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Participating in Instructional Dialogues:Finding and Exploiting Relevant Prior ExplanationsJAMES A. ROSENBLUMDepartment of Computer ScienceUniversity of Pittsburgh, Pittsburgh, Pa 15260, USAJOHANNA D. MOOREDepartment of Computer Science and Learning Research and Development CenterUniversity of Pittsburgh, Pittsburgh, Pa 15260, USAE-Mail: fjr, jmooreg@cs.pitt.eduAbstract: In this paper we present our research on identifying and model-ing the strategies that human tutors use for integrating previous explanationsinto current explanations. We have used this work to develop a computationalmodel that has been partially implemented in an explanation facility for anexisting tutoring system known as SHERLOCK.We are implementing a system that uses case-based reasoning to identifyprevious situations and explanations that could potentially a�ect the explana-tion being constructed. We have identi�ed heuristics for constructing explana-tions that exploit this information in ways similar to what we have observed ininstructional dialogues produced by human tutors.When human tutors engage in dialogue, they freely exploit all aspects of the mutually known context,including the previous discourse. Utterances that do not draw on previous discourse seem awkward,unnatural, or even incoherent. Previous discourse must be taken into account in order to relate newinformation e�ectively to recently conveyed material, and to avoid repeating old material that woulddistract the student from what is new. Thus, strategies for using the dialogue history in generatingexplanations are of great importance to research in natural language generation for tutorial applications.The goal of our work is to produce a computational model of the e�ects of discourse context onexplanations in instructional dialogues, and to implement this model in an intelligent tutoring systemthat maintains a dialogue history and uses it in planning its explanations. Based on a study of human-human instructional dialogues, we have developed a taxonomy that classi�es the types of contextuale�ects that occur in our data according to the explanatory functions they serve (16). In this paper, wefocus on one important category from our taxonomy: situations in which the tutor explicitly refers to aprevious explanation in order to point out similarities (di�erences) between the material currently beingexplained and material presented in earlier explanation(s).We are implementing a system that uses case-based reasoning to identify previous situations andexplanations that could potentially a�ect the explanation being constructed. We have identi�ed heuristicsfor constructing explanations that exploit this information in ways similar to what we have observed ininstructional dialogues produced by human tutors. By building a computer system that has this capabilityas an optional facility that can be enabled or disabled, we will be able to systematically evaluate ourhypothesis that this is a useful tutoring strategy.Motivation and Problem De�nitionIn order to test our hypotheses about the e�ects of previous discourse on explanations, we are buildingan explanation component for an existing intelligent training system, Sherlock (11). Sherlock isan intelligent coached practice environment for training avionics technicians to troubleshoot complexelectronic equipment. Using Sherlock, trainees solve problems with minimal tutor interaction and thenreview their troubleshooting behavior in a post-problem re
ective follow-up session (rfu) where the tutor



TUTOR <-> You tested pin 28 of the A1A3A15. [1]STUDENT Why is testing pin 28 not a good step? [2]TUTOR As explained before, the main data inputs to relay B24 are highly suspect at this time.You have tested the low input to B24 but not the high one. Since it is more likelythat there may be a problem with the main data signals to relay B24 than with thesecondary data signals to relays B25-B30, the main data signal should be tested �rst.Testing pin 28 is not a bad step, it is just more likely (on the average) that the maindata signals are causing the problem. [3]... One exchange and one action later.TUTOR <->You tested pin 36 of the A1A3A15. [4]STUDENT Don't I need to test pin 36? [5]TUTOR You might have to, but for the same reasons given when you tested pin 28, it is generallymore e�cient to test the main control data signals �rst, and then test the secondarycontrol data signals if necessary. [6]Figure 1: Human-Human Advisory Interaction Displaying Contextual E�ectsSTUDENT Why is testing pin 28 not a good step?TUTOR The main data inputs to relay B24 are highly suspect at this time. You have testedthe low input to B24 but not the high one. Since it is more likely that there may be aproblem with the main data signals to relay B24 than with the secondary data signals torelays B25-B30, the main data signal should be tested �rst. Testing pin 28 is not a badstep, it is just more likely (on the average) that the main data signals are causing theproblem.... One exchange and one action later.STUDENT Don't I need to test pin 36?TUTOR The main data inputs to relay B24 are highly suspect at this time. You have testedthe low input to B24 but not the high one. Since it is more likely that there may be aproblem