence at Thw124, and around 

6-m drop at Thw70. The spatial patterns and magnitudes of these changes are both similar to those measured by Cryosat-2. 

To derive a volume change for the features, we followed a procedure similar to that used in previous studies of 

active subglacial lakes (Fricker et al., 2007; Smith et al., 2009).  We drew a bounding polygon for each feature that 

encompasses all substantial (> 0.5 m) elevation change.  For each three-month elevation-difference surface, we subtracted 40 
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the elevation change within the polygon from the elevation change in a region between 2 km and 6 km outside the polygon, 

which corrects for large-scale elevation-change errors, as well as regional drawdown associated with ice-dynamic thinning.  

Figure 3a shows the mean elevation change with time for each lake.  Integrating these corrected changes in space gives the 

volume change for each feature.  Both the elevation and the volume change (Figure 3b) show nearly concurrent drainages.  It 

appears that Thw124, began to deflate first, (January 2013) and continued losing water until mid 2014, with a total loss of 4.5 5 

km3. In March 2013, Thw170 began to drain, and continued until the beginning of 2014, with a total loss of 0.5 km3.  Third in 

this progression was THW142 draining 0.5 km3 between June of 2013 and January of 2014.   Finally, Thw70 lost 0.5 km3, 

somewhat more slowly, but primarily between June 2013 and June 2014.  The timing of each of these events is somewhat 

uncertain, because the season-to-season coverage by Cryosat-2 of each feature is inconsistent, and the smoothing constraints 

applied during the fitting process are expected to yield elevation-change estimates that are temporally smoother than the 10 

actual pattern of elevation change; this latter effect is particularly strong at Thw124 because the smoothing constraints tend to 

blur the timing of very large changes.  As a result, we cannot rule out the possibility that the elevation changes happened at 

the same time for all four features, or in a different sequence than just described, although the data, taken literally, appear to 

indicate an earlier change at Thw124. 

3.2 Hydropotential maps 15 

Figure 4A shows the hydropotential map derived for our study area.  The surface elevation variations are largely 

responsible for determining the potential basin shapes, and define distinct basins for each feature.   The exception to this 

pattern is Thw70, which spans a range of hydraulic potentials, with its downstream end about 200 m lower than its upstream 

end.  Regionally, there is a strong potential gradient driving water parallel to the ice-flow direction, which means that the 

upstream features have higher potentials than the downstream features.  We take the mean potential of the digitized 20 

boundary of each feature as representative of the height of the boundary controlling flow into or out of the feature.  From 

upstream to downstream they are 1000, 930, 855, and 715 m, respectively.  The differences between the hydropotential map 

derived from our spline-fit DEM and the BEDMAP-2 DEM (Fretwell et al., 2013) are small, suggesting that our analysis 

does not depend strongly on the choice of the bed DEM used (see figure S3 for a comparison). 

Figure 4B shows the potential difference required to achieve the connected potential map.  The merging process 25 

(see methods) produced one main basin for each of our drainage features, except for Thw70, which is divided among four.  

For most basins, the potential difference is 1-2 m; but for a few, including those associated with Thw124, Thw142, and Thw170, 

the potential change required was on the order of 10-20 m. There is also a large area just downstream of, and parallel to, 

Thw124 that in places required filling by more than 30 m.  Figure 4D shows the flow paths calculated from the filled potential 

map.  This map includes a path that skirts the eastern edges of Thw170 and Thw142, passes through Thw124 from east to west, 30 

then sweeps to the northwest, missing Thw70 entirely, and meeting the grounding line approximately in the centre of the 

fastest-flowing part of Thwaites glacier. Note that these flow paths and basins are qualitatively the same if we generate a 

hydropotential map using an alternate data source such as Bedmap-2.   

