-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Participating in Instructional Dialogues: Finding and Exploiting
Relevant Prior Explanations

Citation for published version:

Rosenblum, JA & Moore, JD 1993, Participating in Instructional Dialogues: Finding and Exploiting Relevant
Prior Explanations. in P Brna, S Ohisson & H Pain (eds), In Proceedings of the World Conference on
Artificial Intelligence in Education: Al ED 93. Artificial Intelligence in Education Conference Series, World
Conference on Atrtificial Intelligence in Education Al ED 93, Edinburgh, United Kingdom, 23/08/93.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
In Proceedings of the World Conference on Atrtificial Intelligence in Education

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/43720193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/participating-in-instructional-dialogues-finding-and-exploiting-relevant-prior-explanations(e8aef32f-654a-41c2-be82-ef96c92aa933).html

Participating in Instructional Dialogues:
Finding and Exploiting Relevant Prior Explanations

JAMES A. ROSENBLUM
Department of Computer Science
University of Pittsburgh, Pittsburgh, Pa 15260, USA

JOHANNA D. MOORE
Department of Computer Science and Learning Research and Development Center
University of Pittsburgh, Pittsburgh, Pa 15260, USA
E-Mail: {jr, jmoore}@cs.pitt.edu

Abstract: In this paper we present our research on identifying and model-
ing the strategies that human tutors use for integrating previous explanations
into current explanations. We have used this work to develop a computational
model that has been partially implemented in an explanation facility for an
existing tutoring system known as SHERLOCK.

We are implementing a system that uses case-based reasoning to identify
previous situations and explanations that could potentially affect the explana-
tion being constructed. We have identified heuristics for constructing explana-
tions that exploit this information in ways similar to what we have observed in
instructional dialogues produced by human tutors.

When human tutors engage in dialogue, they freely exploit all aspects of the mutually known context,
including the previous discourse. Utterances that do not draw on previous discourse seem awkward,
unnatural, or even incoherent. Previous discourse must be taken into account in order to relate new
information effectively to recently conveyed material, and to avoid repeating old material that would
distract the student from what is new. Thus, strategies for using the dialogue history in generating
explanations are of great importance to research in natural language generation for tutorial applications.

The goal of our work is to produce a computational model of the effects of discourse context on
explanations in instructional dialogues, and to implement this model in an intelligent tutoring system
that maintains a dialogue history and uses it in planning its explanations. Based on a study of human-
human instructional dialogues, we have developed a taxonomy that classifies the types of contextual
effects that occur in our data according to the explanatory functions they serve (16). In this paper, we
focus on one important category from our taxonomy: situations in which the tutor explicitly refers to a
previous explanation in order to point out similarities (differences) between the material currently being
explained and material presented in earlier explanation(s).

We are implementing a system that uses case-based reasoning to identify previous situations and
explanations that could potentially affect the explanation being constructed. We have identified heuristics
for constructing explanations that exploit this information in ways similar to what we have observed in
instructional dialogues produced by human tutors. By building a computer system that has this capability
as an optional facility that can be enabled or disabled, we will be able to systematically evaluate our
hypothesis that this is a useful tutoring strategy.

Motivation and Problem Definition

In order to test our hypotheses about the effects of previous discourse on explanations, we are building
an explanation component for an existing intelligent training system, SHERLOCK (11). SHERLOCK is
an intelligent coached practice environment for training avionics technicians to troubleshoot complex
electronic equipment. Using SHERLOCK, trainees solve problems with minimal tutor interaction and then
review their troubleshooting behavior in a post-problem reflective follow-up session (RFU) where the tutor

TUTOR <-> You tested pin 28 of the AIA3AL5. [1]
STUDENT Why is testing pin 28 not a good step? [2]

TUTOR As explained before, the main data inputs to relay B24 are highly suspect at this time. [3]
You have tested the low input to B24 but not the high one. Since it is more likely
that there may be a problem with the main data signals to relay B24 than with the
secondary data signals to relays B25-B30, the main data signal should be tested first.
Testing pin 28 is not a bad step, it is just more likely (on the average) that the main
data signals are causing the problem.

One exchange and one action later.