with the main data signals to relay B24 than with the secondary data signals torelays B25-B30, the main data signal should be tested �rst. Testing pin 36 is not a badstep, it is just more likely that the main data signals are causing the problem.Figure 2: Hypothetical Advisory Interaction without Contextual E�ectsreplays each student action and assesses it as \good" (<+>) or as \could be improved" (<->). After astep is replayed, the student can ask the tutor to justify its assessment. Psychological experimentation(14; 18) indicates that learning from task situations requires signi�cant cognitive e�ort, and thereforesome have argued that much of the instruction should actually take place in these post-problem rfusessions in which students can review their own actions and compare them to expert behavior (10).Therefore, Sherlock does much of its tutoring during rfu where the most commonly asked question isfor Sherlock to justify its assessment of a step (48% of rfu questions). Therefore, we have concentratedon handling this question type.As an example of the way in which human tutors exploit previous discourse, consider the dialogue inFigure 1, taken from our data. Even though the student has made the same mistake twice, the secondexplanation looks quite di�erent from the �rst. Yet the two explanations are related to one another inan important way. In the second explanation (turn 6) the tutor simply reminds the student that she hasnot determined the status of the main control data signals and that she should do so before testing thesecondary control data signals. The tutor expects the student to be able to make use of the previousexplanation (turn 3) once he has indicated that it is relevant to the current situation (\for the samereasons given..." serves this purpose). Accordingly, the tutor does not repeat the detailed explanation ofwhy the main control data signals should be tested �rst. By generating the second explanation in sucha way that it `meshes' with the �rst, not only has the tutor corrected the testing mistake of the student,



but has forced the student to consider how the two situations are similar. In pointing out this similarity,he has given the student a better understanding of the domain1. We call an explanation that is laterreferred to (explicitly or implicitly) or is integrated into a subsequent explanation, the anchor .Now consider what the response in turn 6 would look like if it were not generated in a manner thattakes the explanation in turn 3 into account. (Figure 2). Here we see that the two explanations arenearly identical. If the student had trouble understanding the �rst response, repeating it a second timeis unlikely to clear up her misunderstanding. Moreover, in this dialogue, it is much more di�cult for thestudent to recognize that the two situations are similar and are both instances of the same general typeof error.We have observed that tutors regularly produce explanations that make use of the previous discourse.They explain general principles and then instantiate them with instances from the student's own behaviorin the current problem-solving situation. They refer to previous explanations to point out similarities anddi�erences between situations, to avoid repeating material that would distract the student from what isnew, or to try an alternative explanation if a previous explanation is not satisfactory.Producing a system that displays such behavior requires tackling two problems: (1) deciding whatprevious explanation (or part thereof) to use as an anchor, and (2) determining how the selected anchorshould a�ect the construction of the current explanation. The �rst problem involves deciding, in ane�cient way, whether there exist suitable candidates to act as anchor, and if so, which amongst themwould be best to use. The second problem is to determine how to modify the current explanation in apedagogically bene�cial way, based on the previous explanation. In the following sections we introduceour domain and describe our data gathering, show how we have solved the �rst of these problems, andpresent our preliminary solutions to the second. Finally, we put this work in the context of the largerresearch e�ort of which it is part. Overview of SherlockAs mentioned above, we are working in the context of Sherlock, an existing intelligent system thattrains students to troubleshoot a complex electronic device. Sherlock is a realistic computer simulationof the actual job environment. Trainees acquire and practice skills in a context similar to the actualsetting in which they will be used. During a problem-solving session, Sherlock's intelligence is usedmainly to provide hints in response to student requests rather that to intervene actively. Help is providedonly on request or when the trainee's performance requires Sherlock's intervention (e.g., when he orshe attempts an unsafe action). If trainees do not know what to do next or if they do not know how toperform a task, they may ask for help.After students have solved a problem, they can use rfu to re
