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a b s t r a c t 

Coarse resolution numerical ocean models must typically include a parameterisation for mesoscale tur- 

bulence. A common recipe for such parameterisations is to invoke mixing of some tracer quantity, such 

as potential vorticity or buoyancy. However, it is well known that eddy fluxes include large rotational 

components which necessarily do not lead to any mixing; eddy diffusivities diagnosed from unfiltered 

fluxes are thus contaminated by the presence of these rotational components. Here a new methodology 

is applied whereby eddy diffusivities are diagnosed directly from the eddy force function. The eddy force 

function depends only upon flux divergences, is independent of any rotational flux components, and is 

inherently non-local and smooth. A one-shot inversion procedure is applied, minimising the mis-match 

between parameterised force functions and force functions derived from eddy resolving calculations. This 

enables diffusivities associated with the eddy potential vorticity and Gent–McWilliams coefficients as- 

sociated with eddy buoyancy fluxes to be diagnosed. This methodology is applied to multi-layer quasi- 

geostrophic ocean gyre simulations. It is found that: (i) a strictly down-gradient scheme for mixing poten- 

tial vorticity and quasi-geostrophic buoyancy has limited success in reducing the mis-match compared to 

one with no sign constraint on the eddy diffusivity or Gent–McWilliams coefficient, with prevalent neg- 

ative signals around the time-mean jet; (ii) the diagnostic is successful away from the jet region and 

wind-forced top layer; (iii) the locations of closed mean stream lines correlate with signals of positive 

eddy potential vorticity diffusivity; (iv) there is indication that the magnitude of the eddy potential vor- 

ticity diffusivity correlates well with the eddy energy. Implications for parameterisation are discussed in 

light of these diagnostic results. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

A key challenge in ocean modelling is to improve the represen-

tation of turbulent mesoscale eddies in the models used for long-

range climate projections, for which routine explicit resolution of

the turbulent eddy fluxes is unlikely for the next few decades.

Turbulence closures are very commonly based upon mixing prin-

ciples: small scale “eddy” dynamics should, on average, lead to

mixing of large scale “mean” fields. In the atmosphere and ocean

this principle is typically applied to the potential vorticity (PV),

via the introduction of an eddy PV diffusivity ( Green, 1970; Mar-

shall, 1981 ). For example, it is well-known that PV tends to be

mixed along neutral density surfaces in closed ocean gyres ( Rhines

and Young, 1982 ). More generally, eddy enstrophy is dissipated on

small scales, and correspondingly eddy PV fluxes lead to a net gen-
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1463-5003/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article u
ration of eddy enstrophy on average, i.e., eddy PV fluxes are ori-

nted down-gradient in a domain integral sense. The success of a

own-gradient PV parameterisation, therefore, is dependent upon

he degree to which this mixing principle, which must hold in a

omain integral sense, is valid in a local sense. 

Locally, however, eddy enstrophy may be significantly trans-

orted by mean and eddy advection, and also be influenced by lo-

al forcing. While the eddy PV fluxes are oriented down-gradient

n average, there is in general no constraint on their local orienta-

ion. In particular, the eddy PV fluxes can be separated into ad-

ective, rotational, and residual components (e.g. Medvedev and

reatbatch, 2004 ), with only the latter leading to local mixing.

onsiderations of the eddy enstrophy budget allows the advective

omponent to be defined in terms of the mean advection of enstro-

hy ( Marshall and Shutts, 1981; McDougall and McIntosh, 1996;

akamura, 1998 ), or the mean and eddy advection ( Medvedev and

reatbatch 2004 ; see also Eden et al. 2007 for further general-

sation). It is known, moreover, that eddy PV fluxes can contain
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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arge rotational components (e.g., Griesel et al., 2009 ), which have

o direct dynamical influence on the mean potential vorticity and

ecessarily lead to no mixing. Formally the dynamics is invariant

nder the addition of an arbitrary rotational gauge to the eddy

V flux (which vanishes under the divergence). Rotational PV flux

omponents can be removed via a Helmholtz decomposition, al-

hough such a decomposition in a bounded domain is non-unique,

s there is freedom in the specification of the boundary conditions

 Fox-Kemper et al., 2003 ). These issues complicate the diagnosis

f eddy diffusivities. Recently, Maddison et al. (2015) have shown

hat, at least for quasi-geostrophic eddy PV fluxes, one can define

n eddy force function which simultaneously defines the forcing of

he mean flow by the eddies and a unique divergent component of

ddy PV fluxes. Moreover, in a simply connected domain, the diver-

ent PV flux thus defined is optimal, in the sense that it has min-

mum magnitude (specifically minimal domain integrated squared

agnitude, or equivalently minimal L 2 norm). 

In this article an alternative gauge-invariant diagnostic ap-

roach is proposed which simultaneously avoids any ambiguity as-

ociated with the presence of rotational PV fluxes, and also takes

nto account the inherent non-locality of the dynamic influence

f eddy PV fluxes. This is achieved via an optimisation procedure.

pecifically, given mean fields computed in an eddy resolving cal-

ulation, together with a candidate eddy parameterisation, an as-

ociated parameterised eddy force function can be calculated via

he solution of a Poisson equation. The approach is thus inherently

on-local, in the sense that parametised eddy force function de-

ends upon the parameterisation itself through an inverse elliptic

perator. A parameterisation quality cost function is defined via a

easure of the mis-match between this parameterised eddy force

unction and the eddy force function diagnosed from the origi-

al eddy resolving calculation. Eddy diffusivities can then be di-

gnosed via the solution of an inverse problem: seeking the diffu-

ivity which minimises the mis-match between the parameterised

nd diagnosed force functions. Ill-posedness of the inversion is

reated via the introduction of an additional regularisation, act-

ng to smooth the diagnosed diffusivity, as well as assuming that

he eddy diffusivity is isotropic. Although isotropy in the diffusiv-

ty tensor is not generally expected (e.g., Fox-Kemper et al., 2013 ),

his assumption is made here to reduce the degrees of freedom to

nsure the inversion is sufficiently constrained; this assumption is

urther discussed in the conclusion. The partial differential equa-

ion constrained optimisation problem itself is solved via a one-

hot approach ( Gunzburger, 2003 , Section 2.2 ), with the associated

ptimality system constructed and solved via the use of the FEniCS

utomated code generation system (see e.g. Logg et al., 2012 ). 

The layout of this article is as follows. In Section 2 details re-

arding the eddy force function are reviewed. The optimisation

roblem for eddy PV diffusivities is formulated, and the numerical

mplementation is described. In Section 3 eddy diffusivities associ-

ted with PV mixing and Gent–McWilliams coefficients associated

ith quasi-geostrophic buoyancy mixing ( Gent and McWilliams,

990 ) are diagnosed using this procedure; the diagnostic is applied

o model data based upon the ocean gyre calculations described

n Maddison et al. (2015) , computed using a three-layer quasi-

eostrophic finite element model. The diagnostic calculations are

epeated using data from a higher resolution, five-layer finite dif-

erence calculation in Section 4 . The paper concludes in Section 5 ,

nd consequences for geostrophic eddy parameterisation are con-

idered. 

. Formulation 

Throughout this article we limit consideration to mesoscale dy-

amics, and specifically to the quasi-geostrophic (QG) equations.

he fundamental principle applied is to formulate a method for
he diagnostic calculation of eddy diffusivities in a way that is in-

ependent of any rotational eddy flux components – that is, to for-

ulate a gauge-invariant diagnostic. This is tackled by constructing

 constrained optimisation problem, whereby a parameterised dif-

usivity is diagnosed by minimising a measure of the mis-match

etween parameterised and diagnosed eddy force functions, which

epend only on the PV flux divergence. The critical step is defining

n appropriate measure of the mis-match in order to avoid undue

ensitivity to small scale noise in the divergence field. 

The optimisation problem used to achieve this is outlined in

ection 2.1 . A measure of this mis-match is defined via the use of

n eddy force function, introduced in Maddison et al. (2015) . For

ompleteness, mathematical background regarding the eddy force

unction is provided in Section 2.2 . A parameterised eddy force

unction is computed from parameterised eddy fluxes via the so-

ution of an elliptic problem. This leads naturally to the formula-

ion of a PDE constrained optimisation problem which diagnoses

he diffusivity. Implementation details are provided in Section 2.3 . 

.1. Unconstrained optimisation problem for eddy diffusivities 

The mean QGPV equation takes the form 

∂ q 

∂t 
+ ∇ · ( u g q ) = −∇ · F + Q , (1)

here q is the PV, u g is the non-divergent geostrophic velocity, F =
 

′ 
g q 

′ is the eddy PV flux, Q represents all forcing and dissipation,

 is the horizontal gradient operator, and t is time. An overline

enotes the mean, a prime the derivation from the mean, and the

ean operator is a Reynolds operator which commutes with all

elevant derivatives (cf. Maddison and Marshall 2013 ). 

