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Near-inertial wave scattering by random flows

Eric Danioux and Jacques Vanneste∗

School of Mathematics and Maxwell Institute for Mathematical Sciences,

University of Edinburgh, Edinburgh EH9 3JZ, UK

(Dated: June 9, 2016)

Abstract

The impact of a turbulent flow on wind-driven oceanic near-inertial waves is examined using

a linearised shallow-water model of the mixed layer. Modelling the flow as a homogeneous and

stationary random process with spatial scales comparable to the wavelengths, we derive a transport

(or kinetic) equation governing wave-energy transfers in both physical and spectral spaces. This

equation describes the scattering of the waves by the flow which results in a redistribution of

energy between waves with the same frequency (or, equivalently, with the same wavenumber)

and, for isotropic flows, in the isotropisation of the wave field. The time scales for the scattering

and isotropisation are obtained explicitly and found to be of the order of tens of days for typical

oceanic parameters. The predictions inferred from the transport equation are confirmed by a series

of numerical simulations.

Two situations in which near-inertial waves are strongly influenced by flow scattering are inves-

tigated through dedicated nonlinear shallow-water simulations. In the first, a wavepacket propa-

gating equatorwards as a result from the β-effect is shown to be slowed down and dispersed both

zonally and meridionally by scattering. In the second, waves generated by moving cyclones are

shown to be strongly disturbed by scattering, leading again to an increased dispersion.

∗ Corresponding author: J.Vanneste@ed.ac.uk
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I. INTRODUCTION

Near-inertial waves (NIWs), that is, internal waves with frequencies close to the local

Coriolis frequency, are a major source of variability in the ocean where they play an impor-

tant dynamical role (see [1] for a recent review of NIW observations and models). They are

mainly generated at the surface by wind-stress forcing, although other generation mecha-

nisms exist including geostrophic adjustment [2], flow-topography interaction [3], momentum

deposition [4, 5], and spontaneous generation [6, 7]. Wind-generated NIWs have small ver-

tical scales, leading to strong vertical shear, instabilities and, as a result, surface mixing.

Because of this and because of the vertical motion they induce, they have a strong impact on

biological production [8]. NIWs also propagate to the deep ocean [9] where they eventually

dissipate and induce diapycnal mixing, potentially sustaining the meridional overturning

circulation; the extent of their contribution to the latter is still a matter of debate [10].

There is also mounting evidence of a direct energetic impact of NIWs on the mesoscale flow

[11–13].

Regions of NIW-generation usually coincide with regions of strong geostrophic turbulence

(see for example Fig. 1 in [14]). This has motivated numerous studies of the impact of a

flow on the propagation of NIWs [11, 15–21]. Because of the different atmospheric and

oceanic Rossby radii, the horizontal scales of the wind patterns and hence of the NIW

forcing are often much larger than scales of the oceanic flow. Consequently, many of the

aforementioned studies take the NIWs as initially homogeneous. However, as shown by

D’Asaro [22] and confirmed by Alford [23] and Silverthorne and Toole [24], most of the NIW

energy input to the ocean is due to a few intense winter storms or cyclones, with horizontal

scales of hundreds of kilometers. These storms move horizontally, exciting NIWs at scales

that depend on their speed and can be comparable to oceanic scales, then invalidating the

assumption of homogeneous initial condition. There is, then, a need to understand how the

flow affects NIWs generated at scales comparable to flow scales. The primary effect is the

scattering of the NIWs, leading to a redistribution of their energy in wavenumber space.

Describing and quantifying this scattering are the aims of the present paper.

We adopt the framework developed by Ryzhik et al. [25] for a broad class of scattering

problems (see also Ref. 26). This describes asymptotically the propagation of a spectrum of

waves in a medium – the flow in our case – that varies randomly over spatial scales similar
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to the wavelength. The approach represents the wave field by its Wigner transform to

account for large-scale spatial modulations of the wave spectrum. Taking the model of NIW

propagation derived by Young and Ben Jelloul [19, referred below as YBJ] as our starting

point, we derive the transport equation satisfied by the associated Wigner transform and

examine several predictions of this equation. The principal one is the spreading of the NIW

energy spectrum along lines of constant frequency (corresponding to constant horizontal

wavenumber for NIWs), leading to a relaxation towards an isotropic spectrum when the

flow is itself isotropic. We estimate the timescale for this relaxation, and find it to be of the

order of a few weeks, depending on parameters including the flow strength and correlation

length. We test our analytic predictions against numerical simulations of a reduced-gravity

shallow-water version of the YBJ model.

The importance of scattering for NIWs and the relevance of our theoretical conclusions

are illustrated by two applications which we discuss on the basis of simulations of the full

nonlinear reduced-gravity shallow-water model. This model introduces more realism through

effects not included in the YBJ and scattering theories. The first application considers the

interplay between scattering and the β-effect; it shows that this interplay leads a slowdown

of the equatorward propagation of NIW wavepackets. The second application considers

NIWs generated by a moving cyclone and identifies a speedup of lateral dispersion as one

of the main impacts of the flow.

The plan of the paper is as follows. In section II, we briefly review various approaches

to the study of NIW propagation in background flows. Section III introduces the transport

equation obeyed by the Wigner function associated with NIWs. Because of its mathematical

complexity, the derivation of this equation is relegated to Appendix A. Section III also

shows how the isotropisation of the wave field results from the scattering, estimates the

relevant timescales as a function of the flow parameters, and verifies the analytic predictions

numerically. The two applications are presented in section IV. The paper concludes with a

discussion in section V.

II. NIW PROPAGATION IN FLOWS

Many studies of the propagation of oceanic internal waves in heterogeneous flows rely on

the Wentzel–Kramers–Brillouin (WKB) approximation [15, 16, 18] which assumes that the
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length scale ℓw of the waves is much smaller than the scale ℓf of the background flow. Wind-

driven NIWs, however, typically span a broad range of scales, from the large atmospheric

scales at which they are generated to the much smaller scales they reach as a result of

advection and refraction by the flow. To account for this, Young and Ben Jelloul [19]

proposed a model for the propagation of NIWs in a geostrophic flow without any assumptions

on their relative scale ℓw/ℓf . Using a multiple time-scale approach (where the slow time scale

is related to the small NIW-Burger number), they derived an equation for the subinertial

amplitude M from which the NIW complex velocity is deduced as u + iv = Me−if0t. With

the additional assumption of a barotropic geostrophic flow with streamfunction ψ(x, y, t),

the amplitude of each vertical mode obeys the YBJ equation

∂tM +∇
⊥ψ ·∇M − i

h

2
∆M + i

∆ψ

2
M = 0, (1)

where h = f0r
2
n depends on the NIW-vertical mode n through its Rossby radius of deforma-

tion rn, and ∇
⊥ = (−∂y , ∂x). This equation, which holds provided that

Bu = r2n/ℓ
2
w ≪ 1, (2)

exhibits the three physical mechanisms influencing the evolution of NIWs, namely advection,

dispersion and refraction. It also applies to NIWs concentrated in a homogeneous layer

capping an abyssal ocean where the only motion is the barotropic flow, as described by

a reduced-gravity shallow-water model; in this case, h = g′H/f0 where g′ is the reduced

gravity and H is the depth of the top layer, and Bu = g′H/(f 2ℓ2w) (see [27]). This is the

interpretation that we take in this paper, focussing on applications to mixed-layer NIWs.