TUTOR <->You tested pin 36 of the A1A3A15. [4]
STUDENT Don’t I need to test pin 367 [5]

TUTOR You might have to, but for the same reasons given when you tested pin 28, it is generally [6]
more efficient to test the main control data signals first, and then test the secondary
control data signals if necessary.

Figure 1: Human-Human Advisory Interaction Displaying Conteztual Effects

STUDENT Why is testing pin 28 not a good step?

TUTOR The main data inputs to relay B24 are highly suspect at this time. You have tested
the low input to B24 but not the high one. Since it is more likely that there may be a
problem with the main data signals to relay B24 than with the secondary data signals to
relays B25-B30, the main data signal should be tested first. Testing pin 28 is not a bad
step, it is just more likely (on the average) that the main data signals are causing the

problem.
: One exchange and one action later.

STUDENT Don’t I need to test pin 367

TUTOR The main data inputs to relay B24 are highly suspect at this time. You have tested
the low input to B24 but not the high one. Since it is more likely that there may be a
problem with the main data signals to relay B24 than with the secondary data signals to
relays B25-B30, the main data signal should be tested first. Testing pin 36 is not a bad
step, it is just more likely that the main data signals are causing the problem.

Figure 2: Hypothetical Advisory Interaction without Conteztual Effects

replays each student action and assesses it as “good” (<+>) or as “could be improved” (<->). After a
step is replayed, the student can ask the tutor to justify its assessment. Psychological experimentation
(14; 18) indicates that learning from task situations requires significant cognitive effort, and therefore
some have argued that much of the instruction should actually take place in these post-problem RFU
sessions in which students can review their own actions and compare them to expert behavior (10).
Therefore, SHERLOCK does much of its tutoring during RFU where the most commonly asked question is
for SHERLOCK to justify its assessment of a step (48% of RFU questions). Therefore, we have concentrated
on handling this question type.

As an example of the way in which human tutors exploit previous discourse, consider the dialogue in
Figure 1, taken from our data. Even though the student has made the same mistake twice, the second
explanation looks quite different from the first. Yet the two explanations are related to one another in
an important way. In the second explanation (turn 6) the tutor simply reminds the student that she has
not determined the status of the main control data signals and that she should do so before testing the
secondary control data signals. The tutor expects the student to be able to make use of the previous
explanation (turn 3) once he has indicated that it is relevant to the current situation (“for the same
reasons given...” serves this purpose). Accordingly, the tutor does not repeat the detailed explanation of
why the main control data signals should be tested first. By generating the second explanation in such
a way that it ‘meshes’ with the first, not only has the tutor corrected the testing mistake of the student,

but has forced the student to consider how the two situations are similar. In pointing out this similarity,
he has given the student a better understanding of the domain'. We call an explanation that is later
referred to (explicitly or implicitly) or is integrated into a subsequent explanation, the anchor.

Now consider what the response in turn 6 would look like if it were not generated in a manner that
takes the explanation in turn 3 into account. (Figure 2). Here we see that the two explanations are
nearly identical. If the student had trouble understanding the first response, repeating it a second time
is unlikely to clear up her misunderstanding. Moreover, in this dialogue, it is much more difficult for the
student to recognize that the two situations are similar and are both instances of the same general type
of error.

We have observed that tutors regularly produce explanations that make use of the previous discourse.
They explain general principles and then instantiate them with instances from the student’s own behavior
in the current problem-solving situation. They refer to previous explanations to point out similarities and
differences between situations, to avoid repeating material that would distract the student from what is
new, or to try an alternative explanation if a previous explanation is not satisfactory.

Producing a system that displays such behavior requires tackling two problems: (1) deciding what
previous explanation (or part thereof) to use as an anchor, and (2) determining how the selected anchor
should affect the construction of the current explanation. The first problem involves deciding, in aen
efficient way, whether there exist suitable candidates to act as anchor, and if so, which amongst them
would be best to use. The second problem is to determine how to modify the current explanation in a
pedagogically beneficial way, based on the previous explanation. In the following sections we introduce
our domain and describe our data gathering, show how we have solved the first of these problems, and
present our preliminary solutions to the second. Finally, we put this work in the context of the larger
research effort of which it is part.