Consider a PV mixing parameterisation. If the mean PV gradient

s non-zero, the eddy PV flux F may be expressed as 

 = −κ∇ q − σ ˆ z × ∇ q + R , (2)

here κ is the (isotropic) PV diffusivity and σ a skew-diffusion co-

fficient (equal to a stream function associated with eddy-induced

dvection about the vertical axis; see Vallis 2006 , Section 10.6.3),

nd R is any non-divergent flux. In general R is the sum of rota-

ional and harmonic flux and, as it vanishes under the divergence,

as no direct influence on the mean potential vorticity. Taking the

calar product with the mean PV gradient leads to a definition for

he local PV diffusivity 

= − ( F − R ) · ∇ q 

| ∇ q | 2 . (3) 

he central issue is ambiguity in the definition of R . For exam-

le, an approximately rotational component of F may be associ-

ted with local advection of enstrophy, rather than generation of

nstrophy and hence not correspond to local irreversible mixing

 Marshall and Shutts, 1981 ). The mean dynamics are invariant un-

er any choice of the non-divergent gauge R , but the diffusivity as

efined by Eq. (3) is not. Moreover, a diffusivity field diagnosed in

his way may be extremely noisy (cf. Nakamura and Chao, 20 0 0 ),

s shown in Fig. 1 by a sample calculation employing this approach

sing the simulation data presented in Section 3 . In this diagnostic

alculation there are regions of large negative diffusivity, suggest-

ng the presence of strong eddy backscatter (conversion of eddy

o mean enstrophy). These negative diffusion regions may be due

o pollution of the diagnostic by significant non-divergent eddy PV

uxes and, in this sense, be entirely artificial. Critically, this direct

pproach fails to unambiguously identify the regions and magni-

ude of irreversible mixing due to the eddies. 

The gauge freedom may be formally addressed using a horizon-

al Helmholtz decomposition 

 = −∇ 

˜ � + ̂

 z × ∇ 

˜ � + 

˜ H , (4)
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Fig. 1. Local eddy PV diffusivities κ (in units of m 

2 s −1 ), obtained from (3) with R = 0 using the simulation data detailed in Section 3 . Note that the colour scale is saturated. 
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where the first term is the divergent component, the second the

rotational component, and the third a harmonic component. Since

only the former is directly dynamically active, a PV mixing param-

eterisation may now alternatively be expressed in terms of the di-

vergent component 

−∇ 

˜ � = −κ ˜ �∇ q − σ ˜ � ˆ z × ∇ q , (5)

leading to an alternative definition for the local PV diffusivity 

κ ˜ � = 

∇ 

˜ � · ∇ q 

| ∇ q | 2 . (6)

Given any divergent component of the eddy PV fluxes one can thus

define a local diffusivity (if the mean PV gradient is non-zero) via

Eq. (6) . However, in the presence of boundaries, the divergent com-

ponent is non-unique due to freedom in the choice of boundary

conditions for the potential ˜ � ( Fox-Kemper et al., 2003 ). Hence the

eddy diffusivity as defined by Eq. (6) is still not uniquely defined. 

This ambiguity can be resolved by instead defining a PV diffu-

sivity directly from the eddy PV flux divergence. Specifically, if the

parameterisation 

F ≈ −κ∇ q (7)

is postulated, then an optimal PV diffusivity can be defined by

seeking the spatially varying function κ( x ) such that the cost func-

tion 

J ( κ) = ‖ 

∇ · ( −κ∇ q − F ) ‖ 

2 
(8)

is minimised. This defines a best-fit for the diffusivity to the eddy

flux divergence. The specific norm, which has been left unspecified

for the moment, is a key ingredient in the definition of this opti-

mal diffusivity. Note that a perfect match is not typically to be ex-

pected and, moreover, the inversion may be highly ill-conditioned

(or even ill-posed). 

The norm appearing in (8) has an important impact on the

structure of the resulting optimal diffusivity. It is clear for exam-

ple that a simple L 2 norm, which leads to 

J ( κ) = ‖ 

∇ · ( −κ∇ q − F ) ‖ 

2 
L 2 = 

∫ 
�

[ ∇ · ( −κ∇ q − F ) ] 
2 

d�, (9)

where � is the horizontal domain, will lead to difficulties. The di-

vergence of a flux is an inherently noisy quantity, and hence an

attempt to optimise the diffusivity to match local structure in the

eddy PV flux divergence is likely to be problematic. 

2.2. Eddy force function 

A starting point is to first resolve the non-uniqueness in the

definition of the eddy PV flux decomposition in Eq. (4) . This is ad-

dressed in Maddison et al. (2015) by noting a relationship between
otational momentum tendencies and divergent eddy PV fluxes,

riefly summarised here. 

First, it is noted that the QG momentum equation may be writ-

en 

∂ u g 

∂t 
= −ˆ z × G . (10)

ince the geostrophic velocity is non-divergent, ∇ · u g = 0 , so −ˆ z ×
 defines a unique rotational momentum tendency. After taking

 horizontal curl, G may be identified as a horizontally divergent

V flux. Introducing the stream function ψ such that u g = ̂

 z × ∇ ψ 

ields ∂ u g /∂t = ̂

 z × ∇�, from which it follows that 

= 

∂ ψ 

∂t 
+ c(z, t) . (11)

ollowing Marshall and Pillar (2011) , � is a stream function ten-

ency or force function . In a simply connected domain with no-

ormal-flow boundary conditions, ψ is a (horizontal) constant on

ll boundaries, and so � inherits a Dirichlet boundary condition.

ubject to an appropriate choice of c ( z, t ) — noting that any other

hoice vanishes under the horizontal divergence — � satisfies a

omogeneous Dirichlet boundary condition. Insisting that the force

unction decomposition procedure is linear then implies that a

orce function associated with any single momentum tendency in-

erits a homogeneous Dirichlet boundary condition. 

In particular, the eddy force function �e is related to the eddy

V flux F = u 

′ q ′ by 

 = −∇ �e + ̂

 z × ∇ �e + H e , (12)

here �e is the solution of a Poisson equation 

 

2 �e = −∇ · F (13)

ubject to homogeneous Dirichlet boundary conditions. The bound-

ry condition imposed on the eddy force function �e yields a

nique definition for the divergent eddy PV flux component. Hence

his corresponds to a unique choice of non-divergent gauge in the

ddy PV flux Helmholtz decomposition. 

The eddy force function has a number of important properties.

irst, since only the divergence of the eddy PV flux appears in the

orce function Eq. (13) , it is independent of rotational eddy fluxes.

oreover the eddy force function is inherently smooth; in a simply

onnected domain, the eddy force function has minimal H 

1 
0 

semi-

orm, that is, it is a solution to the Poisson equation Eq. (13) for

hich the mean square gradient is minimised (Maddison et al.,

015, Section 2 and Appendix A) . Note that the eddy force func-

ion depends non-locally upon the eddy fluxes — it is related to

he flux divergence through an inverse elliptic operator. This sug-

ests that the mis-match function (8) be defined in terms of the

is-match between the eddy force function implied by a parame-

erisation, and the eddy force function diagnosed from data; that
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 ( κ) = ‖ 

�p ( κ) − �e ‖ 

2 
(14) 

here �p is the parameterised eddy force function computed via

 

2 �p = ∇ · ( κ∇ q ) (15) 

ubject to homogeneous Dirichlet boundary conditions. 

There is now freedom in the definition of the norm appearing

n (14) . A simple choice is to define this to be the L 2 norm, leading

o 

 ( κ) = ‖ 

∇ · ( −κ∇ q − F ) ‖ 

2 

= ‖ 

�p ( κ) − �e ‖ 

2 
L 2 = 

∫ 
�

[ �p ( κ) − �e ] 
2 d�. (16) 

n technical terms, this is equivalent to defining the norm in the

is-match cost function (8) to be equal to the H 

−1 
0 

semi-norm.

he H 

−1 
0 

semi-norm places relatively decreased emphasis on high

patial wavenumbers, and hence this definition places relatively in-

reased emphasis on large scale spatial structures in the eddy flux

ivergence. All results reported in this article use an L 2 norm in

he definition of the mis-match function as in (16) , although cal-

ulations with other norms (not shown) have been performed and

re commented on in the conclusions. 

.3. Constrained optimisation problem for eddy diffusivities 

Since the force function is defined via the solution of a par-

ial differential equation, it is natural to redefine the optimisation

roblem considered at the end of Section 2.1 in terms of a par-

ial differential equation constrained optimisation. For a PV mixing

arameterisation, letting V ⊆ H 

1 
0 ( �) and V κ⊆H 

1 ( �) be real Hilbert

paces, a Lagrange constrained cost function 

ˆ J : V × V × V κ → R is

efined, where 

ˆ 
 (�p , λ, κ) = ‖ 

�p − �e ‖ 

2 
L 2 + 〈 ∇ λ, ∇ �p − κ∇ q 〉 L 2 + εR ( κ) . 

(17) 

he constrained optimisation problem then seeks a stationary

oint of the function 

ˆ J (�p , λ, κ) . 

