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Abstract

The genomic evolution inherent to cancer relates directly to a renewed focus on the vo-
luminous next generation sequencing (NGS) data, and machine learning for the inference of
explanatory models of how the (epi)genomic events are choreographed in cancer initiation and
development. However, despite the increasing availability of multiple additional -omics data,
this quest has been frustrated by various theoretical and technical hurdles, mostly stemming
from the dramatic heterogeneity of the disease. In this paper, we build on our recent works
on “selective advantage” relation among driver mutations in cancer progression and investi-
gate its applicability to the modeling problem at the population level. Here, we introduce
PiCnIc (Pipeline for Cancer Inference), a versatile, modular and customizable pipeline to ex-
tract ensemble-level progression models from cross-sectional sequenced cancer genomes. The
pipeline has many translational implications as it combines state-of-the-art techniques for sam-
ple stratification, driver selection, identification of fitness-equivalent exclusive alterations and
progression model inference. We demonstrate PiCnIc’s ability to reproduce much of the current
knowledge on colorectal cancer progression, as well as to suggest novel experimentally verifiable
hypotheses.

Keywords: Cancer evolution; Selective advantage; Bayesian Structural Inference

Statement of significance: A causality based new machine learning Pipeline for Cancer Infer-
ence (PicNic) is introduced to infer the underlying somatic evolution of ensembles of tumors from
next generation sequencing data. PicNic combines techniques for sample stratification, driver selec-
tion and identification of fitness-equivalent exclusive alterations to exploit a novel algorithm based
on Suppes’ probabilistic causation. The accuracy and translational significance of the results are
studied in details, with an application to colorectal cancer. PicNic pipeline has been made publicly
accessible for reproducibility, interoperability and for future enhancements.

1 Introduction
Since the late seventies evolutionary dynamics, with its interplay between variation and selection,
has progressively provided the widely-accepted paradigm for the interpretation of cancer emergence
and development [1–3]. Random alterations of an organism’s (epi)genome can sometimes confer
a functional selective advantage1 to certain cells, in terms of adaptability and ability to survive
and proliferate. Since the consequent clonal expansions are naturally constrained by the avail-
ability of resources (metabolites, oxygen, etc.), further mutations in the emerging heterogeneous
tumor populations are necessary to provide additional fitness of different kinds that allow survival
and proliferation in the unstable micro environment. Such further advantageous mutations will
eventually allow some of their sub-clones to outgrow the competing cells, thus enhancing tumor’s
heterogeneity as well as its ability to overcome future limitations imposed by the rapidly exhaust-
ing resources. Competition, predation, parasitism and cooperation have been in fact theorized as
co-present among cancer clones [4].

In the well-known vision of Hanahan and Weinberg [5, 6], the phenotypic stages that charac-
terize this multistep evolutionary process are called hallmarks. These can be acquired by cancer
cells in many possible alternative ways, as a result of a complex biological interplay at several
spatio-temporal scales that is still only partially deciphered [7]. In this framework, we distinguish

1For this and other technical terms commonly used in the statistics and cancer biology communities we provide
a Glossary in the Supplementary Material.
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“alterations” driving the hallmark acquisition process (i.e., drivers) by activating oncogenes or in-
activating tumor suppressor genes, from those that are transferred to sub-clones without increasing
their fitness (i.e., passengers) [8]. Driver identification is a modern challenge of cancer biology, as
distinct cancer types exhibit very different combinations of drivers, some cancers display mutations
in hundreds of genes [9], and the majority of drivers is mutated at low frequencies (“long tail”
distribution), hindering their detection only from the statistics of the recurrence at the population-
level [10].

Cancer clones harbour distinct types of alterations. The somatic (or genetic) ones involve
either few nucleotides or larger chromosomal regions. They are usually catalogued as mutations
- i.e., single nucleotide or structural variants at multiple scales (insertions, deletions, inversions,
translocations) – of which only some are detectable as Copy Number Alterations (CNAs), most
prevalent in many tumor types [11]. Also epigenetic alterations, such as DNA methylation and
chromatin reorganization, play a key role in the process [12]. The overall picture is confounded
by factors such as genetic instability [13], tumor-microenvironment interplay [14, 15], and by the
influence of spatial organization and tissue specificity on tumor development [16]2.