The melt-rate map (figure 4C), combined with the (merged) basin map allow an estimate of the melt-water supply 

rate to each of our features.  First, for each feature, we calculated the rate of melt production within the feature’s local 35 

catchment.  Next, with the large-scale drainage map, we calculated the rate of melt production over the entire catchment for 

the feature.  These volume rates are reported in table 1. 

3.3 Ice-velocity mapping 

A profile of speeds for a flowline that runs through our features and out onto the central flowline of the glacier is 

shown in figure 5, as well as a set of interpolated speeds for a point just downstream of Thw70, and at the grounding line.  40 

The most prominent features in these plots are the long-term acceleration of Thwaites glacier, which has a large effect near 
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the grounding line but much smaller 70 km upstream, and scatter in speeds between different sensors, which produces 

substantial, but not meaningful, apparent speed differences in the velocity-profile plots and in the time-series plots.  Any 

speed change associated with the lake drainage is small compared to the decadal-scale speed variations of the glacier. 

A more self-consistent and detailed estimate of speed change around the time of the drainages comes from a set of 

TSX velocity maps near the grounding line in the fastest part of the glacier (Figure 6, supplemental material figure S4).  5 

These maps show that a small area, about 15x20 km in extent, on the east side of the glacier, accelerated by about 100 m yr-1 

over the course of the 2013 calendar year.  Before this acceleration, this area was slowing at about 50 m yr-2, and after the 

start of 2014 it returned to this slowing rate.  By contrast, the ice 20 km to the west of the main trunk slowed at about 50 m 

yr-2 until the start of 2013, then maintained an approximately constant speed through the end of 2014.   The centre of the 

acceleration feature is within a few kilometres of the drainage channel inferred from the hydopotential maps. 10 

4. Discussion 

Following previous studies of similar features (Fricker et al., 2007; Gray et al., 2005; McMillan et al., 2013; Smith 

et al., 2009; Wingham et al., 2006) the simplest and most likely explanation for the observed changes in surface height is the 

sudden drainage of four subglacial lakes, and we will hereafter refer to the features as lakes.  Some authors have suggested, 

based on airborne-radar observations,  that features of this type may in fact reflect the movement of mud or till rather than 15 

water (Siegert et al., 2014). We have no strong evidence as the type of material moving beneath the features we observe, 

although large-scale motion of a 4-km3 volume of a material with significant shear strength (such as till) seems unlikely.  

Although some previous studies (Smith et al., 2009) have recommended caution in using coincident filling or draining of 

adjacent lakes as evidence of hydraulic connection, the nearly simultaneous drainage of four lakes strongly suggests some 

kind of linkage in the basal hydrological system.   20 

4.1 Basal Hydrological System: Linked Lake Catchments 

The hydropotential mapping shows that subglacial water flow beneath Thwaites glacier is organized by surface 

topography into circuitous paths that are often perpendicular to the large-scale flow gradient.  The cross-slope water paths 

are defined primarily by elongated ridges in the glacier surface. Although the bed topography plays a lesser role in defining 

the flow directions, surface undulations often are muted expressions of features at the bed (Gudmundsson, 2003).  Our 25 

analysis of the hydropotential maps suggests that together the interaction of bed and surface topography produces a basal 

hydrologic system that consists of many individual catchments, linked by a series of drainage paths that are at least 

intermittently active.  The bumps at the surface that give rise to the catchments represent large excursions in the driving 

stress, which is associated with a locally elevated meltwater supply for each catchment.  These factors together create an 

environment favourable to the accumulation of water to form subglacial lakes.  Many features do not represent deep sinks in 30 

the hydropotential map, so they may simply collect water in a region with little storage, which then cascades downstream to 

the next catchment.  Some of these features, however, represent much deeper sinks in the potential field, which can allow 

lakes with substantial volume to fill and drain. 