The first term in (17) is the unconstrained function ( 16) , pe-

alising the mis-match between the parameterised and diagnosed

ddy force functions. The second term is the weak form partial dif-

erential equation constraint. At a stationary point of ˆ J , the deriva-

ive of ˆ J with respect to λ in any direction φ ∈ V vanishes, leading

o 

 

∇ φ, ∇ �p − κ∇ q 〉 L 2 = 

∫ 
�

∇ φ · [ ∇ �p − κ∇ q ] d� = 0 ∀ ψ ∈ V. 

(18) 

his is a weak form of the Poisson equation (15) , and hence λ is a

agrange multiplier enforcing the constraint. 

If the final term is absent, then the solution to the con-

trained optimation problem finds the optimal κ with minimal

orce function mis-match. However this problem may be highly

ll-conditioned or even ill-posed. The third term can be used to

eguarlise the problem by smoothing the resulting diagnosed dif-

usivity at the expense of optimality. A simple form for this regu-

arisation might, for example, be 

R ( κ) = ε‖ 

κ‖ 

2 
H 1 

0 
= ε

∫ 
�

∇ κ · ∇ κ d�, (19)

here ε ∈ R is some parameter chosen to control the smoothness

f the resulting optimal κ . 

At a stationary point of the constrained function 

ˆ J (�p , λ, κ) all

erivatives vanish, yielding the optimality system (e.g., Gunzburger,
003 , Section 2.2 ) 

∂ ˆ J 

∂�p 
= 0 , 

∂ ˆ J 

∂λ
= 0 , 

∂ ˆ J 

∂κ
= 0 , (20)

here formally the derivatives appearing here are Gâteaux deriva-

ives (e.g., Ch. 17 of Kantorovich and Akilov, 1964 ). This coupled

roblem can be solved in its entirety (a “one-shot” approach), and

here the problem is non-linear Newton’s method can be applied.

or cases where the problem is linear Newton’s method formally

onverges in one iteration. For the applications considered in this

rticle Newton’s method is applied in all cases, and typically fur-

her iterations are applied before tight numerical convergence is

eached; this possibly reflects the ill-conditioned nature of the

roblems considered. 

A key technical issue encountered here is that the optimality

ystem (20) changes when components of the constrained func-

ion are modified; this could arise from a switch of mis-match

orm, the form of the parameterisation or the regularisation. If this

ystem is implemented by hand then the code evaluating the left-

and-side needs to be modified for every combination of interest.

hen Newton’s method is applied, second derivatives are required,

xacerbating this issue. To bypass the majority of these problems,

he FEniCS automated code generation system is employed ( Logg

nd Wells, 2010; Logg et al., 2012; Alnæs et al., 2014 ), which en-

bles finite element problems to be described in a high-level syn-

ax and for low-level code to be generated automatically. In the

ython front end, the specification of the cost-function 

ˆ J , its Jaco-

ian and compiling and solving of the optimality system (via code

eneration and interfacing with external solver libraries) translates

o the code outlined in Fig. 2 . Different schemes can be imple-

ented via small code changes: editing kappa changes the def-

nition of the diffusive closure; J_1 changes the cost function; and

_3 changes the regularisation. Although the code may not be as

erformant as a hand optimised code, a substantial saving in code

evelopment time easily offsets this, and allows a sweep of a large

arameter set that would have been otherwise be rather inaccessi-

le. 

For all results presented in the article linear systems are solved

ia SuperLU and SuperLU_DIST ( Li, 2005; Grigori et al., 2007 ), via

ETSc (e.g., Balay et al., 1997; 2015 ). The procedure for diganosing

ent–McWilliams coefficients ( Gent and McWilliams, 1990 ) asso-

iated with QG buoyancy mixing is similar and will be elaborated

n in Section 3.4 . 

. Diagnostic calculations for the three-layer simulation 

In this section the eddy force function and mean fields from

n eddy resolving multi-layer QG simulation are used to diag-

ose eddy diffusivities and Gent–McWilliams coefficients associ-

ted with PV and QG buoyancy mixing parameterisations. The

odel is described in Maddison et al. (2015) ; for completeness, the

etails of the simulation are presented here. 

.1. Simulation details 

The multi-layer QG equations employed here are (e.g., Pedlosky

987 , Section 6.16; Vallis 2006 , Section 5.3.2) 

∂q i 
∂t 

+ ∇ · ( u g,i q i ) = ν∇ 

2 ω i − rδin ω i + δi 1 Q w 

, (21)

here the layer is counted from top (layer 1) to bottom (layer n ),

he stream function is defined by u g,i = ̂

 z × ∇ψ i , with ω i = ∇ 

2 ψ i .

he layer-wise PV q i is related to the stream function ψ i via 

q 1 = ∇ 

2 ψ 1 + βy + s + 1 (ψ 2 − ψ 1 ) , 

q i = ∇ 

2 ψ i + βy + s −
i 
(ψ i −1 − ψ i ) + s + 

i 
(ψ i +1 − ψ i ) , 

q n = ∇ 

2 ψ n + βy + s −n (ψ n −1 − ψ n ) , 

(22) 
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Fig. 2. Illustrative Python code sample implementing an optimisation problem in FEniCS, for the case of PV mixing with a positive semi-definite diffusivity, κ = ξ 2 . The 

code specifies the desired variant of the parameterisation, constructs the cost function ( “ ffd _ empb _ % i ” and “ q _ % i _ n _ mean ” are labels for the diagnosed eddy force function 

associated with the full eddy PV flux and q ), and then solves the optimality system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Summary of simulation parameters used for the three- 

layer finite element ocean gyre calculation, as per Marshall 

et al. (2012) and Maddison et al. (2015) . 

parameter value and units 

D 3840 km 

β 2 × 10 −11 m 

−1 s −1 

τ 0 0 . 08 N m 

−2 

ρ0 10 0 0 kg m 

−3 

( A, B ) (0 .9, 0.2) 

ν 100 m 

2 s −1 

r 4 × 10 −8 s −1 

α−1 120 km 

( H 1 , H 2 , H 3 ) (0 .25, 0.75, 3.00) km 

( R 1 , R 2 ) (40, 23) km 

(s + 
1 

H 1 = s −
2 

H 2 , s 
+ 
2 

H 2 = s −
3 

H 3 ) (2 . 97 , 5 . 60) × 10 −7 m 

−1 

�x 7 .5 km 

�t 1200 s ( = 20 mins ) 

3

 

b  

l  

r  

u  

s  

c

 

 

 

 

 

 

 

 

 

 

f

J  

T  

p

ε  
where 

s ±
i 

= 

f 2 0 

g i ±1 / 2 H i 

= 

2( f 2 0 /N 

2 
0 ) i ±1 / 2 

(H i + H i ±1 ) H i 

(23)

are stratification parameters, H i is the thickness of layer i , g i +1 / 2 

is the reduced gravity at the interface between layers i and i + 1 ,

N 0 is the buoyancy frequency, and f = f 0 + βy is the Coriolis pa-

rameter. The forcing and dissipation parameters are: a Laplacian

viscosity coefficient ν; a bottom friction coefficient r ; and the PV

tendency due to the wind Q w 

, with 

Q w 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

− τ0 

ρ0 

2 π

H 1 D 

A sin 

(
π

y v + D/ 2 

y m 

+ D/ 2 

)
, y v < y m 

+ 

τ0 

ρ0 

2 π

H 1 D 

1 

A 

sin 

(
π

y m 

− y v 

D/ 2 − y m 

)
, otherwise , 

(24)

where τ 0 is the characteristic magnitude, ρ0 is the reference den-

sity, x, y ∈ [0, D ], y v = (y − D/ 2) and y m 

= B (x − D/ 2) . The zonal

and meridional directions are x and y respectively. Zero buoyancy

boundary conditions are applied at the top and bottom bound-

aries ( Bretherton, 1966 ). A partial slip boundary condition ∇ 

2 ψ i =
−α−1 ∇ψ · ˆ n ( Haidvogel et al., 1992 ), where α is a length scale, is

applied on the lateral boundaries. 

A three-layer, double gyre configuration as detailed in Marshall

et al. (2012) is used. The equations are discretised in space with

a conforming triangle structured mesh with piecewise linear ap-

proximation for all fields, a vertex spacing of �x = 7 . 5 km , and

implemented using the FEniCS automated code generation system

( Logg and Wells, 2010; Logg et al., 2012; Alnæs et al., 2014 ). The

model is discretised in time using a third order Adams–Bashforth

scheme with time step size �t = 20 mins , using the time-stepping

approach detailed in Maddison and Farrell (2014) . The equations

are integrated for 20,0 0 0 days and time averages are taken after

this spin-up period for a further 50 0 0 days. A summary of the

relevant parameters is given in Table 1 . For further details about

the simulation set up, see Marshall et al. (2012) and Appendix B

of Maddison et al. (2015) ; see also Berloff (2005a ) and Karabasov

et al. (2009) for related configurations of a similar finite difference

code on which the finite element code is based. 