Overview of Sherlock

As mentioned above, we are working in the context of SHERLOCK, an existing intelligent system that
trains students to troubleshoot a complex electronic device. SHERLOCK is a realistic computer simulation
of the actual job environment. Trainees acquire and practice skills in a context similar to the actual
setting in which they will be used. During a problem-solving session, SHERLOCK’s intelligence is used
mainly to provide hints in response to student requests rather that to intervene actively. Help is provided
only on request or when the trainee’s performance requires SHERLOCK’s intervention (e.g., when he or
she attempts an unsafe action). If trainees do not know what to do next or if they do not know how to
perform a task, they may ask for help.

After students have solved a problem, they can use RFU to reflect on their performance by reviewing
their work with the assistance of the computer-based coach. The purpose of RFU is to help students
internalize the curriculum issues that SHERLOCK teaches. During RFU, students can replay their actions
step-by-step. As each step is replayed, a color-coded diagram shows what can be deduced about the
system’s circuitry from the troubleshooting steps performed thus far. In addition, SHERLOCK marks the
student’s step as “good” or “could be improved.” In the current system, there is a menu of questions
that students can ask along the way, including questions about the tutor’s assessment of their actions,
what an expert would do at a particular point, how the system knows that a component is good, etc.

Currently SHERLOCK’s RFU facility responds to student’s questions by filling in templates based on the
question type and particulars of the student’s action and the problem situation. This type of explanation
facility is designed by identifying a set of situations as being ones where text should be produced, hand-
crafting templates for those situations, and indexing the templates so that the correct one can be printed
at the appropriate time. This approach exhibits a number of shortcomings. First, in order to keep
the task of hand-crafting templates manageable, one must severely restrict the number of features that
describe a situation. Second, since text is not produced directly by procedures that examine system-
internal knowledge structures, this approach cannot guarantee that explanations match program code as
the system is modified over time. Finally and most limiting, since a system using templates has no model
of what it is saying, it cannot reason about the explanations it has given. Therefore, it cannot generate
explanations that take into account prior explanations.

Although space constraints prevent a complete discussion of the way SHERLOCK reasons about the
domain and student actions, the following aspect is extremely important to our work, and so we briefly

! Notice that the first explanation (turn 3) makes use of a previous explanation (signaled by, “as explained before”), not
shown due to space constraints.

describe it here. SHERLOCK evaluates each student action by determining which facets apply to that
action. The facets come from a cognitive task analysis aimed at identifying the factors that expert
avionics tutors use in assessing student’s troubleshooting actions (15). To evaluate an action, SHERLOCK
finds each facet that applies to it and determines whether that facet should be considered good (g), bad
(b), or neutral (n) in the current problem-solving context. Some facets characterize aspects of actions
that are always considered good or bad. For example, the facet “Making a measurement that is off the
active circuit path” is always considered a b-facet. The representation of a student action includes the
list of facets characterizing the action and an assessment (g, b, or n) for each of those facets.

Analysis of Human-Human Reflective Dialogues

In order to identify the strategies that tutors use in generating instructional explanations, we collected
samples of human-human interactions in the following way. Each student was asked to solve a problem
using SHERLOCK. Afterwards, students used the RFU facility to review their problem-solving. During
our experiments, students were not allowed to question the computer about their performance. Instead,
they addressed any questions they had to a human expert tutor. For the experiments, the SHERLOCK
image was displayed onto two monitors, so that the tutor and student could be physically arranged so
as to inhibit communication by speaking or gesturing. The tutor sat approximately 6 feet from the
student, and observed all of the student’s actions on the second screen. Whenever the student wished
to communicate with the tutor, he or she wrote the question on a pad of paper, and passed it to the
tutor. The tutor then wrote an answer on the pad, and passed it back to the student. Students were
instructed to ask as many questions as they liked. The only constraint was that the student and tutor
did not communicate except by writing on the pad.