Our hydropotential map is not a perfect tool for predicting water flow at the bed since it makes the assumption that 

the water pressure equals the overburden (i.e., zero effective pressure). Since most sliding laws produce zero resistance with 35 

zero effective pressure, at least in some regions the water pressure must be lower than assumed to maintain basal traction, 

particularly beneath regions where surface slopes are steep (i.e., driving stresses are high).  Thus, there is uncertainty our 

estimates of the details of hydropotential that reflect features and processes that we are unable to resolve with the present 

data. As a result, while we cannot precisely determine the nature of each flow path from the data, it does appear that some 

lakes may be connected continuously, while others may have more intermittent connection. In the latter case, only when the 40 
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lakes have filled such that their potential exceeds the minimum local hydropotential barrier do they drain. Note the initial 

drainage might be slow and inefficient, but once started, a low pressure-gradient channel may develop that leads to more 

rapid drainage. Once the drainage is complete, without water flow to sustain melting, such a tunnel would close and reseal 

the lake, allowing it to recharge.  Despite these limitations it appears reasonable to assume that lakes form where sinks in the 

map are the greatest. In fact, the lakes drainages we observe occur precisely where some of deepest closed basins in the 5 

hydropotental field exist (Fig 3b). In areas where catchments are connected more continuously without abrupt drainage, 

water may either move continuously between catchments either through a small network of tunnels or through a less 

efficient distributed network. 

The four lakes appear to have drained nearly concurrently, with Thw124 appearing to precede the others. The upper 

three lakes are linked by a through-going potential drainage pathway (Fig. 3d), while Thw70 ties into this drainage pathway 10 

farther downstream. As computed, the drainage pathways only exist when the water level rises such that it overcomes the 

hydropotential barrier. With this model, an upstream lake could overflow into a downstream lake, which would subsequently 

cause it to overflow, which would then trigger the next event. While this scenario would produce nearly simultaneous 

drainage, its inconsistent with the observation, which suggest, although not definitively, Thw124 draining first. In principle, 

this should not trigger the other lakes, which would have to exceed their own potential barriers. Lowering the potential of 15 

Thw124, however, would have forced more water flow toward the lake, at least within the upper confines of its own 

catchment. The development of a lower-pressure conduit near the boundary between basins could have altered pressure 

gradients sufficiently to allow water from the adjacent catchments to spill over, which, through a similar lowering of 

potential, could have induced drainages of the catchments farther upstream. Perhaps owing to noise in the data or irregular 

topography, the Thw70 basin is made up of several catchments, some of which are nearly adjacent to the large drainage 20 

pathway for the other draining lakes. If this path were closed prior to drainage, but opened to accommodate the Thw124 

drainage, then the increased pressure gradient between the channel and Thw70 may have been enough to activate its drainage 

pathway. 

As just described, lowering the hydropotential gradient at the lower end of a drainage pathway may be sufficient to 

open it for efficient drainage. This is not a completely satisfying explanation, as some of the pathways are quite long. 25 

Nevertheless, it is important to keep in mind the actual water pressure distribution is unknown and evolving with time. Thus, 

some of the lake may be connected by substantially short paths than shown, with weaker than indicated potential barriers 

dividing them. Further explanation into the nature of the triggered drainage likely will require a far more detailed 

hydrological data, likely constrained by a better resolved bed model.  

This picture of lakes and subglacial hydrology complicates the modelling of subglacial water flow.  Some 30 

techniques for estimating subglacial water flow rates (Schroeder et al., 2014) infer the hydraulic conductivity of the glacier 

bed under the assumption that the conductivity is sufficient to evacuate the meltwater produced steadily by the glacier.  Our 

results show that the instantaneous conductivity at any time may be substantially too small to evacuate the steady meltwater 

production upstream, but that while lakes are draining, the conductivity increases dramatically.  Over the course of multiple 

lake-drainage cycles, the time-averaged conductivity should be adequate to remove the steady-state melt, but the balance 35 

cannot be assumed at any given moment.  