Additional diagnostic quantities were required for the analyis

presented here, absent in the simulation data detailed in Maddison

et al. (2015) , and so the averaging stage was restarted after the

20,0 0 0 day spinup. Due to the sensitive dependence on initial con-

ditions and changes in details such as the numerical library ver-

sions used, the resulting data are not exactly identical to those

presented in Maddison et al. (2015) . Eddy force functions for this

calculation are shown in Fig. 3 . 
.2. Eddy diffusivity definition 

Previously, spatially constant PV diffusivity diagnostics have

een reported in Maddison et al. (2015) ; these generally have

imited success in minimising the mis-match between the pa-

ameterised and target eddy force function, although this is not

nexpected when making a strong assumption of constant diffu-

ivity. Here spatially varying horizontally isotropic diffusivities are

onsidered. Specifically, we consider a: 

• general case (GEN), a signed diffusivity κ(ξ ) = ξ ( x ) , supplying

no additional information regarding the eddy field and applying

no constraints; 
• positive semi-definite case (POS), where , κ(ξ ) = ξ 2 ( x ) ≥ 0 ex-

cluding the possibility of negative diffusivity. Note that the cor-

responding optimality system is inherently non-linear, and that

the zero regularisation case is ill-posed (e.g., ξ → −ξ does not

change the value of the cost function). Information about the

flow may be supplied by, for example, taking κ = f (E) ξ where

E is the eddy energy. Diagnostics of this type will be discussed

in the conclusions. 

Considering PV mixing first, the layer-wise constrained cost
unction takes the form 

ˆ 
 (�p,i , λi , ξi ) = 

∥∥�e,i − �p,i 

∥∥2 

L 2 
+ 

〈∇ λi , ∇ �p,i − κ∇ q i 
〉
L 2 

+ εR (ξ ) . (25)

he resulting optimisation problem for PV mixing is vertically decou-
led and may be solved layer-wise. The regularisation applied is 

R ( ξi ) = ε‖ ∇ξi ‖ 2 H 1 
0 

= ε

∫ 
∇ ξi · ∇ ξi d�. (26)
�
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Fig. 3. Simulation data for the three-layer finite element ocean gyre calculation over the three layers (columns), with (top to bottom row): final time PV snapshot (in units 

of s −1 ); time-averaged stream function H i ψ i (in units of Sv, at 21 contour levels); time-averaged total eddy energy E i (on a logarithmic scale, in units of ρ0 cm 

2 s −2 ); eddy 

force function H i �e, i from the eddy PV flux (in units of Sv yr −1 ); eddy force function H i �eb, i , associated with the buoyancy contribution to the eddy PV flux (in units of 

Sv yr −1 ). The black contour is the boundary value of the upper layer mean stream function, which approximately indicates the location of the mean jet. 
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t  
or the GEN case this acts to smooth the diffusivity. For the POS case,
he regularisation acts on the auxiliary parameter ξ i as smoothing the
iffusivity directly would result in an optimisation problem of higher
rder in ξ , leading to additional numerical difficulties. 

In principle the diagnostic may be computed by seeking a value

or the regularisation parameter ε which is as small as possible —

or example, the value at which the problem becomes sufficiently

ll-conditioned for numerical solver failures to be encountered. In-

tead a desired spatial scale in the parameters is chosen here, seek-

ng a value of the regularisation parameter ε to yield a given spa-
 0  
ial “roughness”. For this, a non-dimensional roughness measure κ r 

s defined via an appropriately normalised measure of the mean

quare gradient 

r = D 

2 
‖ 

κ‖ 

2 
H 1 

0 

‖ 

κ‖ 

2 
L 2 

= D 

2 

∫ 
� ∇ κ · ∇ κ d�∫ 

� κ2 d�
. (27)

An appropriate value of ε is found via an iterative procedure as

ummarised in the pseudo-code in Fig. 4 . In the majority of cases,

his approach yields a final measured roughness that is within

.5% of a target roughness of κ r = 7500 ; for comparison, a field
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Fig. 4. Pseudo-code for the procedure employed to select a value of the regularisation parameter ε so as to yield a parameter with a given degree of “roughness”. An initial 

ε is chosen and decreased geometrically by some factor θ < 1, until non-convergence or the roughness condition is triggered. The loop is reinitialised at the previously 

converged solution, with the value of the factor θ increased. This continues until some tolerance for θ is triggered. 
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κ = sin (20 πx/D ) sin (20 πy/D ) has κ r = 2(20) 2 π2 ≈ 7900 . In a mi-

nority of cases numerical difficulties mean that small values of

ε cannot be reached (owing to numerical solver failures), and in

these cases the smallest ε at which convergence is achieved is re-

turned. 

To quantify the diagnosed diffusivity, several measures are

utilised. The mean diffusivity and eddy energy weighted mean dif-

fusivity are defined via 

κm = 

∫ 
� κ d�

D 

2 
, κm 

E = 

∫ 
� Eκ d�∫ 
� E d�

. (28)

These give a rough measure of the positivity of the signals. A posi-

tivity measure to measure the percentage of the domain with pos-

itive diffusivity is obtained via 

κ> 0 = 

∫ 
� H(κ) d�

D 

2 
, (29)

where H(κ) is the Heaviside function, equal to one where κ ≥ 0

and zero otherwise. As a measure of the degree of data variation,

the unweighted standard deviation and a eddy energy weighted

standard deviation of the diffusivity given by 

κ s = 

√ ∫ 
� ( κ − κm ) 

2 d�

D 

2 
, κ s 

E = 

√ ∫ 
� E ( κ − κm ) 

2 d�∫ 
� E d�

. (30)

is computed. The correlation between κ and the eddy energy is

measured via 

corr ( κ, E ) = 

〈 κ, E〉 L 2 
‖ κ‖ L 2 ‖ E‖ L 2 

= 

∫ 
� κE d�√ ∫ 

� κ2 d�
√ ∫ 

� E 2 d�
. (31)

Note that the correlation is bounded, −1 ≤ corr ( κ, E ) ≤ 1 . The

(non-dimensional) roughness of the diffusivity is measured via 

κ r = D 

2 
‖ 

κ‖ 

2 
H 1 

0 

‖ 

κ‖ 

2 
L 2 

= D 

2 

∫ 
� ∇ κ · ∇ κ d�∫ 

� κ2 d�
. (32)

Finally mis-match between parameterised and diagnosed force

functions is measured via an L 2 relative error 

E L 2 = 

‖ 

�e − �p ‖ L 2 

‖ 

�e ‖ L 2 
= 

√ ∫ 
� ( �e − �p ) 

2 d�∫ 
� �2 

e d�
. (33)

3.3. Results: PV mixing 

Informed by resolution tests, the parameterised force function

and parameter ξ are computed on a structured conforming trian-

gle mesh with nodal spacing �x = 15 km for all cases presented
n the following sections. The diagnosed model force function �e, i 

rom the finite element simulation at resolution �x = 7 . 5 km is

nterpolated onto this coarser resolution grid via consistent inter-

olation (evaluation of the higher resolution data at the vertices of

he coarse grid). Fig. 5 shows the diffusivity κ diagnosed for the

EN and POS diffusivity variants. The local mis-match is shown in

ig. 6 . Values for the diagnostic quantities from Eq. (28) to (33) are

ummarised in Fig. 7 . 

Starting with the GEN case, there are regions of negative dif-

usivity towards the eastern boundary in the upper and middle

ayers, and a correspondingly large positive diffusivity towards the

estern boundary, at least in the upper layer. This is consistent

ith the signal that might be associated with a westward propa-

ation of eddy activity. There is a second pool of negative diffusiv-

ty towards the down-stream mean jet in the upper layer. This is

onsistent with an outward flux of activity due to the “wave radia-

or” mechanism discussed in Waterman and Jayne (2011, 2012) for

he stable down-stream region of an inertial barotropic jet. In

he middle layer, a comparison with the mean streamlines ψ in

ig. 3 (second row) reveals that the closed streamlines north and

outh of the jet correlate with regions of positive diffusivity. This

s in agreement with the principle of PV homogenisation within

losed streamlines ( Rhines and Young, 1982 ). A similar correlation

xists in the upper layer, though this is less strong; this correlation

reaks down to the north of the mean jet, possibly due to the pres-

nce of strong wind forcing in this layer. There are signals of neg-

tive diffusivity in the upper layer confined close to the northern

nd southern boundaries. This signal can be expected if there is

 local eddy activity backscatter owing to the presence of Fofonoff

yres in these regions (e.g., Fofonoff, 1954; Berloff, 2005b ; Marshall

nd Adcroft, 2010 ). In the lower layer, the diffusivity is large and

ositive in the jet, correlating with the location of the largest eddy

nergy. However in this layer there are meridionally oriented pat-

erns in the diffusivity away from the jet. This “banding” correlates

ith a similar pattern in the local mis-match in Fig. 6 , and so it

s possible that this signal is a numerical artefact. A similar effect

ay account for the alternating diffusivity sign in the upper layer

ean jet. It is apparent that there are regions of significant nega-

ive diffusivity. 