To date, we have collected data from 24 student-tutor interactions with 14 different students and 3
different tutors. In total we have examined approximately 2024 sentences containing 518 question/answer
pairs. Of these, 990 sentences and 232 question/answer pairs took place in RFU. This study indicated to
us that tutors frequently integrate previous explanations into their answers, and we hypothesize that this
capability is essential for effective explanation. By building a system that has this ability as an optional
facility that can be enabled or disabled, we will be able to systematically evaluate this hypothesis.

Finding a Relevant Prior Explanation

To produce explanations that take into account prior discourse, the system must be able to identify
situations in which one of its prior utterances could affect the current response. In order to do this, a
system must represent the text it produces in such a way that it can determine what effect each part of
the explanation was intended to have on the student. In addition, the system must maintain a record of
the explanations it has produced and must organize this record in such a way that it can be efficiently
examined when looking for appropriate prior explanations.

The Text Planner

For this project, we are extending the text planner built by Moore and Paris (1989), which works in the
following way. When the user provides input to the system, the query analyzer interprets the question
and forms a communicative goal, e.g., “achieve the state where the hearer believes that an action could be
improved,” or “achieve the state where the hearer understands how the status of a component has been
determined.” The text planner uses a linear planning mechanism to synthesize responses to achieve these
goals. The system’s knowledge about explanation is contained in a library of plan operators that map
communicative goals to linguistic resources (speech acts and rhetorical strategies) for achieving them.
When a communicative goal is posted, the planning mechanism uses its operators to construct a text
plan for an explanation. In general, there may be many plan operators available to achieve a given goal,
and the planner has a set of selection heuristics for choosing among them. Planning is complete when
all goals have been refined into speech acts, such as INFORM and RECOMMEND.

The system then presents the explanation to the user, retaining the plan that produced it in a dialogue
history. The dialogue history is a record of the conversation that has occurred thus far and includes the
user’s utterances and the text plans that led to the system’s responses. In this system, a text plan
represents the effect that each part of the text is intended to have on the hearer’s mental state, the
linguistic strategies that were used to achieve these effects, and how the complete text achieves the
overall communicative goal.

Knowledge Sources for Finding Relevant Prior Explanations

The most straightforward way to find relevant prior explanations would be to search the system’s dialogue
history, beginning at the most recently presented explanation and working back in time through the
dialogue, looking for explanations that have certain features. For example, when explaining why a step
was assessed as “could be improved,” the system could look for previous explanations that justified a
“could be improved” assessment, and in which the two actions being assessed were similar (i.e., had the
same facets).

There are two problems with this approach. First, explanation plans are large, complex structures,
and they accumulate rapidly as the dialogue progresses. Therefore, exhaustively searching the dialogue
history is computationally expensive. Second, there are some situations in which there is no text plan
to be found in the dialogue history. For example, the student may have previously performed an action
that displayed some characteristic(s) that the tutor decided not to mention at the time and which would
now be appropriate to talk about in conjunction with the student’s current action.

Therefore, we require an indexing strategy that will allow the system to find possibly relevant expla-
nations in the dialogue history in an efficient manner. In addition, the system must have the capability
to find relevant prior actions even if the aspects of those actions that are relevant to the current situation
were never mentioned. To satisfy these requirements, we use case-based reasoning to provide a framework
in which previous student actions can be efficiently examined to determine which, if any, are relevant
when producing an explanation. This framework, and its associated indices into the dialogue history,
allow both what was and was not said to be considered when the system plans an explanation.

A Case-Based Algorithm

Case-Based Reasoning (CBR) generalizes from cases to support indexing and relevance assessment, and
can be used to evaluate a case by comparing it to past cases (4). This describes our task if we treat
each student action as a “case”. We were influenced by the work of Ashley (1990) who built a system,
HYPO, that analyzes a legal case by comparing it to the cases in its case library based on similarity
factors. Each factor is considered to support either the defendant or the plaintiff. The representation of
a case includes a set of applicable factors plus an outcome for defendant or plaintiff. HYPO uses this
information to construct a claim lattice which represents a partial ordering of a set of past cases in terms
of their similarity to a case to be decided. HYPO uses the claim lattice to find the most relevant case to
cite in a legal argument. Aleven and Ashley (1992) have extended this work to a tutorial context. In our
system, student actions are assessed an outcome of either “good” or “could be improved,” and SHERLOCK
evaluates each action with respect to a set of facets with an associated judgement about whether the
facet supports a “good” or “could be improved” outcome. Thus, we can use CBR techniques to identify
similar actions as described below.