From the melt rate estimates and our inferred drainage pathways, we can make some estimates about the recharge 

times of the lakes. The last two columns of table 1 show the time required for each lake to refill after its observed drainage, 

based on local and on catchment-scale melt production, ranging from 39 to 83 years for the upper three lakes.  If the lakes 

collect water from upstream catchments, however, this range becomes 4.7 to 22 years. As noted above, the melt estimates 40 

assume a fairly low estimate of the geothermal heat flux (Joughin et al., 2009). and the actual value could be significantly 

higher (Schroeder et al., 2014). As a result, these times could be a few years faster than indicated. The fact that the 

hydropotential barriers seem low for many catchments favours aggregation of water in a few lake basins with the 
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correspondingly faster recharge times. This is consistent with the relatively abundant observations of active lakes around 

Antarctica (Smith et al., 2009). 

 

4.2 Influence of Drainage on Glacier Speed 

The sudden injection of a large volume of water under the trunk of an active glacier has in some cases led to a 5 

short-term acceleration in flow and discharge (Stearns et al., 2008).  For Thwaites Glacier, however, the extra water seems to 

have had little or no influence on the speed of the lower trunk of Thwaites Glacier.  The largest acceleration detected at the 

grounding line, immediately after the bulk of the drainage was finished, amounted to at most 150 m yr-1, or less than 10% of 

the pre-acceleration speed.  This is only moderately larger than the longer-term ice-stream speed trend of around 4% yr-1 

between 2003 and 2010.  Moreover, speedups of this magnitude can also be explained by ungrounding in response to ocean 10 

melting (Joughin et al., 2014). 

The lack of a strong acceleration in response to the lake drainage should not be surprising.  Model-based estimates 

of the basal shear stress of the lower trunk of Thwaites glacier (Joughin et al., 2009) shows basal drag concentrated in 

narrow (~5 km wide) bands oriented perpendicular to flow.  It seems likely that the glacier speed is largely determined by 

the drag in the high-stress regions and by lateral shear stress supported outside the lateral margins. If the water discharged 15 

from Thw124 moved through narrow channels, it would have occupied only a small area of the bed, and the total change in 

force on the glacier, proportional to the product of the area occupied by the channels and the mean shear stress over that 

area, would likely have been small.  Moreover, channels with lower pressure than the surrounding hydrological system 

might actually withdraw water from higher-pressure distributed systems and act to decrease speeds.  Further, the discharge 

of Thw124 only lasted a few months, so even if it had produced a significant ice-speed change, its effect on the net discharge 20 

of the glacier averaged over several years would have been minimal. 

5. Conclusions 

Our altimetry measurements reveal a substantial (>3.5 km3) short-term transfer of water across the bed of Thwaites 

Glacier.  Multiple subglacial lakes appear to have drained, with a temporal pattern that suggests linkage over more than 100 

km, with a pattern of drainage suggesting that the lakes were connected to a subglacial water system that could change its 25 

discharge rate drastically over a few months.  Although more than 3 km3 of water appears to have reached the fastest flowing 

part of the ice stream over during this time, the added water appears to have had no substantial effect on the ice speed, which 

is different than what has been reported for some other glaciers (Stearns et al., 2008), but not surprising based on principles 

of basal-hydrological and basal-sliding theory. 

Historically, most full ice sheet models have been developed at resolutions of 10 to 40 km, which is insufficient to 30 

resolve topography at the scale that gives rise to the linked catchments shown in Figure 3. Most models have assumed 

relatively smooth gradients in the hydropotential field that drives an efficient or inefficient drainage network, which is 

generally driven by bed properties at that scale of mm to m. As we are able to measure the ice sheet surface and bed at ever 

improving resolution, it is becoming apparent that the routing of basal water is highly dependent on processes acting at the 

km scale and a linked catchment system represents a different paradigm than has or could be considered in most ice sheet 35 

models thus far.  