Most of the work on (1) considers the case of homogeneous initial NIWs, that is, infinite

initial ℓw or, more broadly, ℓw ≫ ℓf [e.g. 19, 20, 28]. Finite length scales appear as a result

of the interactions with the flow, leading to a ratio ℓw/ℓf that depends on the value of

h/Ψ. In the long-time limit, this ratio becomes O(
√

h/Ψ) in the strong dispersion regime

h≫ Ψ, O(1) in the intermediate regime h = O(Ψ), and h/Ψ in the strong trapping regime

h ≪ Ψ [27]. The opposite limit, where ℓw ≪ ℓf initially can be tackled using the WKB

approximation. It is clear from (1) that the refraction term becomes much smaller than the

advection term in this limit, except for some very specific flow configurations, as noted by

Olbers [17].

The case where ℓw ∼ ℓf initially remains largely unexplored despite its relevance to oceanic

situations (see section IV). It is the focus of this paper. We make analytical progress by
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spatial scale time scale

wave phase ℓ ℓ2/h

wave envelope L = ℓ/ǫ Lℓ/h = ǫL2/h

flow ℓ Lℓ/h = ǫL2/h

TABLE I. Scaling assumptions: the wave time scales are deduced from the spatial scales using the

dispersion relation ω = h|k|2/2 for the frequency shift relative to the inertial frequency f0. The

flow amplitude is determined by the scaling Ψ = O(ǫ1/2h) of the streamfunction.

assuming that the NIW field consists of a spectrum of waves whose phase varies on the flow

scale, thus taking ℓw = ℓf =: ℓ from now on. Inhomogeneities in the wave field are accounted

for by considering an amplitude that varies on a much larger length scale L = ℓ/ǫ, where

ǫ ≪ 1. The flow is taken to be relatively weak, specifically such that Ψ/h = O(ǫ1/2), and

modelled by a homogeneous and stationary random process in space and time. The scaling

assumptions are further discussed in Appendix A and summarised in Table I. We next

derive the transport equation that governs the dynamics of the wave field in this setup.

III. NIW SCATTERING

We adopt the approach of Ryzhik et al. [25], formulated in terms of the Wigner transform

which we now introduce.

A. Wigner transform

The Wigner transform of a function M(x, t) rapidly decaying at infinity is defined as

W (x,k, t) =
1

4π2

∫

R2

eik·yM(x− y/2, t)M∗(x+ y/2, t) dy, (3)

where ∗ denotes the complex conjugate. Here, both x and k are two-dimensional (horizontal)

vectors. It is easy to show that W (x,k, t) is real and that its integral over wavevector space

is
∫

R2

W (x,k, t) dk = |M(x, t)|2. (4)
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In the context of the YBJ equation, this quantity is twice the local NIW kinetic energy. For

a wavepacket solution

M(x, t) = A(x, t)eik0·x/ǫ, (5)

where A is a smooth function of x and |k0| = O(1), the Wigner transform tends to

W (x,k, t) → |A(x, t)|2δ(k − k0/ǫ)

as the scale-separation parameter ǫ → 0. Hence, the Wigner transform can be intuitively

thought of as a wavenumber-resolving energy density in the scale-separation regime, and

therefore bears similarities with wavelet transforms.

B. Transport equation

We assume that the NIW field consists of a spectrum of wavepackets of the form (5),

with phases that vary on the flow scale and amplitudes that vary on a much larger scale. In

other words, the waves fluctuate on the flow scale, but are modulated over a larger envelope

scale, with the scale separation measured by ǫ≪ 1. This assumption implies that the scaled

Wigner transform

W ǫ(x,k, t) = ǫ−2W (x,k/ǫ, t), (6)

where x and k are non-dimensionalised using the large envelope scale L = ǫ−1ℓ, tends to

a finite limit W 0 as ǫ → 0. The flow, represented by a random streamfunction ψ(x, t)

with stationary and homogeneous statistics, has an amplitude Ψ that satisfies the scaling

Ψ/h = O(ǫ1/2) (see Appendix A). This ensures that effects associated with the flow are

smaller than dispersion effects in Eq. (1). In stronger flows, waves simply do not propagate

while weaker flows do not affect wave propagation on realistic timescales.

Under these assumptions, the leading-order Wigner transform W 0 of M , denoted below

simply by W , satisfies the transport equation

∂tW + hk ·∇xW = LW − Σ(k)W, (7)

where

LW =

∫

R2

σ(k,p)W (x,p, t) dp (8)

and

Σ(k) =

∫

R2

σ(k,p) dp (9)
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(see Appendix A for the derivation). Here,

σ(k,p) =
4π

h

(

|k × p|2 + |k − p|4
4

)

R̂(p− k)δ(k2 − p2), (10)

where R̂(p) is the power spectrum of the streamfunction (that is, the Fourier transform of

its covariance, see (A14)). It is independent of time because of the assumed stationarity of

the flow. Under the additional assumption of isotropy, which we will make, it depends only

on the magnitude |p| of p.

The function σ(k,p) is interpreted as a differential scattering cross-section, representing

the rate at which energy at wavevector p is converted to energy at wavevector k. In general,

it is a function of space and time but this dependence drops here because of the homogeneity

and stationarity of the flow. The total scattering cross-section Σ(k) represents the rate at

which energy at wavevector k is transferred to all other wavevectors. Importantly, the

particular form of (10) shows that energy transfers are restricted to wavevectors with the

same magnitude:

σ(k,p) = 0 if |k| 6= |p|. (11)

This is the particularisation to NIWs, with dispersion relation ω(k) = h|k|2/2 (see (1)), of

the general restriction of energy transfers between waves of equal frequencies: ω(k) = ω(p).

The two terms in (10) stem from the advection and refraction terms, respectively. Wave

propagation is governed by the second term on the left-hand side of equation (7), which can

be identified as advection by the group velocity ∇kω(k) = hk in a WKB context.

Integration of (7) with respect to k and use of (4) and of the property σ(k,p) = σ(p,k)

give the leading-order energy conservation equation

∂t
1

2
|M |2 +∇x · F = 0, (12)

where

F =
h

2

∫

R2

kW (x,k) dk =
ih

4
(M∇xM

∗ −M∗
∇xM)

is the NIW kinetic energy flux [19, 27].
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C. Isotropisation

1. General properties

In view of (11), it is convenient to use polar coordinates for the wavevector. This simplifies

(8) into the single integral

LW (x, |k|, θ, t) =
∫ π

−π

σ′(|k|, θ′)W (x, |k|, θ + θ′, t) dθ′, (13)

where θ is the orientation of k, θ′ is the angle between k and p in (8), and the differential

scattering cross-section σ′ is defined from (10) as

σ′(|k|, θ′) = 8π|k|4
h

sin2(θ′/2)R̂ (2| sin(θ′/2)k|) , (14)

independent of the direction of k: the scattering is rotationally invariant because the flow

is isotropic. Similarly, the total scattering cross-section (9) becomes

Σ(|k|) =
∫ π

−π

σ′(|k|, θ) dθ. (15)

We now restrict our attention to horizontally homogeneous Wigner transforms, that is,

NIWs whose large-scale properties are homogeneous. The group velocity term in (7) vanishes

and the equation for W reduces to

∂tW = LW − Σ(|k|)W. (16)

The solution of (16) can be calculated explicitly from the knowledge of the initial condition

W (|k|, θ, t = 0) = W0(|k|, θ) (17)

and the eigenvalues and eigenvectors of the operator L. To find these, we remark that, from

the symmetry property σ′(|k|, θ) = σ′(|k|,−θ), (13) can be viewed as a convolution of σ′

and W . Because the Fourier transform of a convolution is proportional to the product of

the Fourier transforms of the convolved functions, the eigenvalues and eigenvectors of L are

{λn, cos(nθ)}, n = 0, 1, · · · , (18)

where

λn =

∫ π

−π

σ′(|k|, θ) cos(nθ) dθ (19)
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is proportional to the Fourier transform of σ′ with respect to θ and depends on |k|. Since

σ′ is non-negative and smooth,

λ0 = Σ(|k|) and |λn≥1| < λ0. (20)