Our algorithm builds a data structure called a similarity DAG (Directed Acyclic Graph) which indi-
cates the previous student actions that are similar to a given action. By similar, we mean similar with
respect to a certain class of facets (some combination of g, b, or n). For example, when answering a
question about why the current action was assessed as “could be improved,” the similarity DAG is built
so that it indicates which previous actions were similar to the current action with respect to the b-facets.
The root of the DAG represents the current action and the facets of interest (b-facets in our example)
that apply to it. Each node in the DAG represents a set of student actions that share the same set of
interesting facets. The more facets that a node has in common with the current action (the root node),
the closer it will be to the root node. Proximity in the DAG corresponds to similarity in facet sets.
Basically, the similarity DAG is a partial ordering of the student’s actions based on their facet lists.

Figure 3 shows the similarity DAG (consisting of two nodes) that is constructed when the system
considers how to answer the question, “Don’t I need to test pin 367" (turn 5 of the sample dialogue
shown in Figure 1). The facets relevant to the action in question are F100 and F101. The structure
indicates that two previous situations are similar to the current situation — action 9 and to a lesser degree
action 8. Pointers index the dialogue history’s record of what was said at those times. At this point, the
system has identified candidate situations which may be used in planning the current explanation. It can
now consider these retrieved situations more closely to determine any other facets that they may possess,
and can examine the related explanations in the dialogue history to determine what was said about each
of the two previous situations. The fact that there are no other nodes in the DAG indicates that there
are no other suitable prior situations. If actions 8 and 9 had not occurred, the DAG would consist of one

EACETS FACETS
F100: Allowed main data sign 00: All dat
relay to remain partially test%d (b) ejf ay to re%va?ﬁ %arpt?l y te%eg?ﬁﬁ

F101: Tested secondar: aY datasignal

Similarity DAG before main data sign

CURRENT ACTION

Action 12: VDC test, pin 36 to

ground on A1A3A 15 (b)

PREVIOUS ACTIONS PREVIOUS ACTIONS
Action 9: VDC test,é)in 2810 Action 8: VDC tast,éoin 38to
ground on A1A3A15 (b) ground on A1A3A15 (b)

Discour se [TEXTPLAN1/<\ ﬂ FEXTPLANZ />\ }
History

Figure 3: Data structures when considering how to answer turn 5, Figure 1

empty root, indicating that no prior action was similar to the current action in terms of its assessment.

Initial results using this algorithm are quite promising. In an analysis of 8 student-tutor protocols
involving 154 actions and 22 opportunities for integrating a previous explanation into an answer, the
algorithm correctly identified the same previous situations that were used by the human tutor in the
actual interaction. In all but 3 cases, when the human tutor did not make a reference to a previous
explanation, our algorithm reported no similar prior situation. In the 3 situations where our algorithm
identified a similarity not exploited by the tutor, our expert agreed that the associated prior explanations
would have been useful to incorporate into his subsequent explanations.

Finally, this technique will be useful in answering students’ direct questions about the similarities of
situations, e.g., “Why is testing 30 good? Isn’t it like 36 and 287” By constructing and consulting a
similarity DAG, the system is able to plan responses such as: “Yes, but now you know the main control
data signals on pins 33 and 22 are good, so you need to test the secondary data signals.”

Exploiting the Previous Explanation

Having found a suitable situation and associated text plan, the system must decide how to use this
information when generating the current explanation. This task is, by far, the harder of the two problems
and is the topic of Rosenblum’s thesis. However, as a starting point, we have developed a simple algorithm
that is capable of reproducing some of the effects we have observed in human tutors’ explanations.