While our data suggest water is routed in ways not presently accounted for in most ice sheet models, it also 

indicates that the basal hydrological system may not matter much. The basal water system is able to sequester large volumes 

of water over years which it then releases rapidly with little or no apparent change in glacier speed. This insensitivity 

suggests that the details of the basal hydrological system may not be the most important feature of the ice sheet for models to 40 
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capture, especially now that data assimilation techniques allow us to infer the dynamic properties of the bed  (e.g., the 

coefficients in a sliding law)  directly (Joughin et al., 2010; Morlighem et al., 2010). At least at the decadal scale, fixed bed 

parameters can reasonably reproduce observed behaviour (Joughin et al., 2010; Joughin et al., 2014),  despite large increases 

in melt production that accompany a speedup and lake drainages. The data are too sparse at present to say definitively 

whether an evolving hydrological system is an essential part of a predictive ice sheet model. Nevertheless, the data that do 5 

exist suggest that such sensitivity to hydrological evolution may be small. Existing satellites such as CryoSat, ICESat, and 

several SAR missions have already provided a wealth of data to explore such issues. The launch of ICESat-2 (Ice, Cloud 

Elevation Satellite-2) in late 2017 or early 2018, and the launch of the NASA ISRO SAR (NiSAR) in 2020 will improve this 

situation considerably.  

Appendix A. Methods for estimating elevation and elevation change. 10 

Based on the Cryosat data, we estimate elevation changes and a DEM on overlapping 65-km rectilinear grids.  Each grid has 

one set of nodes defining reference DEM heights (for June 1 2011), spaced 500 m in each direction, and one set of nodes 

defining elevation-change surfaces for 3 month increments between June 1, 2010 and March 1, 2015, spaced at 1 km in each 

direction.  Collectively, the heights of these nodes constitute an elevation model, giving the height of any point within the 

grids, for any time between the first and last elevation-change surfaces.  The centres of individual grids are spaced every 25 15 

km, so each grid overlaps its neighbours by 20 km.  When the solution is complete, the grids are merged into a master grid 

using a raised-cosine-taper weighting function that ensures that the master grid elevations and elevation changes are smooth 

across the grid boundaries. 

   We solved for the surface heights and elevation changes by minimizing a penalty function, R2, that depends on the 

mismatch between the elevation model and the data, and on  the spatial gradients in the maps.  Selecting a model (a set of 20 

surface grids and a set of bias parameters) that minimizes R2 gives the smoothest model consistent with the data, subject to 

the choice of trade-off parameters that determine the smoothness of the final model.   This penalty function is: 

45 = 63
78 9/,;/,</ =2/17/

>/

5?@ABA
3CD + 69EF9 )E + 69<F9

GH7
G<

	+ 6<<F<< J) + F2 K + FH7E J) ,  (4) 

The first term is minimized by reducing the data misfit, equal to the difference between the sum of the surface model,  zm(xi, 

yi, ti), the bias model, bi, and the measured elevations, zi. The other terms are model constraints that impose a penalty on 25 

models that have large slopes or roughness, or that have excessively large biases.  The second and third terms are minimized 

by reducing spatial variations in the DEM height and in the elevation-change rate, fourth term is minimized by reducing the 

temporal variation in the elevation-change rate at each node, and the last term is minimized when the bias-model parameters 

are small.  Here Fx is an operator that increases with the first and second spatial derivatives of its argument. σi are the 

estimated data errors, and wi are a set of data weights.  The parameters wxo, wxt, and wtt determine the importance of 30 

variations in the spatial and temporal derivatives of the model heights, relative to the other residual errors.  Fb(b) is a 

function of the bias-model parameters (b) that increases with their magnitude and/or roughness and curvature. 