For the GEN case, the unweighted and eddy energy weighted

eans in the middle layer are positive and of a similar magnitude

around 750 and 1200 m 

2 s −1 respectively), indicating that the dif-

usivity is largely positive in this layer. This is supported by the

ositivity index in the middle layer at around 60%. Some degree of
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Fig. 5. The diffusivity κ (in units of m 

2 s −1 ) associated with PV mixing over the three layers (columns), for the GEN case κ = ξ (top row) and POS case κ = ξ 2 ≥ 0 (bottom 

row). The colour scale is fixed and saturated. 

Fig. 6. Layer-wise non-dimensional mis-match D 
(
�e,i − �p,i 

)
/ ‖ �e,i ‖ L 2 associated with PV mixing over the three layers (columns), for the GEN case κ = ξ (top row) and POS 

case κ = ξ 2 ≥ 0 (bottom row). The colour scale is fixed and saturated in layer 1. 
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orrelation between eddy energy and diffusivity is also seen. The

oughness is found to be well controlled by the solution output

riterion; it has been confirmed that the κ output is within 0.5%

f the fixed target roughness. Given this, we see that the result-

ng L 2 relative error is low, at less than 2%. In the lower layer the

ddy energy weighted mean is smaller, and the unweighted mean

n negative. While the error in the inversion is well controlled,

t less than 1%, the banding of positive and negative diffusivities

way from the jet in this case lead to a negative unweighted mean.
his may reflect difficulties in the diagnostic in this region. In the

pper layer the diffusivity, while positive in the means, exhibits al-

ost no correlation with the eddy energy and, for a given rough-

ess, the relative L 2 mis-match is greater than in the other two

ayers. In general, the standard deviations are rather large, with the

pper layer displaying the largest variability. 

The POS case shows similar patterns of positive diffusivity

round the location of the mean jet and towards the western

oundary. However, this diagnostic shows large regions of very low
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Fig. 7. Bar graphs comparing the diagnosed diffusivity across the three layers of for the GEN and POS associated with PV mixing: ( a, b ) the mean κm and the eddy energy 

weighted mean κm 
E from equation (28) ; ( c ) the positivity index κ> 0 from equation (29) ; ( d, e ) the standard deviation κ s and an eddy energy weighed standard deviation κ s 

E 

from equation (30) ; ( f ) the correlation corr( κ , E ) from equation (31) ; ( g ) the roughness κ r from equation (32) ; ( h ) the relative L 2 error E L 2 from equation (33) , noting that 

layer 1 is the shallowest top layer subject to wind forcing. 
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diffusivity, which typically correlate with regions of negative diffu-

sivity seen in the GEN case. In the middle and lower layer the cor-

relation between diffusivity and eddy energy has increased com-

pared to the GEN case. The corresponding relative L 2 mis-match is

slightly larger than the GEN case, by at less than 5% for a similar

level of roughness. In the upper layer the L 2 mis-match is much

larger, at around 30%, and a very low correlation between diffu-

sivity and eddy energy is observed. On closer inspection of the

spatial distribution of error, seen in Fig. 6 , the errors are generally

large around the mean jet. This is particularly the case in the up-

per layer. Unlike the GEN case, the standard deviation of the lower

two layers are on the order of the mean; this is partly because the

values of the mean are constrained to be larger by the imposed

form of the diffusivity. The variability of the diffusivity in the up-

per layer is seen to be high. 

In summary, the diagnostic calculations produce a diffusivity

field that correlates with some physical processes that are known

to occur. In the middle and lower layer, both diffusivity variants

shows a strong positive signal that has some correlation with the

eddy energy and, for a given roughness, the resulting L 2 mis-match

is low. The same cannot be said for the diagnosed diffusivity in

the upper layer, where the correlation between eddy energy and

diffusivity is low, and the errors are significantly larger for a given

roughness. It appears that a negative signal is a prevalent feature

especially in the upper layer; for a given roughness, the POS case

has associated with it significantly larger mis-match error. 

3.4. Results: quasi-geostrophic buoyancy mixing 

The Gent–McWilliams (GM) parameterisation ( Gent and

McWilliams, 1990 ) parameterises the eddy buoyancy fluxes

through an eddy-induced velocity in the primitive equations (e.g.,

Gent et al., 1995; Griffies, 1998; Abernathey et al., 2013 ). As

discussed in Treguier et al. (1997) , under the QG approximation

the eddy-induced advection defined by the GM closure resembles
 horizontal diffusion of buoyancy of the form ( Treguier et al.,

997 , equation 42) 

 

′ b ′ = −κgm 

∇ b . (34)

he analogous constrained cost function then in the continuously

tratified QG setting is given by 

ˆ 
 (�p , λ, κgm 

) = 

∫ 0 

z= −H 

[‖ �eb − �p ‖ 

2 
L 2 + 

〈∇ λ, ∇ �p 

− ∂ 

∂z 

( f 0 

N 

2 
0 

κgm 

∇ b 
)〉

L 2 
+ ε‖∇κgm 

‖ 

2 
L 2 

]
d z, (35)

here all inner products and norms are defined via integration

ver the horizontal domain. The eddy force function associated

ith the buoyancy fluxes is shown in the lower row of Fig. 3 . 

In the multi-layer QG equations the QG buoyancy flux and ∇ b

re defined on interfaces and so, via Eq. (34) , κgm 

is also inter-

acial. The corresponding PV flux is related to the interfacial QG

uoyancy flux via a vertical derivative operator ( Greatbatch and

amb, 1990 ). This introduces vertical coupling, and so the corre-

ponding optimisation problem for κgm 

is fully three-dimensional,

nlike the previous PV mixing case. An alternative method, not

ursued here, is to define an interfacial eddy stress function

 Maddison et al., 2015 , Appendix C), and use this as the basis for

n κgm 

diagnostic computed separately on each interface. 

The eddy QG buoyancy fluxes on each interface (R, S) =
( f 2 0 /N 

2 
0 ) u 

′ (∂ ψ 

′ /∂ z) may be defined 

 i +1 / 2 = −1 

2 

(
∂ 

∂y 
(ψ i + ψ i +1 ) 

)
H i s 

+ 
i 
(ψ i − ψ i +1 ) , 

S i +1 / 2 = + 

1 

2 

(
∂ 

∂x 
(ψ i + ψ i +1 ) 

)
H i s 

+ 
i 
(ψ i − ψ i +1 ) , (36)

ith stratification parameters s + 
i 

as given by (23) . Vertical differ-

ncing then leads to a discrete eddy PV flux associated with the
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Fig. 8. The GM coefficient κgm (with units of m 

2 s −1 ) on the interfaces associated with QG buoyancy mixing. ( a ) the GEN case κgm = ξ for both interfaces; ( b ) the POS case 

with κgm = ξ 2 for upper interface only, as the lower interface is the zero solution. The colour scale is fixed and saturated. 
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l  
ddy QG buoyancy fluxes (i.e. these are the vertical stresses ap-

earing in a vertically discrete Taylor–Bretherton identity; see ap-

endix B of Maddison et al. 2015 for example). The interfacial GM

oefficient is then defined via 

R i +1 / 2 , S i +1 / 2 

)
= H i s 

+ 
i 

(
−(κgm 

) i +1 / 2 ∇ 

(
ψ i − ψ i +1 

))
. (37) 

gain, the GEN case κgm 

= ξ and POS case κgm 

= ξ 2 are consid-

red. The vertically discrete cost function for this case is given by 

ˆ 
 = 

3 ∑ 

i =1 

∥∥H i (�eb,i − �p,i ) 
∥∥2 

L 2 
+ 

2 ∑ 

i =1 

(〈∇ λi , ∇ �p,i 

+ H i s 
+ 
i 
(κgm 

) i +1 / 2 ( ψ i − ψ i +1 ) 
〉
L 2 

+ ε
H i + H i +1 

2 

∥∥∇ξi +1 / 2 

∥∥2 

L 2 

)
. 