Expanding the initial condition (17) in the basis of eigenfunctions given in (18), we write

W0(|k|, θ) =
∞
∑

n=0

wn(|k|) cos(nθ),

and obtain the exact solution of (16) as

W (|k|, θ, t) =
∞
∑

n=0

wn(|k|)e(λn−Σ)t cos(nθ). (21)

From (20) and (21), we conclude that, regardless of the initial conditions, the solution of

(16) converges, at a given wavenumber |k|, to the stationary, isotropic solution given by

W (|k|, θ, t = ∞) = w0(|k|) =
1

2π

∫ π

−π

W (|k|, θ, t = 0) dθ. (22)

This is a key conclusion drawn from the transport equation: the scattering of NIWs by a

random flow leads to an isotropic wave field. Moreover, the convergence timescale is deduced

from (21) to be approximately

T ≃ 1/(Σ− λ′), where λ′ = max
n≥1

λn. (23)

We note that the scattering time Σ−1, which estimates the time scale over which scattering

is significant, does not necessarily provide a reliable order of magnitude for the time scale of

isotropisation (23) which can be much longer. This is demonstrated in section IIIC 3 below.

2. Solution for an intially plane wave

To illustrate the isotropisation process, we consider an initial NIW-field that consists of

a single plane wave, that is,

M(x, t = 0) =M0e
ik0·x, (24)

where M0 is a constant. Without loss of generality, we take k0 to be aligned with the x-axis,

k0 = (|k0|, 0). From (3), the Wigner transform corresponding to (24) is

W0(k) = W (k, t = 0) = δ(k − k0), (25)
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or, equivalently, in polar coordinates,

W0(|k|, θ) = |k0|−1δ(|k| − |k0|)× δ(θ). (26)

The Wigner transform at later times can be similarly written in separable form,

W (|k|, θ, t) = |k0|−1δ(|k| − |k0|)Wθ(θ, t), (27)

where Wθ is solution of (16) with initial condition Wθ(θ, t = 0) = δ(θ). Using (21) and the

Fourier series for the Dirac function

δ(θ) =
1

2π
+

1

π

∞
∑

n=1

cos(nθ),

this can be written explicitly as

Wθ(θ, t) =
1

2π
+

1

π

∞
∑

n=1

e(λn−Σ)t cos(nθ). (28)

The influence of the background flow shows through the eigenvalues λn and Σ, which are

both functions of |k|. We compute these asymptotically and numerically for Gaussian flows

in the next section.

3. Gaussian random flow

We now take the streamfunction to be an isotropic, homogeneous Gaussian process char-

acterised by its covariance R(x) ∝ e−k2c |x|
2/2. The corresponding power spectrum is

R̂(|k|) = A e−|k|2/(2k2c ), (29)

for some A > 0, and implies a correlation length ℓc = 2
√
2π/kc with the definition we

have chosen [29]. For this spectrum, it is instructive to calculate approximations to the

eigenvalues (19) and hence deduce the isotropisation time scale (23) in the two limiting

cases |k| ≪ kc and |k| ≫ kc.

First, for |k| ≪ kc, R̂ ∼ 1 in (14) and σ′(θ′) ∝ sin2(θ′/2); in this regime, corresponding

to waves of scales much larger than the flow correlation scale,

λ0 = Σ ∼ 8π2|k|4A
h

, (30)
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FIG. 1. Eigenvalues of the scattering cross-section operator L obtained numerically (symbols) and

asymptotically from (31) (thick lines) and (32) (thin lines) for γ = 3 (◦ and solid line), 10 (✷

and dashed line) and 50 (△ and dashed-dotted line). The eigenvalues are scaled by the factor

2π3/2k4cA/h appearing in (31) and (32).

while λ1 ∼ −λ0/2 and λn≥2 = o(λ0). Therefore, the isotropisation time-scale is approxi-

mately Σ−1.

Second, for |k| ≫ kc, using a steepest-descent method (detailed in Appendix B 1), we

find

λn ∼2π3/2k4cA

h
γ3/2 exp

(

γ(α1/2
n − 1)/2− n sinh−1(2n/γ)

)

×
(

(α−1/4
n − α1/4

n ) +
1

6γ
(α−1/4

n − α−3/4
n +

7

2
α−5/4
n +

5

2
α−7/4
n )

)

,

(31)

where γ = 2|k|2/k2c ≫ 1, αn = 1 + 4n2/γ2, and we have assumed that n = O(γ) to obtain

an approximation uniformly valid for large n. Expression (31) is plotted in Fig. 1 as a

thick line for three values of γ, along with the exact value (19) calculated numerically. The

approximation (31) is accurate for n ≥ 1, even for the moderately large γ = 3, but it fails

for n = 0 because of the assumption n = O(γ) breaks down. An application of Laplace’s

method for n = O(1) detailed in Appendix B 2, gives the approximation

λn ∼ 2π3/2k4cA

h
γ1/2

(

1 + γ−1(3/4− 3n2)
)

. (32)
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in place of (31). Expression (32) is plotted in Fig. 1 as a thin line for the three values of

γ used above. The leading order of (32) agrees with (31) for n = 0. Moreover, from (32),

λn decreases with n for n = O(1). Combining the results (32) and (31) holding for different

ranges of n, we deduce that λ0 and λ1 are the two largest eigenvalues of L, with λ1 < λ0.

Consequently, for |k| ≫ kc, the scattering and isotropisation time-scales are, from (32),

Σ−1 ∼ h

2π3/2k4cA
γ−1/2. (33)

and

(Σ− λ1)
−1 ∼ h

6π3/2k4cA
γ1/2. (34)

Therefore, as γ → ∞, that is, as the wave scales decrease, the scattering time-scale decreases

as γ−1/2 while the isotropisation time-scale increases as γ1/2. Thus NIWs with scales much

smaller than the flow scales are quickly impacted by the flow but require long times to

isotropise fully.

D. Importance of advection

It is interesting to examine the specific effect of advection on the scattering as this process

is absent from the Schrödinger equation treated in [25]. We do this by neglecting advection

and analysing how the various quantities calculated in the previous section change. Without

advection, the term proportional to |k×p|2 disappears from (10) (see (A5)–(A8)), and (14)

becomes

σ′(|k|, θ′) = 8π|k|4
h

sin4(θ′/2)R̂(2|k| sin(θ′/2)). (35)

Let us now see how the change of exponent in (35) impacts on the isotropisation timescale

in the two regimes studied above. In the case |k| ≪ kc, it is easy to show that

Σ =
6π2|k|4A

h
,

while λ1 = −2λ0/3, λ2 = λ0/6 and λn≥3 = o(λ0). Therefore, the isotropisation timescale is

(Σ− λ2)
−1 =

h

5π2|k|4A. (36)

In this case, advection only decreases the isotropisation timescale by the modest factor 5/8

(compare the inverse of (30) with (36)). Its impact is more dramatic in the case |k| ≫ kc.
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Without advection, it is possible to show, using similar techniques as those of Appendix

B, that the two largest eigenvalues are λ0 and λ1, so that the scattering and isotropisation

timescales are

Σ−1 ≃ h

3π3/2k4cA
γ1/2 (37)

and

(Σ− λ1)
−1 =

h

15π3/2k4cA
γ3/2. (38)

Thus advection dramatically decreases the scattering and isotropisation timescales, by fac-

tors proportional to 1/γ ∝ 1/|k|2 (compare (33)–(34) and (37)–(38)). This is confirmed by

numerical simulations (not shown).

These results can be understood physically by considering the YBJ equation (1). The

regime |k| ≪ kc corresponds to ℓw/ℓf ≫ 1, when advection is much smaller than refraction

and has little influence the dynamics. In contrast, for |k| ≫ kc or ℓw/ℓf ≪ 1, advection

dominates over refraction and its effect considerably accelerates the scattering process.