The surface model is expressed as a set of nodal values for a DEM, and for a set of quarter-annual correction 

surfaces.  The elevation of any point within the model domain, with spatial coordinates (x,y) at time t, can be found by 

spatial interpolation between the DEM nodes to give reference DEM height, and by spatio-temporal interpolation into the 35 

elevation-difference nodes to give the height difference between the surface June 1, 2011, and the surface at (x,y) and time t: 

)L M, N, O = P9; M, N; )E + P9;< M, N, O; J)          (5) 
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Here Ixy and Ixyt are operators that interpolate the nodal values to the specified locations.  We use a bilinear interpolation in 

space, and a cubic-spline interpolation in time; since these are linear operations, we make this calculation using a matrix 

multiplication: 

RS = TUV;W	SR            (6) 

Here zm is a vector of heights interpolated from the model and Ixy;t is a matrix that, multiplied by elevation model mz, gives 5 

the height estimates at x, y, and t. 

The bias model has one variable for each orbit, nk that gives a bias for swath elevations, one parameter for all 

points, kp that gives the height sensitivity to the log of the returned power, and a 2-km geographic grid of values, ksp that 

gives a bias between swath and POCA elevations:  

K3 = 	XYJ!3 + Z[ log _3 − log _E + P9; M3, N3; Z0[ abc	d6eOℎ	_bgXOd
0 abc	$ijk	_bgXOd

.     (7) 10 

As before,  Ixy is the operator giving the linear interpolation of the grid points ksp to the measurement points (xi, yi).  We can 

write this as a matrix multiplication: 

l = mSl.            (8) 

Here B is a matrix calculated based on the power, phase, and location of the data points, b is a vector of bias values 

calculated from the bias model, and mb is a vector containing nk, kp, and ksp.   15 

Using (5) and (7), we can write the first term of (3) as 

noS − R pq1r noS − R           (9) 

Here Gd is the horizontal catenation of Ixy;t and B, and m is the vertical catenation of mz and mb.  The remaining terms of (3) 

help select models that have smoother DEMs, simpler patterns of elevation change, and less complicated bias models.  The 

operator Fx is a discrete approximation of the function 20 

F9 ) = Gs7
G9s

5
+ 2 Gs7

G9G;

5
+ Gs7

G9s

5
uk + D

vws
G7
G9

5
+ G7

G;

5
uk      (10) 

When applied to the elevation-change maps, this operator is summed over all pairs of subsequent surfaces.  The value of Lx 

determines the relative importance of the model gradients and the model curvature to the total residual; it gives the 

approximate distance over which the surface slope in an unconstrained part of the model approaches zero.  We set it to 1 km, 

the approximate size of gaps between POCA points from distinct tracks in our study area.  Discretizing this operator lets us 25 

write the second and third terms of (3) as 

69E xyS zxyS + 69< x{S zx{S .         (11) 

Here F0 is a discretized version of the gradient of (10) as applied to the DEM, and Fδ is a discretized version of the gradient 

of (10) as applied to the elevation-change maps (i.e. the difference between subsequent δz(t) maps).  

The fourth term of (3) is minimized by reducing the temporal variation in the rate of elevation change at each node 30 

in the δz(t) maps.  Ftt(δz) approximates: 

F<< J) = 	 GsH7
G<s

5
uO	uk.          (12) 

This operator is discretized on the nodes of δz(t), allowing us to write it as: 

xWWS zxWWS.            (13) 

Here Ftt operates only on the elements of m corresponding to δz. 35 
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The fifth term of (3) minimizes the magnitude of the bias model: 

F2 = 60[F9 Z0[ +
Y|/
Y|}

?~�Ä/BÅ
3CD

5
 .         (14) 

The first term of (14) contributes a larger penalty for larger swath-POCA biases, the second term contributes a larger penalty 

for larger phase-dependent biases.  In matrix notation, the fifth term of (3) is:  

xlSl
zxlSl.            (15) 5 

The last term of (3) is used to force the elevation increment for June 1 2011 to be equal to zero.  This effectively 

specifies the date for the DEM: 

FH7E = Ç J)353ÉÑÖÜá	5EDD 	          (16) 