Recall that when answering the question regarding why testing pin 36 was judged as “could be
improved” (turn 5 of Figure 1), the CBR-algorithm indicated that two previous student actions were
relevant - action 9 (testing pin 28) and to a lesser degree action 8 (testing pin 38). Accordingly, the
student action of testing pin 28 is judged more relevant to the current situation. The representation of
this action includes a pointer to the text plan in the dialogue history representing the explanation given
at that time (Figure 4). This text plan will be consulted as the answer to the student’s question about
testing pin 36 (turn 5 of Figure 1) is formulated.

The system begins by generating the top-level goal of having the hearer know why the assessment of
testing pin 36 is “could be improved.” This matches the top-level goal posted in the previous explanation’s
text plan. The system then refines this top-level goal into a subgoal to make the hearer believe that testing
the inputs to B24 is a better step. When consulting the prior text plan, the system discovers that it
had refined the previous explanations’ top-level goal in a similar way. In fact, simple pattern matching
reveals that the only difference is that previously the student had tested pin 28 and this time the student
has tested pin 36. An examination of SHERLOCK’s knowledge representation reveals that both pin 28
and pin 36 are secondary data signals to relays on the same card, so this difference is not important in
terms of the student’s mistake. This strong match between the system’s developing text plan and the
beginning of the prior text plan, causes the system to generate the goals of anaphorically referencing and
of summarizing the previous explanation resulting in, “You might have to, but for the same reasons given
when you tested pin 28, it is generally more efficient to test the main control data signals first, and then
test the secondary control data signals if necessary.

To date we have devised heuristics that handle a small number of examples such as the one above,
and we are currently in the process of implementing them.

(KNOW-WHY H (ASSESSMENT (TEST PIN28) COULD-BE-IMPROVED))

EVIDENCE

(BEL H (BETTER-STEP

Testing pin 28 could be improved. (TEST (INPUTS B24))
(TEST PIN28)))

BACKGROUND

(BEL H (EXPERT-STRATEGY
(TEST-BEF MAIN-DATA
SECONDARY-DATA)))

EVIDENCE

Itismore likely that there may

The main datainputsto relay Y ou have tested the 33'[3 grgr?éleggc\)/vrléha;hgﬂamm

> ; y datasignals C 9 ou
time but not the highone " ays B25-B30 be tested first

Figure 4: RST discourse tree for turn 3, Figure 1.

Related Work

Computational linguists have investigated how the context provided by the previous discourse should
affect the generation of referring expressions, including pronominalization decisions (8; 7). Others have
studied how a more extensive discourse history could affect other aspects of the response. Swartout’s
(1983) XPLAIN system can suggest simple analogies with previous explanations and omit portions of
a causal chain that have been presented in an earlier explanation. However, this is the only type of
contextual effect implemented in XPLAIN, and it was done using an ad hoc technique to provide this
one effect. We are attempting to provide a more general approach.

McKeown (1985) carried out a preliminary analysis of how previous discourse might affect a system’s
response to users’ requests to describe an object or compare two objects. She found that by simply
maintaining a list of the questions that had been asked, it was possible to avoid certain types of repetition.
She further found that if the system were to keep track of the exact information that was provided
previously, it could create a text that contrasts or parallels an earlier one. While McKeown’s analysis
was fairly detailed, no dialogue history was maintained in the implementation, and none of the suggestions
for how responses could be altered, if such a history existed, were actually implemented or tested. We are
devising explanation strategies that allow a system to make use of the information stored in a dialogue
history, and are implementing these strategies.

Finally, some of our heuristics for utilizing prior explanations resemble work done in plan adaptation
(3). For example, the heuristic we described above can be viewed as modifying a retrieved plan to
fit a new situation. In addition, systems using plan adaptation often use CBR techniques to index a
library of plans that can be adapted. Plan adaptation is concerned with indexing plans so that they can
be retrieved and reused, perhaps with some modifications, in later situations. Our emphasis is not on
finding prior explanations so that they may be reused, but rather so that they can be exploited as one of
many knowledge sources affecting explanation generation.

In addition to the use of heuristics, we are exploring the use of plan operators whose constraints check
for certain patterns in the user model and dialogue history. Carenini and Moore (1993) have shown that
this approach can be used to generate explanations that are sensitive to the context created by prior
explanations. However, as they point out, this approach may lead to a proliferation of plan operators.
We are currently exploring the use of context-sensitive plan operators, plan selection heuristics, and “plan
critics” in an integrated approach.