(38) 

The regularisation again penalises gradients in κgm 

, but with-

ut increasing the order for the resulting optimisation problem for

he POS case. The procedure for implementation, solving the vari-

tional problem, simulation details, manner of decreasing ε and

utput of solution based on the roughness criteria (with target

oughness of 7500 as for the PV mixing case) are as detailed in the

revious subsection, where the roughness is now defined to be 

r 
gm 

= D 

2 

2 ∑ 

i =1 

(
H i + H i +1 

2 

∥∥∇κgm , i+1 / 2 

∥∥2 

L 2 

)
2 ∑ 

i =1 

(
H i + H i +1 

2 

∥∥κgm , i+1 / 2 

∥∥2 

L 2 

) . (39) 

The resulting interfacial GM coefficients κgm 

are shown in

ig. 8 , and the local mis-matches are shown in Fig. 9 . The same

iagnostic quantities from Eq. (28) to (33) are employed to assess

he resulting GM coefficient, and these are summarised in Fig. 10 . 

Consider first the GEN case, shown in Fig. 8 ( a ). In the upper in-

erface κgm 

is positive in the north-west and south-west corners. A

arge region of positive κgm 

exists in the southern gyre. There is a

ignificant pattern of negative κgm 

, particularly to the north of the

ean jet and in the downstream mean jet. In the lower interface,

gm 

is predominantly negative around the down-stream mean jet.

his negative coefficient is consistent with previously reported sig-

als of baroclinic stability here, described in Berloff (2005a ) and

addison et al. (2015) . Away from the jet there is a positive κgm 

egion towards the north-east, but negative κgm 

in the southern

yre. The unweighted and the eddy energy weighted means are

egative, especially in the lower interface. The positivity index is

ow, below 50%, and the correlation between κgm 

and the eddy

nergy is low and negative, indicating the prevalence of a negative

ignal and a weak correlation with eddy energy. The standard devi-

tions are rather large, indicating a large variability. The L 2 relative
rrors however are reasonable, at less than 10% for both interfaces.

n observation to be made here is that, unlike the PV mixing case,

ere the upper layer has the lowest mis-match, that is, the use of

 global mis-match cost function here has led to a preferential de-

rease in the upper layer mis-match, at the expense of the lower

wo layers. 

Now considering the POS case, the lower layer GM coefficient is

ero (not shown). This was found to be robust even after choosing

ultiple initial values of ε and multiple initial guesses for the ξ
eld in the algorithm of Fig. 4 . The existence of a global minimum

ith non-zero lower interface κgm 

cannot be ruled out. In the up-

er interface, however, a non-zero solution is found, with a strong

ositive signal in the southern gyre and towards the north-western

nd south-western boundaries. Here, regions of small κgm 

correlate

ell with the regions of negative diffusivity previously observed in

he GEN case. The associated error is large almost everywhere, as

een in Fig. 9 and Fig. 10 (h). 

In summary, the GEN case diagnosed diffusivity shows strong

egative signals, for example in the lower interface down-stream

ean jet. Enforcing positive semi-definite diffusivity in the POS

ase leads to very significantly increased mis-match errors, and dif-

culty in diagnosing a non-trivial diffusivity in the lower interface.

he correlation with eddy energy is, in both cases, low. 

A key issue encountered here is that, in a three-layer configura-

ion, each of the two interfaces is coupled to layers which experi-

nce either direct wind forcing or bottom dissipation. Hence more

ignificant influence from forcing and dissipation may be expected

n these diagnostics. This is addressed in the following section by

dding an increased number of model layers. 

. Results: Five layers, potential vorticity and buoyancy mixing 

A five layer simulation is performed using a higher horizon-

al resolution model with a grid spacing of �x = 3 . 25 km , using

 finite difference code (see e.g., Berloff (2005a ), and particularly

arabasov et al. (2009) for the CABARET numerical scheme which

s used here). Parameter values that differ from the earlier three-

ayer calculation are given in Table 2 . Stratification parameters are

ased upon stratification profiles from the World Ocean Circulation

xperiment ( Gouretski and Kolterman, 2004; Koltermann et al.,

011 ) data, employing a density profile of the form ρ(z) = a + be z/c 

noting that z = 0 is the top of the ocean); specific values of a, b

nd c as well as f 0 are also given in Table 2 . Note that the leading

aroclinic deformation radii are somewhat smaller than the earlier

hree-layer calculation. 

Diagnostic calculations are repeated for this case via interpo-

ation of the finite difference data onto the earlier finite element
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Fig. 9. Layer-wise non-dimensional mis-match D 
(
�eb,i − �p,i 

)
/ ‖ �eb,i ‖ L 2 associated with QG buoyancy mixing over the three layers (columns), for the GEN case κgm = ξ (top 

row) and the POS case κgm = ξ 2 ≥ 0 (bottom row). The colour scales are fixed and saturated in the upper and bottom layer for the GEN case and across all layers in the POS 

case. 

Fig. 10. Bar graph comparing the diagnosed κgm across the two interfaces and three layers of the GEN and POS case for QG buoyancy mixing: ( a, b ) the mean κm and the 

eddy energy weighted mean κm 
E from equation (28) ; ( c ) the positivity index κ> 0 and eddy energy weighted positivity index κ> 0 

E from equation (29) ; ( d, e ) the standard 

deviation κ s and an eddy energy weighed standard deviation κ s 
E from equation (30) ; ( f ) the correlation corr( κ , E ) from equation (31) ; ( g ) the roughness κ r from equation 

(32) ; ( h ) the relative L 2 error E L 2 from equation (33) , noting that layer 1 is the shallowest top layer subject to wind forcing. Note that the lower interface solution for the 

POS case is zero. 
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Fig. 11. Contours of ψ (with units of Sv) at 21 contour levels (top row) and the diffusivity κ (with units of m 

2 s −1 ) associated with the GEN case κ = ξ (middle row) and 

POS case κ = ξ 2 ≥ 0 (bottom row) for PV diffusion over the five layers (columns). The colour scale for the diffusivity is saturated. 

Table 2 

Simulation parameters used for the five-layer finite difference 

ocean gyre calculation. Other parameters employed are as per 

Table 1 . 

parameter value and units 

ν 10 m 

2 s −1 

( H 1 , H 2 , H 3 , H 4 , H 5 ) (0 .15, 0.29, 0.58, 1.16, 2.32) km 

( R 1 , R 2 , R 3 , R 4 ) (33, 17, 11, 10) km 

s + 
1 

H 1 = s −
2 

H 2 8 . 09 × 10 −7 m 

−1 

s + 
2 

H 2 = s −
3 

H 3 7 . 24 × 10 −7 m 

−1 

s + 
3 

H 3 = s −
4 

H 4 1 . 16 × 10 −6 m 

−1 

s + 
4 

H 4 = s −
5 

H 5 5 . 90 × 10 −6 m 

−1 

�x 3 .25 km 

�t variable, based on the Courant number 

a 10 0 0 kg m 

−3 

b 1 . 2 kg m 

−3 

c 500 m 

f 0 
2 π

3600 × 24 
sin 

(
50 ◦π
180 ◦

)
s −1 

m  

c
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esh with a nodal spacing of �x = 15 km . PV diffusivities and GM

oefficients are then diagnosed as before. 

.1. Potential vorticity diffusion 

The corresponding eddy force function �e and total eddy en-

rgy distribution E for the five-layer calculation are largely simi-

ar in structure to the three layer case shown in Fig. 3 . As a con-

equence of this the resulting PV diffusivities associated with the

EN and POS cases, displayed in Fig. 11 , show largely similar struc-
ures to the three-layer case. The associated diagnostic quantities

rom Eq. (28) to (33) are summarised in Fig. 12 . 

Considering first the GEN case, the resulting diffusivity is pre-

ominantly positive over all layers, though still possessing signif-

cant local negative signals particularly in the upper layer. The

apidly varying structure within the mean jet is present but may

gain be seen to be correlated with the locations of largest lo-

al error (not shown; cf. Fig. 6 ). In layer three there are sugges-

ions of a boundary confined negative signal near the north and

outhern boundaries. There is also a suggestion of a negative sig-

al around the mean jet in the second and third layers. There is

gain correlation between locations of positive diffusivity within

ontours of closed stream lines ψ , especially in the third and

ourth layers. The overall positivity for the diagnosed diffusivity is

enerally high. Further, there is mild correlation between the dif-

usivity and the eddy energy and, for the same roughness as in

he three layer case, the resulting L 2 mis-match errors are all less

han 10%. The mis-match is particularly low away from the upper

ayer. Again, the values of the standard deviation indicates that the

eld is highly variable, with the upper layers displaying the largest

ariability. 