E. Numerical simulations

In this section, we validate the theoretical findings of the previous section using numerical

simulations of the YBJ equation (1) for an initially plane wave. We focus particularly on

the isotropisation time scale.

1. Quantifying the isotropisation

We consider the evolution of a wavefield that is initially strongly anisotropic, with initial

condition (24), corresponding to (25) or (26) in terms of Wigner transform. To analyse its

scattering, we calculate the Fourier transform of M rather than its Wigner transform. This

has two advantages. First, from the dimensional version of (A3),

W (x,k, t) =

∫

R2

eip·xM̂(−k − p/2, t)M̂∗(−k + p/2, t) dp, (39)

where M̂ denotes the Fourier transform of M , it follows that

|M̂(k, t)|2 = 4π2

∫

R2

W (x,−k, t) dx. (40)
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(The minus sign arises from our particular definition of the Fourier transform, see (A4).)

According to the perturbation theory of Appendix A, the leading-order Wigner transform is

spatially independent and the higher-order terms have vanishing spatial averages when there

is no large-scale dependence on the initial condition and velocity field, as assumed here (see

(A9)). Therefore, |M̂(k, t)|2 directly measures the leading-order Wigner transform. Second,

the analysis is obviously much easier with the reduction from the five dimensions of the

Wigner transform to the three dimensions of the Fourier transform.

A natural measure of the isotropy of the wave field is the ratio r of the kinetic energy

associated with the right-hand part of the Fourier spectrum (k > 0) to the total kinetic

energy,

r(t) =
1

E

∫∫

k>0,l

|M̂(k, t)|2 dk, (41)

where E is the integral appearing in (41) extended over the entire (k, l)-plane. An isotropic

field is thus characterized by r = 0.5 and the initial condition (24) by r(0) = 0. We choose

this measure over more sophisticated ones because (i) it is easy to calculate without the need

to resort to polar coordinates, (ii) the large domain of integration (a half plane in (k, l))

gives a measure that is smooth in time.

As described in section IIIC 2, the initial condition (25) leads to an exact solution given

by (28)–(27) for the Wigner transform. Using this and (40), we compute the ratio r for this

solution as

r(t) =
4π2S

E

∫ 3π/2

π/2

Wθ(θ, t) dθ

=
1

2
− 2

π

∞
∑

n=0

(−1)n

2n+ 1
e−(Σ−λ2n+1)t, (42)

where S is the area of the domain. The second term in (42) tends to 0 as t→ ∞.

2. Parameters and results

Equation (1) is solved on a doubly periodic 512× 512 grid using a pseudo-spectral time-

split Euler scheme. A weak biharmonic dissipation is added for numerical stability. The

streamfunction ψ is taken as a realization of a homogeneous isotropic Gaussian random field,

with power spectrum (29) with the correlation length ℓc = 200 km. It is time-independent

but, according to Appendix A, any time dependence with stationary statistics would lead
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FIG. 2. Vorticity field, normalised by the Coriolis frequency f , for one realisation of the Gaussian

random streamfunction with power spectrum (29) and correlation length 200 km.

to the same results provided that it is slow compared with the wave time scale. The domain

is a square of length 40ℓc = 8000 km. The Coriolis frequency is f0 = 10−4s−1 and the

Rossby radius of deformation is rd = 20 km, representative of the North Atlantic; this

gives a dispersion parameter h = f0r
2
d = 4 · 104m2 s−1. We verify that, because (f 2

0 +

f0h(2π/ℓc)
2)1/2 − f0 ≃ 2 · 10−5 ≪ f0, waves with a similar wavelength as the background

flow satisfy the near-inertial approximation. The amplitude A of the power spectrum is

chosen such that the root-mean-square of the vorticity field is ζrms ≃ 5 ·10−6s−1 ≪ f0. Thus,

the parameter Ψ/h = (ℓc/(2π))
2ζrms/h ≃ 0.12 is much smaller than 1, in accordance with

the scaling used in Appendix A. A typical subdomain of size 1000 km × 1000 km of the

vorticity field is shown in Fig. 2.

Three different values of the parameter γ = 2|k0|2/k2c are used: γ = 0.5, 1.1 and 4.9,

corresponding to a NIW wavelength 2π/|k0| of approximately 500, 340 and 160 km. Fig.

3 displays the evolution of M , specifically ReM alongside the magnitude of its Fourier

transform |M̂ |, for γ = 1.1. As expected, the initially unidirectional wave field (Fig. 3a)

is slowly modulated by the flow, leading to the generation of fluctuations in all directions

(Figs. 3c, e), and ends up almost isotropic (Fig. 3g). This is confirmed by the amplitude of

the Fourier transform |M̂ | (Fig. 3, right column), which starts from a single point (−|k0|, 0)
in the (k, l)-plane (Fig. 3b), then develops into a thin annulus of radius |k0| as the energy

at (−|k0|, 0) decreases (Figs. 3d, f, h).
For each value of γ, simulations like the one used for Fig. 3 have been repeated 20 times

with different realisations of the streamfunction. From these simulations, we calculate the
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FIG. 3. Evolution of ReM in a 4000 km×4000 km subdomain (left), and of the Fourier transform

amplitude |M̂ | for an initially plane wave, shown at t = 0 (a, b), 10 days (c, d), 30 days (e, f) and

75 days (g, h) for γ = 1.1 (see text for the value of other parameters).
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FIG. 4. Evolution of the energy ratio r defined in (41) for γ = 2k20/k
2
c = 0.5 (left), 1.1 (middle)

and 4.9 (right). The average ratio calculated from 20 simulations for each value of γ (solid lines)

is compared with the theoretical prediction (42) (dashed lines) and with the approximations rΣ =

(1− exp(−Σt))/2 (dash-dotted lines) and rλ′ = (1− exp(−(Σ−λ′)t))/2 (dotted lines). For γ = 0.5

and 1.1, rλ′ is indistinguishable from rΣ. Note the different time ranges in each figure. The

eigenvalues λn defined in (19) are shown in the insets. Units of r and λn are days−1.

average of the ratio r(t) defined in (41). Fig. 4 displays the evolution of this ratio for the

three values of γ, together with the theoretical prediction (42) and the two estimates

rΣ(t) =
1

2

(

1− e−Σt
)

and rλ′(t) =
1

2

(

1− e−(Σ−λ′)t
)

, (43)

where λ′ is defined in (23). These are crude estimates based on the scattering and isotropi-

sation time scales Σ−1 and (Σ − λ′)−1. The agreement between the numerical simulations

(solid line) and the theoretical prediction (dashed line) is excellent, considering the strong

assumptions underlying the derivation of (16). The estimates rΣ and rλ′ offer good, albeit

less accurate, approximations. In particular, for γ = 4.9, rλ′ offers a significant improve-

ment over rΣ, highlighting the fact that (Σ − λ′)−1 is a more appropriate time-scale for

isotropisation than Σ−1.

From Fig. 4, the isotropisation e-folding time-scale is approximately 81, 27 and 23 days

for γ = 0.5, 1.1 and 4.9. This is in agreement with expression (30) for small γ: as γ or

|k| decreases, the time-scale increases. For γ larger than 4.9, we expect the isotropisation

time-scale to increase again, in agreement with (34). The relatively short isotropisation

time scale found for γ = 1.1 and 4.9 is comparable with other time scales relevant to NIW

dynamics, such as the vertical propagation time scale (see Ref. 19) – a phenomenon absent

here because of the simplified reduced-gravity shallow-water setup – or the β-dispersion time
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scale |k|/β.

IV. APPLICATIONS

We now consider two physical scenarios in which scattering plays an important role.