Significantly, in many cases, distinct driver alterations can damage in a similar way the same
functional pathway, leading to the acquisition of new hallmarks [17–21]. Such alterations individu-
ally provide an equivalent fitness gain to cancer cells, as any additional alteration hitting the same
pathway would provide no further selective advantage. This dynamic results in groups of driver
alterations that form mutually exclusive patterns across tumor samples from different patients (i.e.,
the sets of alterations that are involved in the same pathways tend not to occur mutated together).
This phenomenon has significant translational consequences.

An immediate challenge posed by this state of affairs is the dramatic heterogeneity of cancer, both
at the inter-tumor and at the intra-tumor levels [22]. The former manifests as different patients with
the same cancer type can display few common alterations. This obsersvation led to the development
of techniques to stratify tumors into subtypes with different genomic signatures, prognoses and
response to therapy [23]. The latter form of heterogeneity refers to the observed genotypic and
phenotypic variability among the cancer cells within a single neoplastic lesion, characterized by the
coexistence of more than one cancer clones with distinct evolutionary histories [24].

Cancer heterogeneity poses a serious problem from the diagnostic and therapeutic perspective
as, for instance, it is now acknowledged that a single biopsy might not be representative of other
parts of the tumor, hindering the problem of devising effective treatment strategies [4]. Therefore,
presently the quest for an extensive etiology of cancer heterogeneity and for the identification of
cancer evolutionary trajectories is central to cancer research, which attempts to exploit the massive
amount of sequencing data available through public projects such as The Cancer Genome Atlas
(TCGA) [25].

Such projects involve an increasing number of cross-sectional (epi)genomic profiles collected via
single biopsies of patients with various cancer types, which might be used to extract trends of cancer
evolution across a population of samples3. Higher resolution data such as multiple samples collected
from the same tumor [24], as well as single-cell sequencing data [26], might be complementarily
used to face the same problem within a specific patient. However, the lack of public data coupled

2We mention that much attention has been recently casted on newly discovered cancer genes affecting global
processes that are apparently not directly related to cancer development, such as cell signaling, chromatin and
epigenomic regulation, RNA splicing, protein homeostasis, metabolism and lineage maturation [10].

3At the time of this writing, in TCGA, sample sizes per cancer type are in the order of a few hundreds. Such
numbers are expected to increase in the near future, with a clear benefit for all the statistical approaches to analyze
cancer data which currently lack a proper background of data.
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to the problems of accuracy and reliability, currently prevents a straightforward application [27].
These different perspectives lead to the different mathematical formulations of the problem of

inferring a cancer progression model from genomic data, and a need for versatile computational tools
to analyze data reproducibly – two intertwined issues examined at length in this paper [28]. Indeed,
such models and tools can be focused either on characteristics of a population, i.e. ensemble-level,
or on multiple clonality in a single-patient. In general, both problems deal with understanding the
temporal ordering of somatic alterations accumulating during cancer evolution, but use orthogonal
perspectives and different input data – see Figure 1 for a comparison. This paper proposes a
new computational approach to efficiently deal with various aspects of the problem at a patient
population level, relegating the other aspects to future publications.

Ensemble-level cancer evolution. It is thus desirable to extract a probabilistic graphical model
explaining the statistical trend of accumulation of somatic alterations in a population of n cross-
sectional samples collected from patients diagnosed with a specific cancer. To normalize against
the experimental conditions in which tumors are sampled, we only consider the list of alterations
detected per sample – thus, as 0/1 Bernoulli random variables.

Much of the difficulty lies in estimating the true and unknown trends of selective advantage
among genomic alterations in the data, from such observations. This hurdle is not unsurmountable,
if we constrain the scope to only those alterations that are persistent across tumor evolution in all
sub-clonal populations, since it yields a consistent model of a temporal ordering of mutations.
Therefore, epigenetic and trascriptomic states, such as hyper and hypo-methylations or over and
under expression, could only be used, provided that they are persistent through tumor development
[29].