ect on their performance by reviewingtheir work with the assistance of the computer-based coach. The purpose of rfu is to help studentsinternalize the curriculum issues that Sherlock teaches. During RFU, students can replay their actionsstep-by-step. As each step is replayed, a color-coded diagram shows what can be deduced about thesystem's circuitry from the troubleshooting steps performed thus far. In addition, Sherlock marks thestudent's step as \good" or \could be improved." In the current system, there is a menu of questionsthat students can ask along the way, including questions about the tutor's assessment of their actions,what an expert would do at a particular point, how the system knows that a component is good, etc.Currently Sherlock's rfu facility responds to student's questions by �lling in templates based on thequestion type and particulars of the student's action and the problem situation. This type of explanationfacility is designed by identifying a set of situations as being ones where text should be produced, hand-crafting templates for those situations, and indexing the templates so that the correct one can be printedat the appropriate time. This approach exhibits a number of shortcomings. First, in order to keepthe task of hand-crafting templates manageable, one must severely restrict the number of features thatdescribe a situation. Second, since text is not produced directly by procedures that examine system-internal knowledge structures, this approach cannot guarantee that explanations match program code asthe system is modi�ed over time. Finally and most limiting, since a system using templates has no modelof what it is saying, it cannot reason about the explanations it has given. Therefore, it cannot generateexplanations that take into account prior explanations.Although space constraints prevent a complete discussion of the way Sherlock reasons about thedomain and student actions, the following aspect is extremely important to our work, and so we brie
y1Notice that the �rst explanation (turn 3) makes use of a previous explanation (signaled by, \as explained before"), notshown due to space constraints.



describe it here. Sherlock evaluates each student action by determining which facets apply to thataction. The facets come from a cognitive task analysis aimed at identifying the factors that expertavionics tutors use in assessing student's troubleshooting actions (15). To evaluate an action, Sherlock�nds each facet that applies to it and determines whether that facet should be considered good (g), bad(b), or neutral (n) in the current problem-solving context. Some facets characterize aspects of actionsthat are always considered good or bad. For example, the facet \Making a measurement that is o� theactive circuit path" is always considered a b-facet. The representation of a student action includes thelist of facets characterizing the action and an assessment (g , b, or n) for each of those facets.Analysis of Human-Human Re
ective DialoguesIn order to identify the strategies that tutors use in generating instructional explanations, we collectedsamples of human-human interactions in the following way. Each student was asked to solve a problemusing Sherlock. Afterwards, students used the rfu facility to review their problem-solving. Duringour experiments, students were not allowed to question the computer about their performance. Instead,they addressed any questions they had to a human expert tutor. For the experiments, the Sherlockimage was displayed onto two monitors, so that the tutor and student could be physically arranged soas to inhibit communication by speaking or gesturing. The tutor sat approximately 6 feet from thestudent, and observed all of the student's actions on the second screen. Whenever the student wishedto communicate with the tutor, he or she wrote the question on a pad of paper, and passed it to thetutor. The tutor then wrote an answer on the pad, and passed it back to the student. Students wereinstructed to ask as many questions as they liked. The only constraint was that the student and tutordid not communicate except by writing on the pad.To date, we have collected data from 24 student-tutor interactions with 14 di�erent students and 3di�erent tutors. In total we have examined approximately 2024 sentences containing 518 question/answerpairs. Of these, 990 sentences and 232 question/answer pairs took place in rfu. This study indicated tous that tutors frequently integrate previous explanations into their answers, and we hypothesize that thiscapability is essential for e�ective explanation. By building a system that has this ability as an optionalfacility that can be enabled or disabled, we will be able to systematically evaluate this hypothesis.Finding a Relevant Prior ExplanationTo produce explanations that take into account prior discourse, the system must be able to identifysituations in which one of its prior utterances could a�ect the current response. In order to do this, asystem must represent the text it produces in such a way that it can determine what e�ect each part ofthe explanation was intended to have on the student. In addition, the system must maintain a record ofthe explanations it has produced and must organize this record in such a way that it can be e�cientlyexamined when looking for appropriate prior explanations.The Text PlannerFor this project, we are extending the text planner built by Moore and Paris (1989), which works in thefollowing way. When the user provides input to the