Scattering has the most dramatic impact on waves that would be unidirectional in the

absence of flow, as it then leads to dispersion in multiple directions instead. Examples of

such waves in the ocean are inertial waves propagating equatorward due to the β-effect, and

inertial waves generated by a moving cyclone. We examine these two types of waves in what

follows, using simulations of a reduced gravity shallow-water model of the mixed-layer (cf.

Ref. 20, section 4). This model reduces to the YBJ model of the previous sections when

the near-inertial and linear approximations are made. By relaxing these approximations, we

confirm the relevance of the theoretical results to the more realistic setup. We continue to

assume a time-independent flow, an assumption that should not alter the results provided

the flow evolves slowly enough.

A. Wavepacket on a β-plane

For large spatial and time scales, the β-effect associated with the earth’s curvature be-

comes important. As a result, waves develop a zonally banded structure characterized by

negative meridional wavenumbers and equatorward propagation, as described by a ray-

tracing (WKB) approximation. Such waves are ubiquitous in global simulations [30, 31] and

oceanic measurements [32]. Although this process is well understood in simple configurations

[33], the additional effect of a background flow remains, to our knowledge, unexplored. As

we shall see, this effect can, under some circumstances, strongly affect the wave properties.

We examine the propagation of a NIW packet in a region of strong geostrophic turbulence.

Taking the β-plane approximation f = f0 + βy with f0 = 1.16 · 10−4s−1 and β = 1.37 ·
10−11m−1s−1 (corresponding to a latitude of 53◦N), we carry out simulations of an unforced

problem, with initial conditions

(u, v, η)(x, y, t = 0) = (cos(l0y), ω sin(l0y)/f0, Hl0 sin(l0y)/f0)u0 e
−|x|2/(2L2),

that represent a Gaussian wavepacket satisfying the polarisation relations of inertia-gravity

waves. Here, (u, v) is the velocity field, η is the perturbation of the mixed-layer depth from
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its average value H = 50 m, l0 = −2π/(180 km) is the initial meridional wavenumber, and

ω =
√

f 2
0 + g′Hl20 ≃ 1.21 · 10−4 s−1, with g′ = 0.02m s−2, obeys the inertia-gravity-wave

dispersion relation. The other parameters are L = 710 km and u0 = 0.2 cm s−1, a value

small enough to ensure that the wave–wave interaction terms remain small; it could be

increased without affecting much the overall dynamics. Fig. 5a displays the initial zonal

wave velocity u(x, y, t = 0).

We compare the wave dynamics in a reference simulation without flow and in an ensemble

of 20 simulations with flows taken as realisations of a (time-independent) homogeneous and

isotropic Gaussian random process with Gaussian correlation function. The r.m.s. of the

vorticity field in these flows is ζrms = 2.6 ·10−6s−1, and the streamfunction correlation length

is 310 km. A 1000×1000 km close-up of the vorticity field in one flow realisation is displayed

in Fig. 5b.

Fig. 5c illustrates the wavepacket behaviour in the absence of flow by showing the kinetic

energy density after 30 days. As expected, the wavepacket drifts equatorward, by a distance

∆y ≃ −1100 km that can be estimated using ray tracing, while the wavenumber decreases

to −6.7 · 10−5m−1 to satisfy the dispersion relation. The picture changes considerably in

the presence of a flow. Fig. 5d shows the kinetic energy density averaged over the 20 flow

realisations; clearly, the wavepacket drifts more slowly equatorward while spreading out

more. Fig. 6 shows the zonal (panel a) and meridional (panel b) integrals of the kinetic

energy density in Fig. 5. The location of the wavepacket calculated from ray tracing is

indicated by a vertical line in panel b and matches closely the numerical simulation without

flow. The slowdown of the meridional drift and the increase spread in the presence of the

flow are evident. To quantify them we define the drift x̄ and spread σ of the wave kinetic

energy distribution E(x) from its first and second moments,

x̄ =

∫

xE(x) dx
∫

E(x) dx
and σ2 =

∫

|x− x̄|2E(x) dx
∫

E(x) dx
.

After 30 days, the average meridional drift in the simulations with flow is ȳ ≃ −650km,

much smaller than without flow. The spread with flow is about σ = 950 km, larger than

its initial value 710 km and the final value without flow, about 750 km. Results are more

dramatic for longer times, but our neglect of vertical propagation then becomes problematic.

The results detailed above are consistent with the scattering process described earlier in

the paper. Let us first note that the β-effect can be added to the YBJ equation (1) and
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FIG. 5. Wavepacket on a β-plane: (a) zonal velocity at the start of the simulations; (b) example

of the relative vorticity field (scaled by the Coriolis frequency f0) used in one of the twenty runs,

shown in a subdomain of size 1000 × 1000 km; (c) inertial kinetic energy after 30 days for the

simulation with no background flow; (d) inertial kinetic energy after 30 days averaged over 20 flow

realisations.

leads to the extra term iβyM on the left-hand side. This modifies the transport equation

(7) by adding a transport in spectral space with velocity −β in the l-direction,

∂tW + hk ·∇xW − β∂lW = LW − Σ(k)W, (44)

where k = (k, l). For brevity, we do not provide a derivation but refer the reader to the

general form of the transport equation for a dispersion relation that depends on both k and

x (Ref. 25, Eq. (1.1)). In the absence of a flow, the transport in spectral space is equivalent

to the evolution of the meridional wavenumber l(t) = l0 − βt in the WKB approximation.

Qualitatively, (44) implies an interplay between β-effect and scattering by the flow, the

former transferring energy to smaller meridional wavenumbers (larger in magnitude since
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FIG. 6. Horizontal kinetic energy of the wavepacket on a β-plane: (a) meridional average in the

simulation with no flow (solid line, see Fig. 5c) and in the 20 simulations with flow (dashed line, see

Fig. 5d), (b) same as (a) but with a zonal average instead. The black vertical line in (b) indicates

the location of the wavepacket as predicted by WKB theory.

they are negative), the latter redistributing energy between wavevectors of the same magni-

tude. This interpretation is confirmed by simulations. Fig. 7 shows the zonal velocity after

30 days without flow (panel a) and in one of the flow realisations (panel c), along with the

amplitude of the Fourier transform of u + iv (equivalent to |M̂ | for NIWs), without flow

(panel b), and averaged over the 20 simulations in the case with flow (panel d). Fig. 7d

shows that, as energy is transferred to smaller meridional wavenumbers due to the β-effect,

it is also transferred to other wavenumbers in a quasi-isotropic way. Because these two pro-

cesses are concurrent, the energy distribution in spectral space is much more complex than

the annulus obtained without β (Fig. 3h). Its shape is close to a circular arc with an energy

maximum at l(t) = l0 − βt and with a radius of curvature smaller than |l(t)|, reflecting the

scattering history. Note that the reason why neighbouring wavevectors are excited first, in

contrast with the simulation of Fig. 3 is the larger value of |l(t)|/kc, where kc is related to

the flow correlation length through kc = 2
√
2π/ℓc. Here, γ = 2(l(t)/kc)

2 is close to 34 after

30 days (i.e. waves have much smaller scales than the flow), a value much larger than the

value 1.1 used for Fig. 3.

As expected from the spectrum in Fig. 7d, the zonal velocity field (Fig. 7c) displays a

variety of wavelengths, with short waves at the front of the wavepacket and longer waves at
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FIG. 7. Wavepacket on a β-plane: zonal velocity (panels a, c) and amplitude of the Fourier

transform |û+ iv̂| (panels b,d) after 30 days in the simulations without (a, b) and with flow (c, d).