Here W is an arbitrary, large weight, which we set to a large enough value that the elevation difference values for June 1 

2011 are less than 1 mm.  The matrix form of (16) is xH7ES	 z	xH7ES. 10 

To solve for the elevation model and bias parameters, we find a model that minimizes R by solving for elevation- 

and bias-model variables that make the derivative of (3) with respect to the model parameters equal to zero.  This leads to a 

set of linear equations:  

no
xy
x{
xWW
xl
x{Ry

Sy
S{
So

+ à =
R
0
0

           (17) 

Here z is a vector of surface-height estimates.  We solve this by minimizing the quantity àzâ1Dà, where C  is a matrix whose 15 

diagonal values give the weights for each component of (3).   In principal, this could be solved by standard linear-least-

squares techniques (Menke, 1989) but because of the large number of equations and unknowns, we use the Matlab routine 

lscov, which uses an algorithm designed to efficiently solve large, sparse systems of least-squares equations. 

We select weights for our data residuals using the iteratively reweighted least-squares technique(Osbourne, 1985) 

with a Tukey weighting scheme with a threshold parameter of 3: We calculate the solution initially setting wi=1, then 20 

recalculate the weights based on the residuals between the model and the data: 

63 = 	
0 ä/

>/
> 3	max	(1, í)

1 − ä/
>/Lî9(D,>)

5 5
ä/
>/

≤ 3	max	(1, í)
        (18) 

í is a robust estimate of the spread of the scaled residuals with nonzero weight from the previous iteration:  

í = D
5
	 $ñó

ä+

>ò
− $Dó

ä+

>ò
          (19) 

Here P84() and P14() are the   84th and 14th percentiles of the distribution of the quantity in parentheses.  By construction, í =25 

1 for a normalized Gaussian distribution, but outlying residuals affect í less than they would the standard deviation. As we 

repeat this process over multiple iterations, outlying data are assigned smaller and smaller weights, and the solution 

converges until either the smallest difference between δz values for two subsequent iterations is less than 0.01 m, or until 20 

iterations are complete.   

One complication in the iterative-fit procedure is that data with elevations tens of metres from the true surface can 30 

produce ‘spikes’ in the DEM that slow the convergence of the entire system.  To help eliminate these, when, for a given 

iteration, the second derivative magnitude for a point in the DEM is greater than 10-4 m-1, all data within 1 km of that point 
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are removed from the solution at the start of the next iteration.  At the end of the next iteration, the solution around the point 

is usually much smoother, the erroneous data are treated as outliers (with r>3í) in subsequent iterations, and the remaining, 

non-outlier data around the point are used in the solution.  

The selection of the weighting parameters wx0, wxt, and wtt is carried out through a combination of arbitrary choices 

and hand tuning.  The initial values for each parameter are set based on reasonable values for an ice-sheet, using the 5 

formulas: 

69ô = k	ö Gs7}
G9s

5 1D

69< = k	ö GõH7
G9sG<

5 1D

6<< = k	ö GsH7
G<s

5 1D

           (19) 

Here A is the domain area and E() is the expected value for a quantity.  The normalization ensures that if each quantity in the 

model is equal to its expected value, the corresponding term in (3) is equal to unity.  We began by exploring a range of 

parameters around the values listed in table 2.  The centre of the range for wx0 was chosen based on surface topography with 10 

an amplitude of 50 m at a wavelength of 6 km (typical values in an ice-stream environment), the range for the elevation-rate 

variability parameter is centred on a value chosen based on an 0.1 m yr-1 variation in the elevation-change rate on a 5-km 

wavelength.  The centre of the range for wtt was chosen based on snow-accumulation-rate variability in the Thwaites 

catchment, on the order of 1 m yr-2. For each parameter we tested expected values within 1-2 orders of magnitude of the 

centre of the range and evaluated whether each value allowed the inversion procedure to reject outlying data points, while 15 