system, the query analyzer interprets the questionand forms a communicative goal, e.g., \achieve the state where the hearer believes that an action could beimproved," or \achieve the state where the hearer understands how the status of a component has beendetermined." The text planner uses a linear planning mechanism to synthesize responses to achieve thesegoals. The system's knowledge about explanation is contained in a library of plan operators that mapcommunicative goals to linguistic resources (speech acts and rhetorical strategies) for achieving them.When a communicative goal is posted, the planning mechanism uses its operators to construct a textplan for an explanation. In general, there may be many plan operators available to achieve a given goal,and the planner has a set of selection heuristics for choosing among them. Planning is complete whenall goals have been re�ned into speech acts, such as inform and recommend.The system then presents the explanation to the user, retaining the plan that produced it in a dialoguehistory . The dialogue history is a record of the conversation that has occurred thus far and includes theuser's utterances and the text plans that led to the system's responses. In this system, a text planrepresents the e�ect that each part of the text is intended to have on the hearer's mental state, thelinguistic strategies that were used to achieve these e�ects, and how the complete text achieves theoverall communicative goal.



Knowledge Sources for Finding Relevant Prior ExplanationsThe most straightforward way to �nd relevant prior explanations would be to search the system's dialoguehistory, beginning at the most recently presented explanation and working back in time through thedialogue, looking for explanations that have certain features. For example, when explaining why a stepwas assessed as \could be improved," the system could look for previous explanations that justi�ed a\could be improved" assessment, and in which the two actions being assessed were similar (i.e., had thesame facets).There are two problems with this approach. First, explanation plans are large, complex structures,and they accumulate rapidly as the dialogue progresses. Therefore, exhaustively searching the dialoguehistory is computationally expensive. Second, there are some situations in which there is no text planto be found in the dialogue history. For example, the student may have previously performed an actionthat displayed some characteristic(s) that the tutor decided not to mention at the time and which wouldnow be appropriate to talk about in conjunction with the student's current action.Therefore, we require an indexing strategy that will allow the system to �nd possibly relevant expla-nations in the dialogue history in an e�cient manner. In addition, the system must have the capabilityto �nd relevant prior actions even if the aspects of those actions that are relevant to the current situationwere never mentioned. To satisfy these requirements, we use case-based reasoning to provide a frameworkin which previous student actions can be e�ciently examined to determine which, if any, are relevantwhen producing an explanation. This framework, and its associated indices into the dialogue history,allow both what was and was not said to be considered when the system plans an explanation.A Case-Based AlgorithmCase-Based Reasoning (cbr) generalizes from cases to support indexing and relevance assessment, andcan be used to evaluate a case by comparing it to past cases (4). This describes our task if we treateach student action as a \case". We were in
uenced by the work of Ashley (1990) who built a system,HYPO, that analyzes a legal case by comparing it to the cases in its case library based on similarityfactors. Each factor is considered to support either the defendant or the plainti�. The representation ofa case includes a set of applicable factors plus an outcome for defendant or plainti�. HYPO uses thisinformation to construct a claim lattice which represents a partial ordering of a set of past cases in termsof their similarity to a case to be decided. HYPO uses the claim lattice to �nd the most relevant case tocite in a legal argument. Aleven and Ashley (1992) have extended this work to a tutorial context. In oursystem, student actions are assessed an outcome of either \good" or \could be improved," and Sherlockevaluates each action with respect to a set of facets with an associated judgement about whether thefacet supports a \good" or \could be improved" outcome. Thus, we can use cbr techniques to identifysimilar actions as described below.Our algorithm builds a data structure called a similarity DAG (Directed Acyclic Graph) which indi-cates the previous student actions that are similar to a given action. By similar, we mean similar withrespect to a certain class of facets (some combination of g , b, or n). For example, when answering aquestion about why the current action was assessed as \could be improved," the similarity DAG is builtso that it indicates which previous actions were similar to the current action with respect to the b-facets.The root of the DAG represents the current action and the facets of interest (b-facets in our example)that apply to it. Each node in the DAG represents a set of student actions