Panel c shows the zonal velocity in one particular flow realisation whereas panel d shows an average

over 20 simulations. Initially the Fourier transform is concentrated in a narrow region centered on

(k, l) = (0,−3.5 · 10−5) represented here by a white cross. The circle in panel d has a radius equal

to |l(30days)| = 6.7 · 10−5m−1 (see text).

the back, while the local wavevector is deflected from its initial North-South orientation into

a broad range of directions, causing the spreading of the wavepacket. We can verify that

the time scales associated with the β-effect and with scattering are comparable: the former

is l0/β = 29 days; the latter can be estimated by taking the wavenumber as l(t) = l0−βt to

find Σ−1 = 5 days and (Σ−λ′)−1 = 15 days for t = 0, and Σ−1 = 3 days and (Σ−λ′)−1 = 32

days for t = 30 days.
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B. Moving cyclone

A moving cyclone generates a wake of internal waves which is stationary in the cyclone

reference frame, much like the surface-wave wake generated by a moving ship. Due to

resonance, the most energetic waves to emerge are NIWs with a wavenumber k ∼ f0/U in the

direction of translation of the cyclone. Here, f0 and U are the Coriolis frequency and cyclone

translation speed. A typical value for U is 5 m s−1, giving a wavelength 2πU/f0 ∼ 300 km

at mid-latitudes, close to the most energetic scales in the ocean [34]. Moving cyclones have

been studied in detail both in the linear [35–37] and nonlinear contexts [38–43]. Importantly,

all these studies neglect the influence of a background flow by considering an ocean initially

at rest. Therefore, there is a clear need to analyse the propagation of cyclone-generated

NIWs in the presence of a turbulent flow.

Motivated by this, we examine shallow-water simulations of a moving cyclone in 20 real-

isations of the random flow used in the previous section (ζrms = 2.6 · 10−6 s−1, ℓc = 310 km)

and, for comparison, one simulation without any flow. In our simulations, the cyclone is rep-

resented by a wind stress of the form τ = τθ(r)eθ in a polar coordinates system translating

steadily in the eastward direction. The radial profile of the wind stress is

τθ(r) =



















τmaxr/R for r < R

τmax(1.2− 0.2r/R) for R ≤ r ≤ 6R

0 for r > 6R

(see Ref. 44). The cyclone translation speed is U = 2ms−1 and the radius of maximum

stress is R = 75 km, making this a relatively wide and slow-moving cyclone. The stress

field described above is applied homogeneously throughout the top layer as a body force

τ/(ρ0H), where H = 100 m is the average mixed layer depth and ρ0 = 1025 kgm−3 is a

reference density. To avoid spurious wave emission, τmax is progressively increased from zero

to the value τmax = 0.75Nm−2 (corresponding roughly to 90 km/h winds) during the first

two days, and damped after 16 days, before the cyclone, which originates from the western

boundary of the domain, hits the eastern boundary. The Coriolis frequency is taken as

f0 = 7 · 10−5 s−1, corresponding to a latitude of 30◦N; the β effect is neglected for simplicity.

Finally, we take g′ = 0.01m s−2, giving the same short-wave speed c = (g′H)1/2 = 1m s−1

as in the previous section.

Fig. 8 shows the NIW velocity – extracted from the total velocity field using a time
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FIG. 8. NIWs generated by a moving cyclone: near-inertial zonal velocity (panels a, c) and

amplitude of the Fourier transform |û+ iv̂| (panels b, d) after 25 days in the simulations without

(panels a, b) and with flow (panels c,d). Panel c shows the field in one flow realisation, whereas

panel d shows an average over 20 flow realisations. The dispersion relation (U2− c2)k2 = f2
0 + c2l2

and isotropic circle k2+l2 = f2
0 /(U

2−c2) are indicated by solid lines in panels b and d, respectively.

filter – with and without flow, in physical and spectral spaces, after 25 days. Without flow,

the wave field generated by a moving cyclone is approximately stationary in the cyclone

frame (panel a). The weak North-South asymmetry arises from nonlinear effects, which

become significant for wind stresses larger than τmax = 0.75Nm−2. As time progresses,

NIWs spread laterally and the energy at y = 0 is significantly reduced. Fig. 8b show that

the waves follow the dispersion relation for stationary waves in the cyclone reference frame,

(Uk)2 = f 2
0 + c2(k2 + l2) (solid lines, see Ref. 36); the energy is concentrated on one branch

of the dispersion relation, which can be explained by the anticyclonic rotation rate of NIWs.

Note that the energy is not distributed evenly along the dispersion curve: it is maximum
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FIG. 9. NIWs generated by a moving cyclone: zonal average of the NIW horizontal kinetic energy

in the simulation with no flow (plain line, see Fig. 8c) and the 20 simulations with flow (dashed

line) after 25 days.

at (k, l) ∼ (kG, 0), where kG = f0/(U
2 − c2)1/2 is the Geisler wavenumber [35] (for c ≪ U ,

kG ∼ f0/U). Some energy is also present at smaller wavenumbers, possibly due to filtering

errors.

The NIWs are significantly affected by the presence of a flow. In particular, they display

small-scale variability in the y-direction (Fig. 8c), with a velocity field that is reminiscent

of Figs. 3g and 7c. The magnitude of the Fourier transform |û + iv̂| averaged over the

simulations with flow is illuminating (Fig. 8d): the energy appears to have spread partially

along a circle of radius kG, although a maximum is still present at (kG, 0). The relatively

broad structure of energy along the isotropic circle (k2 + l2 = k2G) stems from nonlinear

interactions (not taken into account in the theory): experiences with smaller τmax have a

more concentrated NIW energy distribution (not shown).

The results described above can be interpreted in the light of the scattering theory. The

scattering and isotropisation time-scales calculated from the flow characteristics and the

Geisler wavenumber are respectively 4 and 23 days, of the order of the simulations length.

A notable consequence of the (partial) isotropisation process is the acceleration of the lateral

dispersion of NIW energy, as illustrated in Fig. 9: the flow deflects waves from their mainly

zonal path (Figs. 8a,b), so that they propagate with a finite angle θ = tan−1(l/k) with the
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x-axis (Figs. 8c,d). As a consequence, energy is transported faster away from the centre of

the domain y = 0.

V. DISCUSSION

In this paper, we examine the impact of a complex, turbulent flow on the propagation

of wind-driven near-inertial oceanic waves. We focus on the distinguished regime in which

the spatial scale of the flow is comparable to the typical wavelengths. NIWs in this regime

are well described by the asymptotic model due to Young and Ben Jelloul [19] on which

our analysis relies. Further simplifications arise from two assumptions made on the flow:

first, that its effect is weak compared to dispersion, and second that it can be modelled by

a homogeneous stationary random process. With these assumptions, a transport equation

governing the energy transfers in physical and spectral spaces is derived, following the general

treatment of Ryzhik et al. [25]. This equation describes, in particular, the scattering effect of

the flow, which redistributes energy along constant-wavenumber circles in spectral space. For

isotropic flows, this ultimately leads to an isotropic wave field, with a scale that is essentially

the same as the initial scale. Thus, in the regime considered, dispersion strongly inhibits the

cascade to small scales that refraction and advection by the flow can induce. Two time scales

are relevant to the scattering process: the first estimates the time necessary for scattering

to be significant, the second the time to achieve isotropisation. Explicit expressions are

available for both, with asymptotic expressions showing that they can be very different.

The theoretical results based on the transport equation derived from the YBJ model

are shown to be relevant to the full shallow-water model in two applications. The first is

motivated by the observed equatorward propagation of NIWs due to the β-effect, the second

by the generation of mesoscale NIWs in the wake of moving cyclones. In both cases, the

isotropisation caused by scattering strongly affects the wave field.