Conclusion and Future Work

We have argued that human tutors give instruction in a way that is sensitive to what has been previously
said and done. We have suggested that a dialogue history, alone, is insufficient to allow a system to
take into account important contextual issues. Issues such as what was not said in a particular situation
or what event, if any, would be useful to refer to in an answer. A case-based reasoning approach was
put forth as a method of identifying relevant prior explanations when addressing questions regarding
the system’s assessment of a student’s action. Plan adaptation heuristics were then shown to be useful
in performing the actual integration of the retrieved situation (and associated text) into the current
explanation.

Many of the issues presented in this paper deserve, and will receive, future work. In addition to further
evaluation of our algorithm for finding similar situations, we will immediately concentrate on extending
our heuristics for generating explanations under the influence of relevant prior explanations. We will
also examine the interactions between explanations responding to different question types. This work is
part of a larger project whose goals were alluded to in the beginning of the paper. We are attempting
to categorize the ways in which humans exploit previous discourse in instructional dialogue and build a
computational model that can be used in intelligent training systems.

References

Aleven, V. & Ashley, K.D. (1992). Automated generation of examples for a tutorial in case-based argu-
mentation. In C. Frasson, G. Gauthier, G. McCalla editors, Proceedings of the 27% Int’l Conference
on Intelligent Tutoring Systems, 575-584. Springer-Verlag, Berlin.

Alterman, R. (1992). Adaptive planning. In Stuart Shapiro, editor, The Encyclopedia of Artificial
Intelligence, pages 5—15. Wiley, New York.

Ashley, K.D. (1990). Modeling Legal Argument: Reasoning with Cases and Hypotheticals. MIT Press,
Cambridge, Chapter 8.

Ashley, K.D. (1992). Case-based reasoning and its implications for legal expert systems. Artificial
Intelligence and Law, 2(1).

Carenini, G. & Moore, J.D. (1993). Generating explanations in context. In Proceedings of the Int’l
Workshop on Intelligent User Interfaces, Orlando, Florida, January.

Dale, R. (1989). Cooking up referring expressions. In Proceedings of the 27" Annual Meeting of the
Association for Computational Linguistics, pages 68—75, Vancouver, B.C., Canada, June 26-29.

Granville, R. (1984). Controlling lexical substitution in computer text generation. In Proceedings of the
10t Int’l Conference on Computational Linguistics, pages 381-384, Stanford University, July.

Lesgold, A. (1990). Assessment of intelligent training technology. In Proceedings of the Office of Naval
Research Conference on Technology Assessment, Los Angeles, California, September.

Lesgold, A., Lajoie, S., Bunzo, M. & Eggan, G. (1992). Sherlock: A coached practice environment for an
electronics troubleshooting job. In Computer Assisted Instruction and Intelligent Tutoring Systems:
Shared Goals and Complementary Approaches. Lawrence Erlbaum Associates, Hillsdale, New Jersey.

McKeown, K.R. (1985). Tezt Generation: Using Discourse Strategies and Focus Constraints to Generate
Natural Language Text. Cambridge University Press, Cambridge, England.

Moore, J.D. & Paris, C.L. (1989). Planning text for advisory dialogues. In Proceedings of the 27** Annual
Meeting of the Association for Computational Linguistics, pages 203—-211, Vancouver, B.C., Canada.

Owen, E. & Sweller, J. (1985). What do students learn while solving mathematics problems? Journal of
Educational Psychology, 77:272-284.

Pokorny, R. & Gott, S. (1990). The evaluation of a real-world instructional system: Using technical
experts as raters. Technical report, Armstrong Laboratories, Brooks AFB.

Rosenblum, J.A. & Moore, J.D. (forthcoming). A field guide to contextual effects in instructional dia-
logues. Technical report, University of Pittsburgh, Computer Science Department.

Swartout, W. R. (1983). XPLAIN: A system for creating and explaining expert consulting systems,
Artificial Intelligence,Vancouver, B.C., Canada, 21(3), 285-325.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12:257—
285.