that share the same set ofinteresting facets. The more facets that a node has in common with the current action (the root node),the closer it will be to the root node. Proximity in the DAG corresponds to similarity in facet sets.Basically, the similarity DAG is a partial ordering of the student's actions based on their facet lists.Figure 3 shows the similarity DAG (consisting of two nodes) that is constructed when the systemconsiders how to answer the question, \Don't I need to test pin 36?" (turn 5 of the sample dialogueshown in Figure 1). The facets relevant to the action in question are F100 and F101. The structureindicates that two previous situations are similar to the current situation { action 9 and to a lesser degreeaction 8. Pointers index the dialogue history's record of what was said at those times. At this point, thesystem has identi�ed candidate situations which may be used in planning the current explanation. It cannow consider these retrieved situations more closely to determine any other facets that they may possess,and can examine the related explanations in the dialogue history to determine what was said about eachof the two previous situations. The fact that there are no other nodes in the DAG indicates that thereare no other suitable prior situations. If actions 8 and 9 had not occurred, the DAG would consist of one
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relay to remain partially tested (b)
F100: Allowed a main data signal

TEXT PLAN 1 ... ...TEXT PLAN 2...Figure 3: Data structures when considering how to answer turn 5, Figure 1empty root, indicating that no prior action was similar to the current action in terms of its assessment.Initial results using this algorithm are quite promising. In an analysis of 8 student-tutor protocolsinvolving 154 actions and 22 opportunities for integrating a previous explanation into an answer, thealgorithm correctly identi�ed the same previous situations that were used by the human tutor in theactual interaction. In all but 3 cases, when the human tutor did not make a reference to a previousexplanation, our algorithm reported no similar prior situation. In the 3 situations where our algorithmidenti�ed a similarity not exploited by the tutor, our expert agreed that the associated prior explanationswould have been useful to incorporate into his subsequent explanations.Finally, this technique will be useful in answering students' direct questions about the similarities ofsituations, e.g., \Why is testing 30 good? Isn't it like 36 and 28?" By constructing and consulting asimilarity DAG, the system is able to plan responses such as: \Yes, but now you know the main controldata signals on pins 33 and 22 are good, so you need to test the secondary data signals."Exploiting the Previous ExplanationHaving found a suitable situation and associated text plan, the system must decide how to use thisinformation when generating the current explanation. This task is, by far, the harder of the two problemsand is the topic of Rosenblum's thesis. However, as a starting point, we have developed a simple algorithmthat is capable of reproducing some of the e�ects we have observed in human tutors' explanations.Recall that when answering the question regarding why testing pin 36 was judged as \could beimproved" (turn 5 of Figure 1), the CBR-algorithm indicated that two previous student actions wererelevant - action 9 (testing pin 28) and to a lesser degree action 8 (testing pin 38). Accordingly, thestudent action of testing pin 28 is judged more relevant to the current situation. The representation ofthis action includes a pointer to the text plan in the dialogue history representing the explanation givenat that time (Figure 4). This text plan will be consulted as the answer to the student's question abouttesting pin 36 (turn 5 of Figure 1) is formulated.The system begins by generating the top-level goal of having the hearer know why the assessment oftesting pin 36 is \could be improved." This matches the top-level goal posted in the previous explanation'stext plan. The system then re�nes this top-level goal into a subgoal to make the hearer believe that testingthe inputs to B24 is a better step. When consulting the prior text plan, the system discovers that ithad re�ned the previous explanations' top-level goal in a similar way. In fact, simple pattern matchingreveals that the only di�erence is that previously the student had tested pin 28 and this time the studenthas tested pin 36. An examination of Sherlock's knowledge representation reveals that both pin 28and pin 36 are secondary data signals to relays on the same card, so this di�erence is not important interms of the student's mistake. This strong match between the system's developing text plan and thebeginning of the prior text plan, causes the system to generate the goals of anaphorically referencing andof summarizing the previous explanation resulting in, \You might have to, but for the same reasons givenwhen you tested pin 28, it is generally more e�cient to test the main control data signals �rst, and thentest the secondary control data signals if necessary.To date we have devised heuristics that handle a small number of examples such as the one above,and we are currently in the process of implementing them.