While our work is focussed on NIWs, it can be placed in the more general context of wave–

potential-vorticity (PV) interaction. In particular, it is related to work by Lelong and Riley

[45], Bartello [46] and Ward and Dewar [47] who consider the triadic interactions between

the normal modes of the linear equations, namely internal (or inertia-gravity) waves and

the PV (or vortical) mode. One of the four triadic interactions identified involves a wave-

wave-PV resonant triad in which the PV mode, although unaffected, acts as a catalyst for
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energy transfers between two indentical-frequency waves. This is precisely the interaction

that our transport equation captures. We note that this transport equation is derived under

the assumption of a given flow, that is, a (possibly time-dependent) PV mode determined a

priori; the weakly nonlinear approach of [45–47] makes no such assumption but nonetheless

leads to nearly constant PV modes as a result of PV conservation.

The most important feature of the interactions between wave modes catalysed by the

flow is that it leads to energy exchanges between waves with the same frequency – circles

in Fourier space for the shallow-water model of the present paper and of [47], cones for

the continuously stratified models of [45, 46]. Our assumption of a flow well modelled by

a homogeneous random process makes it possible to quantify these exchanges (see Müller

and Xu [48] for the derivation of a transport equation relevant in the presence of a random

topography). One possible extension beyond the near-inertial regime could be to internal

tides, following from the recent simulations of Ponte and Klein [49] which show the emergence

of spatially complex tidal signal in the presence of a turbulent flow.

We finally note that our conclusion of a relaxation to an isotropic stationary wave-energy

distribution – corresponding to a uniform energy along constant-frequency curves (circles)

in Fourier space – applies to the shallow-water model but not to the continuously strati-

fied models: for these, the constant-frequency surfaces (cones) are non-compact, and it is

therefore impossible for a finite wave energy to relax to a uniform distribution. It would

be desirable to obtain the transport equation corresponding to these models and study the

associated scattering. We leave this for future work.
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Appendix A: Derivation of the transport equation

In this Appendix, we derive a transport equation for the Wigner function associated with

NIWs following [25]. This is achieved by assuming a separation between the (small) scale of

variation of the phase of the NIWs and the (large) scale of variation of their envelope. The

ratio of these two scales is the small parameter ǫ ≪ 1. Another key assumption is that the

background flow varies on the same scale as the NIW phase.
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1. Scaled YBJ equation and Wigner function

Because we assume that the NIW amplitude varies on the large scale L, it is clear from

(4) that the leading-order Wigner function depends on the large scale only. Therefore, it is

natural to work with the dimensionless spatial variable x′ = x/L. We emphasise that this

is just a convenient change of coordinate which does not imply that M varies on the large

scale; indeed with this choice, |∇x′M | = O(ǫ−1). We assume the scaling Ψ/h = O(ǫ1/2) for

the streamfunction of the background flow and, correspondingly, introduce the dimensionless

streamfunction ψ′ = ǫ−1/2ψ/h. This varies over the short spatial scale ℓ and thus should be

regarded as a function of ξ = ǫ−1x′ = x/ℓ: ψ = ψ(ξ, t). Introducing the non-dimensional

time t′ = ht/(ǫL2), we rewrite (1) in non-dimensional form

∂tM + ǫ1/2∇⊥
ξ ψ ·∇xM − ǫ

i

2
∆xM + iǫ−1/2∆ξψ

2
M = 0, (A1)

where primes have been omitted and the streamfunction is assumed to vary over the same

slow time scale ǫL2/h = Lℓ/h as the Wigner function. The correct scaling for the Wigner

function in the scale-separation regime is

W ǫ(x,k, t) = ǫ−2W (x,k/ǫ, t) =
1

4π2

∫

eik·yM(x− ǫy/2, t)M∗(x+ ǫy/2, t) dy. (A2)

Note the interesting dual property

W ǫ(x,k, t) = ǫ−2

∫

eip·xM̃(−ǫ−1k − p/2, t)M̃∗(−ǫ−1k + p/2, t) dp, (A3)

where

M̃(p, t) =
1

4π2

∫

eip·xM(x, t) dx (A4)

is the Fourier transform of M with respect to x at wavevector p.
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2. Evolution equation for the Wigner function

Differentiating (A2) with respect to t and using (A1) yields, after some manipulations

involving (A3),

∂tW
ǫ +

ǫ1/2

2
∇x ·

∫

v̂(l)e−iǫ−1l·x[W ǫ(x,k + l/2) +W ǫ(x,k − l/2)] dl

+ iǫ−1/2k ·
∫

v̂(l)e−iǫ−1l·x[W ǫ(x,k + l/2)−W ǫ(x,k − l/2)] dl

+ k ·∇xW
ǫ

+ i
ǫ−1/2

2

∫

−|l|2ψ̂(l)e−iǫ−1l·x[W ǫ(x,k + l/2)−W ǫ(x,k − l/2)] dl = 0,

(A5)

where v̂ is the Fourier transform of the velocity v(ξ, t) ≡ ∇
⊥
ξ ψ, i.e.

v̂(l) =
1

4π2

∫

eil·ξv(ξ, t) dξ, (A6)

and similarly ψ̂ is the Fourier transform of ψ with respect to ξ. The dependence of W ǫ, v̂

and ψ̂ on time has been omitted for clarity. We stress that the streamfunction, hence the

velocity, depend on the slow time variable t, not the fast time t/ǫ associated with the wave

frequency. This assumption justifies the expansion (A9) below.

Eq. (A5) can be rewritten as

∂tW
ǫ + k ·∇xW

ǫ + ǫ−1/2LǫW ǫ

+
ǫ1/2

2

∫

v̂(l)e−iǫ−1l·x ·∇x[W
ǫ(x,k + l/2) +W ǫ(x,k − l/2)] dl = 0,

(A7)

where

LǫW ǫ = i

∫

V̂ (k, l)e−iǫ−1l·x[W ǫ(x,k + l/2)−W ǫ(x,k − l/2)] dl

is the sum of the third and fifth terms of equation (A5). The potential V is defined through

its Fourier transform

V̂ (k, l) = k · v̂(l)− |l|2ψ̂(l)/2 = (ik × l− |l|2/2)ψ̂(l), (A8)

with k × l = k1l2 − k2l1 for k = (k1, k2) and l = (l1, l2). Note that (A7) makes use of the

non-divergence of the background flow velocity ∇ξ · v = 0.
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3. Asymptotic expansion, random flow and transport equation

We can now derive a transport equation from (A7) using a multiscale approach that

treats x and ξ as independent variables,: expanding W ǫ in powers of ǫ1/2 and assuming that

the leading order does not depend on the small scale, we write

W ǫ(x, ξ,k, t) =W (0)(x,k, t) + ǫ1/2W (1)(x, ξ,k, t) + ǫW (2)(x, ξ,k, t) +O(ǫ3/2). (A9)

At order ǫ−1/2, we find the same balance as in Ref. 25,

k ·∇ξW
(1) + θW (1) = −LǫW (0), (A10)

where θ is a regularization parameter which will be set to zero later. The solution is easily

obtained in Fourier space as

Ŵ (1)(x,p,k, t) = V̂ (k,p)Ŷ (x,p,k, t), (A11)

where Ŵ (1) is the Fourier transform of W (1) with respect to ξ and

Ŷ (x,p,k, t) =
W (0)(x,k + p/2, t)−W (0)(x,k − p/2, t)

k · p+ iθ
. (A12)

At the next order, O(ǫ0), we find

∂tW
(0) + k ·∇xW

(0) + k ·∇ξW
(2) + LǫW (1)

+
1

2

∫

e−iǫ−1l·xv̂(l) ·∇ξ[W
(1)(x, ξ,k + l/2, t) +W (1)(x, ξ,k − l/2, t)] dl = 0 (A13)

We now introduce the statistical average 〈·〉. It can be thought as an ensemble average

or, equivalently, as an average over ξ. Assuming that the flow is homogeneous, we define

the covariance R of the streamfunction as

R(ξ − ξ′) = 〈ψ(ξ)ψ(ξ′)〉. (A14)

Its Fourier transform with respect to ξ, the power spectrum, is related to ψ̂ through

〈ψ̂(l)ψ̂(l′)〉 = R̂(l)δ(l + l′), (A15)

where δ is the Dirac distribution.
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Averaging (A13) and assuming that the small-scale average of the Wigner function is

supported by W (0), i.e. 〈W ǫ〉 = 〈W (0)〉, leads to

∂tW
(0) + k ·∇xW

(0) + 〈LǫW (1)〉

+ 〈 1

2

∫

e−iǫ−1l·xv̂(l) ·∇ξ[W
(1)(x, ξ,k + l/2, t) +W (1)(x, ξ,k− l/2, t)] dl 〉 = 0, (A16)

since 〈∇ξW
(2)〉 = 0 and 〈W (0)〉 = W (0).