For the POS case, the observations are again similar to those

ade for the three layer case. The regions of positive diffusivity in

he GEN and POS case largely coincide, with strong positive diffu-

ivity in the southern gyre and western boundary. These regions of

ositive diffusivity again correlate well with the locations where

here are closed mean stream lines. Regions of low diffusivity also

orrelate well with the regions of negative diffusivity present in

he GEN case. There is again evidence of correlation between the

iffusivity and the eddy energy especially in the lower layers and,
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Fig. 12. Bar graph comparing the diagnosed κ across the five layers of the GEN and POS case associated with PV mixing: ( a, b ) the mean κm and the eddy energy weighted 

mean κm 
E from equation (28) ; ( d, e ) the standard deviation κ s and an eddy energy weighed standard deviation κ s 

E from equation (30) ; ( f ) the correlation corr( κ , E ) from 

equation (31) ; ( g ) the roughness κ r from equation (32) ; ( h ) the relative L 2 error E L 2 from equation (33) . Layer 1 is the shallowest top layer subject to wind forcing. The lowest 

layer for the POS case has not been returned via triggering the roughness criterion, and instead the last converged solution has been returned. 
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for a given roughness, the L 2 mis-match is reasonable away from

the upper layer. It should be noted that the bottom layer solution

for the POS case has not converged to the target roughness, though

the relative L 2 error is still less than 10%. The standard deviations

are relatively speaking on the order of the mean except in the up-

per layer, likely to be because of the imposed positivity constraint,

therefore by construction resulting in a mean with larger magni-

tude than the GEN case. 

4.2. Quasi-geostrophic buoyancy mixing 

In the five-layer configuration there are two interfaces which

are free from the direct influence of upper layer forcing and bot-

tom drag. These internal interfaces are therefore likely to show

a signal more consistent with the quasi-adiabatic ocean interior,

and hence more likely to correlate with the action of QG buoyancy

mixing. The resulting GM coefficients for the GEN and POS case are

shown in shown in Fig. 13 . The relevant diagnostic quantities are

summarised in Fig. 14 . 

The first thing to note here is that the GEN case did not con-

verge around the target global roughness of κ r 
gm 

= 7500 ; instead,

the last converged solution at κ r 
gm 

≈ 1100 is displayed here. This

fact is perhaps noticeable in that the diagnosed GM coefficient

is rather smooth, certainly compared to the three-layer case dis-

played in Fig. 8 (a). However, the physical features are still ro-

bust, with the presence of the negative signal down-stream of the

mean jet across all interfaces, and the positive signal in the south-

ern gyre, the western boundary and in the north-west region. The

mean is now largely positive except in the lowest interface, where

it is mildly negative. Furthermore, there appears to be a vertical

coherence in the diagnosed κgm 

. The eddy energy weighted mean

however is mostly negative and small in magnitude. The positiv-

ity index shows that κgm 

generally takes positive values over the
omain, although clear negative signals around the mean jet are

bserved. The upper layer again has the lowest mis-match. It is

gain observed that the variability appears to be largest in the up-

er most interface. The correlation between κgm 

and the eddy en-

rgy is generally small and negative. The roughness varies over the

nterfaces because of the layer weighting employed in the defini-

ion of the global roughness κ r 
gm 

. Given the resulting calculation

ossesses a rather low roughness, the relative L 2 mis-match is re-

pectable, at less than 20% over all fiver layers. 

For the POS case a non-zero solution is now found over all in-

erfaces, in marked contrast to the earlier three layer case. The lo-

ations of positive signals again correlate well with the locations

f the positive signals observed in the GEN case. The locations of

mall κgm 

in the POS case also correlate well with the locations

f negative signals in the GEN case. The unweighed mean and es-

ecially the eddy energy weighted mean are by construction pos-

tive; the latter has a value of order 1300 m 

2 s −1 . The correlation

etween the diffusivity and the eddy energy is larger than in the

EN case. However, given that the POS case has a higher parameter

oughness than the GEN case solution, the associated mis-match is

till significantly larger. This suggests that negative κgm 

is required

or an accurate match between the target and the parameterised

ddy force functions. 

. Conclusions 

.1. Summary and discussion 

A new method for diagnosing eddy diffusivities in a gauge-

nvariant fashion, independent of dynamically inactive rotational

ux components, has been presented. This is achieved by seek-

ng to match diagnosed and parameterised eddy force functions
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Fig. 13. The GM coefficient κgm (with units of m 

2 s −1 ) associated with the GEN case κgm = ξ (top row) and POS case κgm = ξ 2 (bottom row) for buoyancy mixing over the 

four interfaces (column). The colour scale is saturated to show the spatial structures. Note that the GEN solution has not converged at the target global roughness of 7500 

(see Eq. 39 ), but instead the last converged solution at κ r 
gm ≈ 1100 is displayed here. 

Fig. 14. Bar graph comparing the diagnosed κgm across the four interfaces and five layers for the GEN and POS case associated with QG buoyancy mixing parameterisations: 

( a, b ) the mean κm and the eddy energy weighted mean κm 
E from equation (28) ; ( d, e ) the standard deviation κ s and an eddy energy weighed standard deviation κ s 

E from 

equation (30) ; ( f ) the correlation corr( κ , E ) from equation (31) ; ( g ) the roughness κ r from equation (32) ; ( h ) the relative L 2 error E L 2 from equation (33) , noting that layer 1 

is the shallowest top layer subject to wind forcing. Note here is that the GEN case did not converge around the target global roughness of κ r 
gm = 7500 (see Eq. 39 ); instead, 

the last converged solution at κ r 
gm ≈ 1100 is displayed here. 
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through a one-shot optimisation procedure. The eddy force func-

tion depends only upon eddy flux divergences, through an inverse

elliptic operator, and hence the force function is inherently smooth

and non-local. The optimisation problem allows control over the

roughness of the resulting diffusivity field. Combined, this method

yields an optimal diffusivity that is gauge-invariant, non-local and

has controlled smoothness. 

The approach has been applied to multi-layer quasi-geostrophic

ocean gyre simulations. Results have been shown here for data

obtained from a three-layer finite element simulation and a five-

layer higher resolution finite difference simulation. The diagnostic

method has been applied for PV mixing and QG buoyancy mixing

(the QG version of the Gent–McWilliams parameterisation) with a

general unconstrained diffusivity and a positive semi-definite dif-

fusivity. The resulting optimality systems were implemented us-

ing the FEniCS automated code generation system. Here the code

generator greatly facilitates parameterisation testing, as new meth-

ods can be implemented and tested via small code modifications,

and these changes are propagated automatically. In particular, cost

function Jacobians and Hessians are formulated automatically via

high-level algorithmic differentiation, and specific code for the as-

sembly of these discrete operators is generated automatically. 

Regarding PV mixing parameterisations, the key conclusions

are that: (i) there are robust locally negative diffusivities that are

present even in the absence of rotational fluxes, although the mean

diffusivity over the horizontal domain is positive; (ii) the optimi-

sation has success in matching the eddy force function diagnosed

from an eddying calculation in the lower layers, but has less suc-

cess in the upper layer where there is strong wind forcing present;

(iii) the locations of closed mean recirculations often correlate with

signals of positive diffusivity; (iv) there is positive correlation be-

tween the eddy energy and the diffusivity in the lower layers. 

For QG buoyancy mixing, negative signals are again present, al-

though in this instance some of this is attributed to the lack of ver-

tical resolution in the three-layer calculation. The five-layer calcu-

lations indicate predominantly positive GM coefficient away from

the location of the mean jet, albeit with some strong negative sig-

nals in the southern part of the lower two interfaces. Notwith-

standing this exception, this is consistent with the action of down-

ward momentum transfer input by the wind through the action of

baroclinic instability. However, within the mean jet, and particu-

larly in the lower layer and down-stream jet regions, the GM coef-

ficient is strongly negative, suggesting local baroclinic stability, and

forcing of the mean jet baroclinicity by the eddy buoyancy fluxes.

These results are consistent with the earlier observations reported

in Berloff (2005a) and Maddison et al. (2015) . 

Throughout this paper the mis-match measure was defined via

an L 2 norm, measuring the mis-match between the diagnosed and

parameterised eddy force functions. Additional calculations were

performed using a H 

1 
0 mis-match measure, which measures the

mis-match between diagnosed and parameterised divergent eddy

fluxes. The solutions obtained from the H 

1 
0 

based mis-match norms

result in higher relative L 2 mis-matches; this may be attributed

to the fact that the H 

1 
0 case places more emphasis on the local,

small-scale features over the global, large-scale features. Calcula-

tions which attempted to directly match diagnosed and parame-

terised eddy flux divergences (respectively, ∇ 

2 �e and ∇ · (−κ∇ q ) )

were not successful. 

It is possible to consider diagnostics which seek diffusivities

and GM coefficients which are themselves defined in terms of the

eddy energy (e.g., Rodi, 1987; Eden and Greatbatch, 2008 ). For ex-

ample, one could consider the definition κ = 

√ 

E ξ , where ξ a mix-

ing length, or alternatively κ = Eξ , where here ξ is a time-scale.