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Figure 4: RST discourse tree for turn 3, Figure 1.Related WorkComputational linguists have investigated how the context provided by the previous discourse shoulda�ect the generation of referring expressions, including pronominalization decisions (8; 7). Others havestudied how a more extensive discourse history could a�ect other aspects of the response. Swartout's(1983) XPLAIN system can suggest simple analogies with previous explanations and omit portions ofa causal chain that have been presented in an earlier explanation. However, this is the only type ofcontextual e�ect implemented in XPLAIN, and it was done using an ad hoc technique to provide thisone e�ect. We are attempting to provide a more general approach.McKeown (1985) carried out a preliminary analysis of how previous discourse might a�ect a system'sresponse to users' requests to describe an object or compare two objects. She found that by simplymaintaining a list of the questions that had been asked, it was possible to avoid certain types of repetition.She further found that if the system were to keep track of the exact information that was providedpreviously, it could create a text that contrasts or parallels an earlier one. While McKeown's analysiswas fairly detailed, no dialogue history was maintained in the implementation, and none of the suggestionsfor how responses could be altered, if such a history existed, were actually implemented or tested. We aredevising explanation strategies that allow a system to make use of the information stored in a dialoguehistory, and are implementing these strategies.Finally, some of our heuristics for utilizing prior explanations resemble work done in plan adaptation(3). For example, the heuristic we described above can be viewed as modifying a retrieved plan to�t a new situation. In addition, systems using plan adaptation often use cbr techniques to index alibrary of plans that can be adapted. Plan adaptation is concerned with indexing plans so that they canbe retrieved and reused, perhaps with some modi�cations, in later situations. Our emphasis is not on�nding prior explanations so that they may be reused, but rather so that they can be exploited as one ofmany knowledge sources a�ecting explanation generation.In addition to the use of heuristics, we are exploring the use of plan operators whose constraints checkfor certain patterns in the user model and dialogue history. Carenini and Moore (1993) have shown thatthis approach can be used to generate explanations that are sensitive to the context created by priorexplanations. However, as they point out, this approach may lead to a proliferation of plan operators.We are currently exploring the use of context-sensitive plan operators, plan selection heuristics, and \plancritics" in an integrated approach.



Conclusion and Future WorkWe have argued that human tutors give instruction in a way that is sensitive to what has been previouslysaid and done. We have suggested that a dialogue history, alone, is insu�cient to allow a system totake into account important contextual issues. Issues such as what was not said in a particular situationor what event, if any, would be useful to refer to in an answer. A case-based reasoning approach wasput forth as a method of identifying relevant prior explanations when addressing questions regardingthe system's assessment of a student's action. Plan adaptation heuristics were then shown to be usefulin performing the actual integration of the retrieved situation (and associated text) into the currentexplanation.Many of the issues presented in this paper deserve, and will receive, future work. In addition to furtherevaluation of our algorithm for �nding similar situations, we will immediately concentrate on extendingour heuristics for generating explanations under the in
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