Using (A11) and (A12), it can be shown that the last term of (A16) is equal to

1

2

∫∫

e−iǫ−1(l+l′)·xl′ × l [i(k + l/2)× l′ − |l′|2/2]〈ψ̂(l)ψ̂(l′)〉Ŷ (x, l′,k + l/2, t) dldl′

+
1

2

∫∫

e−iǫ−1(l+l′)·xl′ × l [i(k − l/2)× l′ − |l′|2/2]〈ψ̂(l)ψ̂(l′)〉Ŷ (x, l′,k − l/2, t) dldl′,

which, from (A15), clearly vanishes. Hence the transport equation for W (0) reduces to

∂tW
(0) + k ·∇xW

(0) = LǫW (0), (A17)

where

LǫW (0) = 4π

∫

[|k × p|2 + |p− k|4/4]R̂(p− k)δ(k2 − p2)
(

W (0)(x,p, t)−W (0)(x,k, t)
)

dp

(A18)

is obtained from 〈LǫW (1)〉 in (A16) using (A11), (A12), (A15) and setting θ → 0 (see Ref.

25). Eq. (A18) involves two terms: the first, proportional to |p− k|4/4 is due to refraction

and is the only one present for the Schrödinger equation [25]; the second, proportional to

|k × p|2, appears as a result of advection. The total scattering cross-section is

Σ = 4π

∫

[(k × p)2 + |p− k|4/4]R̂(p− k)δ(k2 − p2) dp.

Note that (7) is the dimensional version of (A17).

Appendix B: Eigenvalues of L for |k| ≫ kc

We approximate the eigenvalues λn (see (19)) for |k| ≫ kc. Because σ′(|k|, θ) =

σ′(|k|,−θ), λn is equal to

λn =
8π|k|4A

h

∫ π

−π

sin2(θ/2) exp(−γ sin2(θ/2) + inθ) dθ, (B1)

where γ = 2|k|2/k2c and we have used R̂(|p|) = A exp(−|p|2/(2k2c)) in (B1). We describe in

B 1 the steepest-descent method used to approximate (B1) for finite n/γ; an approximation

for small n is derived in B 2 by Laplace’s method.
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1. Uniform approximation

We derive an approximation valid uniformly for n = O(1) and n = O(γ) ≫ 1 by writing

n = γm. Eq. (B1) then becomes

λn =
16π|k|4A

h

∫ π/2

−π/2

sin2 θ exp(−γg(θ)) dθ, (B2)

where g(θ) = sin2 θ − 2imθ. Because γ ≫ 1 in the regime considered here, the integral is

dominated by the contribution of the integrand at the critical points of g(θ), and a steepest-

descent method may be applied. Solving g′(θ) = 0 gives one single critical point

θ∗ = i/2 sinh−1(2m) ∈ iR. (B3)

Because g′′(θ∗) = 2 cos(2θ∗) > 0, one can change the path of integration in (B2) from the

real-axis segment [−π/2, π/2] to a curve C in the complex plan with the same end points

and passing through θ∗, where it crosses the imaginary axis orthogonally. Eq. (B2) then

becomes approximately

λn ≃16π|k|4A
h

exp(−γg(θ∗))
∫

C

dθ sin2 θ

× exp

(

−γ g
′′(θ∗)

2
(θ − θ∗)2 − γ

g(3)(θ∗)

6
(θ − θ∗)3 − γ

g(4)(θ∗)

24
(θ − θ∗)4

)

.

(B4)

It is important to keep all orders in the exponential up to (θ − θ∗)4 in order to calculate

the first-order correction to λn. Introducing the Taylor expansion

sin2 θ ≃ sin2 θ∗+sin(2θ∗)(θ−θ∗)+cos(2θ∗)(θ−θ∗)2− 2

3
sin(2θ∗)(θ−θ∗)3− 1

3
cos(2θ∗)(θ−θ∗)4

(B5)

into the integral (B4) and Taylor-expanding the exponential gives

λn ≃16π|k|4A
h

exp(−γg(θ∗))×
(

sin2 θ∗
∫

C

exp(−γ g
′′(θ∗)

2
(θ − θ∗)2) dθ

+ cos(2θ∗)

∫

C

(θ − θ∗)2 exp(−γ g
′′(θ∗)

2
(θ − θ∗)2) dθ

− γ

(

sin(2θ∗)
g(3)(θ∗)

6
+ sin2 θ∗

g(4)(θ∗)

24

)
∫

C

(θ − θ∗)4 exp(−γ g
′′(θ∗)

2
(θ − θ∗)2) dθ

+γ2 sin2 θ∗
(g(3)(θ∗))2

72

∫

C

(θ − θ∗)6 exp(−γ g
′′(θ∗)

2
(θ − θ∗)2) dθ

)

.

(B6)
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Note that we have discarded some terms in (B6) because they appear at a higher order in

γ−1. Moreover we have used symmetry properties to eliminate some integrals. The integrals

appearing in (B6) are standard and we obtain, for large γ,

λn ≃16π|k|4A
h

exp(−γg(θ∗))×
(

sin2 θ∗

√

2π

g′′(θ∗)
γ−1/2 + cos(2θ∗)

√
2π

g′′(θ∗)3/2
γ−3/2

−
(

sin(2θ∗)
g(3)(θ∗)

6
+ sin2 θ∗

g(4)(θ∗)

24

)

3
√
2π

g′′(θ∗)5/2
γ−3/2 + sin2 θ∗

15
√
2π(g(3)(θ∗))2

72g′′(θ∗)7/2
γ−3/2

)

.

(B7)

The presence of the last two terms in (B7), at the same order as the second term (proportional

to cos(2θ∗)), justifies a posteriori the Taylor expansion of g(θ) near θ∗ in the exponential in

(B4). Finally, using the value of θ∗ (B3) and some trigonometric identities yields (31).

2. Approximation for small n/γ

Eq. (B1) can be rewritten as

λn =
16π|k|4A

h

∫ π/2

−π/2

cos(2nθ) sin2 θ exp(−γ sin2 θ) dθ, (B8)

For large γ, this integral is dominated by the contribution of the integrand near θ = 0.

Therefore, we Taylor-expand there the various terms to obtain

λn ≃ 16π|k|4A
h

∫ π/2

−π/2

(1− 2n2θ2)(θ2 − θ4/3)(1 + γθ4/3) exp(−γθ2) dθ. (B9)

Re-arranging terms this becomes

λn ≃ 16π|k|4A
h

∫ π/2

−π/2

(

1− (2n2 + 1/3)θ2 + γθ4/3
)

θ2 exp(−γθ2) dθ, (B10)

and, on integrating,

λn ≃ 8π3/2|k|4A
h

γ−3/2
(

1 + γ−1(3/4− 3n2)
)

, (B11)

which yields (32).
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