Via either of these approaches a given roughness in the underly-

ing parameter ξ permits an increased roughness in κ; that is, the

eddy energy may be used to provide additional information on the
patial structure of the diffusivity and GM coefficient. Such diag-

ostics have been investigated (not shown) and yield a root-mean-

quare mixing length of 15–40 km, and a root-mean-square time

cale of 3–10 days. The latter time-scale is similar to that described

n McWilliams and Gent (1994) for an eddy kinetic energy depen-

ent variant of GM with a spatially varying coefficient. 

For the purposes of eddy parameterisation, the diagnosed PV

iffusivities exhibit some desirable features. The mean diffusivity

either unweighted or eddy energy weighted) is positive, and is

enerally also locally positive (notwithstanding some regions of

trong negative diffusivity, particularly in the upper layer). The

ositive correlation of the diffusivity with eddy energy, while

omewhat modest, provides some additional support to the prin-

iple of eddy energy based eddy parameterisations, for example as

iscussed in, Eden and Greatbatch (2008) , Cessi (2008) , Marshall

nd Adcroft (2010) and Jansen and Held (2013) . Enforcing a pos-

tive semi-definite diffusivity leads to an increased error at the

elected parameter roughness. Indeed this latter approach gener-

lly leads to a similar spatial diffusivity pattern as obtained with

n unconstrained diffusivity, but with negative diffusivities deleted,

nd somewhat larger positive diffusivities elsewhere. 

Diagnosed interfacial GM coefficients, for the purposes of eddy

arameterisation, are potentially more problematic. In particular,

t least in the five layer calculation, where the influence of forc-

ng and dissipation is weaker for the intermediate layers, there are

arge scale and large magnitude negative signals of the GM coef-

cient, particularly in the region of the mean jet. While there are

lso strong positive signals away the jet, the eddy energy weighted

ean and the correlation with the eddy energy are both negative.

nforcing a positive semi-definite GM coefficient again generally

eads to a similar pattern of positive spatial signals, with larger

agnitude, and with negative signals deleted. The mis-match in

his latter case, at the selected roughness, is also significantly in-

reased. 

There do appear to be some robust structures appearing in

he diagnosed PV diffusivities. The five layer calculations suggest

ignals broadly consistent with down-gradient PV mixing, hinting

hat such a closure may be tractable here. This observation comes

ith the caveat that, in general, a purely down-gradient PV clo-

ure violates momentum conservation (e.g., Marshall, 1981; Mar-

hall et al., 2012 ) through the failure to preserve the underlying

ensorial structure resulting from the Taylor–Bretherton identity

e.g., Griffies, 2004; Popovych and Bihlo, 2012; Maddison and Mar-

hall, 2013 ). 

The diagnosed GM coefficients imply a region near the mean

et with a robust negative diffusivity, consistent with the action

f baroclinic stability. This suggests that, at least in the regions of

trong lateral shear, a closure for eddy buoyancy fluxes should per-

it a degree of backscatter. This is not typically captured within

urrent eddy parameterisation schemes. 

.2. Outlook 

To ensure the resulting inversion was sufficiently constrained

t was assumed the diffusivity could be represented by a single

calar. In particular the implied diffusivity tensor was assumed to

e (i) isotropic, and (ii) symmetric. The present method may po-

entially be extended to account for anisotropy if there is a sound

hysical constraint that may be imposed to constrain the opti-

isation procedure, otherwise the optimisation becomes under-

onstrained. We refer the reader to the recent work of Bachman

nd Fox-Kemper (2013) and Bachman et al. (2015) where the issue

f anisotropy as well a relevant diagnostic method for the full eddy

ransport tensor via gathering statistics through the evolution of

ultiple tracers was presented. A non-symmetric diffusivity, cor-

esponding to an eddy induced advection, can be considered via
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Fig. 15. The diffusivity κ and transport coefficient σ (top and bottom row, in units of m 

2 s −1 ), for the PV mixing case κ = ξ with R ( κ, σ ) = ‖ σ/D ‖ 2 
L 2 

+ ε‖∇κ‖ 2 
L 2 

. The colour 

scale is mildly saturated to show the spatial structures. 

a

J

w  

t  

t  

s  

u  

u  

i  

t  

F  

l  

v  

σ  

0  

i  

m  

p  

H  

t  

t

 

i  

e  

s  

s  

f  

o  

f  

t  

t  

P  

a  

B  

t  

d  

i  

o  

e  

G  

t  

t  

v  

e

 

p  

m  

d  

i  

o  

i  

m  

c  

m  

p  

r

 

i  

p  

a  

t  

(  

I  

i  

s  

t  

a  

i  

s  

a  

d  
n alternative optimisation problem 

ˆ 
 (�p , λ, κ) = ‖ 

�p − �e ‖ 

2 
L 2 + 

〈∇ λ, ∇ �p − κ∇ q 

+ σ ˆ z × ∇ q 
〉
L 2 

+ R ( κ, σ ) , (40) 

hich here seeks simultaneously to minimise the mis-match be-

ween the parameterised and diagnosed eddy force functions, and

o minimise the magnitude of the eddy induced advection. Fig. 15

hows one such calculation for PV mixing in the three-layer case

sing the same procedure detailed in the article, utilising the reg-

larisation R ( κ, σ ) = ‖ σ/D ‖ 2 
L 2 

+ ε‖∇κ‖ 2 
L 2 

, (where D is the scal-

ng factor for time and space in the numerical model) i.e., where

he size of σ and gradients in κ are penalised. Comparing this to

ig. 5 , it may be seen that the diagnosed diffusivity does in fact

argely resemble the previous case, with perhaps fewer extremum

alues particularly around the region of the main jet, where it is

that is strong here. The resulting relative L 2 error is less than

.1% over all three layers in this case. Further cases, such as the

mposition of a non-negative diffusivity coefficient, are more nu-

erically challenging, perhaps due to the possibility for the ap-

earance of multiple local minima in this more general approach.

owever, if an isotropic diffusive type closure is desired, then this

est, which minimises the magnitude of the eddy induced advec-

ion, lends support to the results presented earlier in the article. 

One may ask the question of whether the diagnosed diffusiv-

ties or GM coefficients here bear resemblance to the associated

ddy induced transport tensor K , where u 

′ τ ′ = −K ∇ τ , where τ is

ome tracer. One crucial basis for the optimisation procedure pre-

ented here is that the PV flux may be written in terms of an eddy

orce function. For eddy fluxes of more general tracer quantities

ne can, at least in a simply connected domain, define a potential

or rotational fluxes via the solution of the relevant Poisson equa-

ion with homogeneous Dirichlet boundary conditions. However

he physical interpretation for this potential which applies for eddy

V fluxes, in terms of a an eddy force function, is lost. Alternative

pproaches, as presented in Bachman and Fox-Kemper (2013) and

achman et al. (2015) , may be considered in this case. However,
he work of Abernathey et al. (2013) reports that there is an in-

ication that PV diffusivity does in fact bear resemblance to the

sopycnal diffusion by eddies, as well as other common definitions

f the diffusivity employed the parameterisation literature (e.g., the

ffective diffusivity of Nakamura, 1996 ). On the other hand, the

ent–McWilliams coefficients do not bear resemblance to any of

hese diffusivities; comparing Fig. 11 and Fig. 13 here, it is cer-

ainly true that the PV diffusivity and GM coefficient differ in its

ertical structure, consistent with the observation in Abernathey

t al. (2013) . 

The optimisation procedure may potentially be extended to the

rimitive equations, provided an analogous eddy force function

ay be defined. One could consider, for example, a force function

efined as in Marshall and Pillar (2011) . A practical limitation here

s likely to be the difficulty of solving the associated ill-conditioned

ptimality systems. In this article this was addressed by reduc-

ng the size of the problems, through interpolation onto a coarser

esh, combined with the use of direct solvers which are practi-

al for these problem sizes. For larger problems more advanced

ethods, such as the use of iterative methods with appropriate

re-conditioners for the relevant linear systems, are likely to be

equired. 

This diagnostic method presented provides a test for the qual-

ty of a proposed or existing parameterisation in its ability to re-

roduce eddy statistics free from the ambiguity of dynamically in-

ctive rotational fluxes, and it would be interesting to see how

his extends to some of the existing proposed parameterisations

e.g., Ferrari and Nikurashin, 2010; Porta Mana and Zanna, 2014 ).

n practice, however, a parameterisation quality may not necessar-

ly be determined by its ability to represent eddy statistics them-

elves. That is, it may be acceptable for a given parameterisa-

ion to imply a differing eddy diffusivity if it nevertheless yields

 high quality mean state. A more advanced method of diagnos-

ng eddy diffusivities, for example, could seek to invert for a diffu-

ivity which yields an optimal mis-match between high resolution

nd parameterised mean states. Such a diagnostic would apply the

ynamical equations themselves as a constraint on the optimisa-
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tion, and replace the unconstrained cost function used here with

a mis-match measure defined in terms of the deviation of the pa-

rameterised model from the target high resolution reference. 
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