still capturing the pattern of elevation change around Thw124 (Figure S1). The solution is relatively insensitive to variations 

in wtt and wx0, with variations around the chosen value by a factor of 30 producing only minor changes in the recovered 

pattern of elevation change and the DEM shape.  Increasing wtt by more than a factor of 100 (i.e. seeking a much smoother 

solution in time) resulted in more severe data editing, and began to degrade the spatial sampling of the solution.  By contrast, 

decreasing wtt by a factor of 10 resulted in a much rougher δz field, while increasing it by a factor of 10 resulted in a blurred 20 

map of δz.  With our chosen values, the iterative weighting scheme had nonzero weights for about 90% of input data points, 

and returned a í value of 1.06 m. 

A shaded-relief map of the June 1, 2011 surface DEM derived using the selected weights is shown in figure S2.  To 

demonstrate the accuracy of this result, we also show a subset of an optical-image mosaic of Antarctica for the same area.  

We adjusted the shading azimuth and elevation to achieve a best match between the two, but comparing these maps shows 25 

that the DEM captures the few-kilometre-scale surface topography that is visible in the image mosaic. 
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Lake dV, km3 local melt, km3yr-1  total melt, km3yr-1  Tlocal, yr  Ttotal, yr 

Thw70 0.87 0.034 0.07 25 13 

Thw124 3.7 0.045 0.17 83 22 

Thw142 0.54 0.014 0.12 39 4.7 

Thw170 0.49 0.0076 0.044 64 11 

 

Table 1. Discharge estimate for each lake,  as well as the local (within-basin) and total (within-basin + upstream) melt supplies to 
each lake, and the time required for local and total melt supplies to refill the water discharged during the lake drainage. 
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Table 2.  Expected elevation statistics values used to choose weighting parameters in (19). 
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Figure 1. Location map, showing an image mosaic (Scambos and others, 2007) and surface speed (Rignot and others, 2011).  White 
box indicates areas mapped in figure 2, white irregular outline indicates areas mapped in figures 6 and S3.  Black line indicates 
flow line referenced in figure 5.  Northing and Easting are in a polar stereographic projection with a standard latitude of -71 S. 
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Figure 2. Elevation and elevation change for a study area around Thwaites Glacier.   A: Elevation changes between June 2011 and 
January 2013.  B: Elevation changes between January 2013 and June 2014.  C. Elevation change recovered from Worldview DEM 
differencing. Dashed outlines show feature boundaries.  

 5 
Figure 3. Top: Mean elevation change within the digitized outlines, corrected for elevation change outside the outlines as a 
function of time.  Bottom: Calculated volume change within the outlines. 
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Figure 4. A: Hydropotential map derived from the June, 2011 surface elevation map and our basal topography map.  B: Merged 
basins derived from the hydropotential map, and the water-filling depth required to eliminate local water sinks.  C. Melt-rate 
estimate.  D. Water-flux magnitude derived from the basal-melt map and the filled hydropotential map. 

 5 
Figure 5. Glacier surface speeds along a profile running from the grounding line through the draw-down features, plotted as a 
function of distance upstream of the grounding line.   Insets show speeds as a function of time at the downstream end of Thw70, 
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and at the grounding line.  Lines are colour coded by time, with the complete range of colours shown in the grounding-line (0-km) 
speed-vs-time plot. 

 
Figure 6. Detail showing speed change at the grounding line, based on Terrasar-X and TanDEM-X SAR velocities.  Upper left:  
the mean speed between mid 2011 and late 2012.  Upper right: Speed difference between the August 27, 2013 speed map, and the 5 
2011-12 mean speed.   The grey line indicates the position of the velocity profile in figure 5.  Bottom: Speed change relative to the 
2011-12 mean, for two regions, marked ‘A’ and ‘B’.   Data from region C were used to correct speed offsets as a function of time.  
The grey bar indicates the time range of the lake drainage. 
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