Historically, the linear model of colorectal tumor progression by Vogelstein is an instance of
an early solution to the cancer progression problem [30]. That approach was later generalized to
accommodate tree-models of branched evolution [31–34] and later, further generalized to the infer-
ence of directed acyclic graph models, with several distinct strategies [35–38]. We contributed to
this research program with the Cancer Progression Extraction with Single Edges (CAPRESE) and the
Cancer Progression Inference (CAPRI) algorithms, which are currently implemented in TRONCO, an
open source R package for Translational Oncology available in standard repositories [39–41]. Both
techniques rely on Suppes’ theory of probabilistic causation to define estimators of selective advan-
tage [42], are robust to the presence of noise in the data and perform well even with limited sample
sizes. The former algorithm exploits shrinkage-like statistics to extract a tree model of progression,
the latter combines bootstrap and maximum likelihood estimation with regularization to extract
general directed acyclic graphs that capture branched, independent and confluent evolution. Both
algorithms represent the current state-of-the-art approach to this problem, as they outperform
others in speed, scale and predictive accuracy.

Clonal architecture in individual patients. A closely related problem addresses the detection
of clonal signatures and their prevalence in individual tumors, a problem complicated by intra-tumor
heterogeneity.

Even though this phylogenetic version of the progression inference problem naturally relies on
data produced from single-cell sequencing assays [43,44], the majority of approaches still make use
of bulk sequencing data, usually from multiple biopsies of the same tumors [24,45]. Indeed, several
approaches try to extract the clonal signature of single tumors from allelic imbalance proportions,
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a problem made difficult as sequenced samples usually contain a large number of cells belonging to
a collection of sub-clones resulting from the complex evolutionary history of the tumor [46–55].

We keep the current work focused on the inference of progression models at the ensemble level,
and plan to return to this variant to the problem in another publication.

2 The PicNic pipeline
We report on the design, development and evaluation of the Pipeline for Cancer Inference (PicNic)
to extract ensemble-level cancer progression models from cross-sectional data (Figure 1). PicNic
is versatile, modular and customizable; it exploits state-of-the-art data processing and machine
learning tools to:

1. identify tumor subtypes and then in each subtype;

2. select (epi)genomic events relevant to the progression;

3. identify groups of events that are likely to be observed as mutually exclusive;

4. infer progression models from groups and related data, and annotate them with associated
statistical confidence.

All these steps are necessary to minimize the confounding effects of inter-tumor heterogeneity, which
are likely to lead to wrong results when data is not appropriately pre-processed4.

In each stage of PicNic different techniques can be employed, alternatively or jointly, according
to specific research goals, input data, and cancer type. Prior knowledge can be easily accommo-
dated into our pipeline, as well as the computational tools discussed in the next subsections and
summarized in Figure 2. The rationale is similar in spirit to workflows implemented by consortia
such as TCGA to analyze huge populations of cancer samples [56, 57]. One of the main novelties
of our approach, is the exploitation of groups of exclusive alterations as a proxy to detect fitness-
equivalent trajectories of cancer progression. This strategy is only feasible by the hypothesis-testing
features of the recently developed CAPRI algorithm, an algorithm uniquely addressing this crucial
aspect of the ensemble-level progression inference problem [40].

In the Results section, we study in details a specific use-case for the pipeline, processing colorectal
cancer data from TCGA, where it is able to re-discover much of the existing body of knowledge
about colorectal cancer progression. Based on the output of this pipeline, we also propose novel
experimentally-verifiable hypotheses.

2.1 Reducing inter-tumor heterogeneity by cohort subtyping
In general, for each of n tumors (patients) we assume relevant (epi)genetic data to be available. We
do not put constraints on data gathering and selection, leaving the user to decide the appropriate
“resolution” of the input data. For instance, one might decide whether somatic mutations should
be classified by type or by location, or aggregated. Or, one might decide to lift focal CNAs to

4The genuine selectivity relationship sought to be inferred are subject to the vagaries of Simpson’s paradox; it
can change, or worst reverse, when we try to infer them from data not suitably pre-processed. This effect (due to
such paradox) manifests as data are sampled from a highly heterogenous mixture of populations of cells [40]. PiCnIc
uses various mechanisms to avoid these pitfalls. In this context, it should be pointed out that input bulk sequencing
data suffers also from intra-tumor heterogeneity issues, which are unfortunately intrinsic to the technology.
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the lower resolution of cytobands or full arms (e.g., in a kidney cancer cohort where very long
CNAs are more common than focal events [58]). These choices depend on data and on the overall
understanding of such alterations and their functional effects for the cancer under study, and no
single all-encompassing rationale may be provided.

With these data at hand, we might wish to identify cancer subtypes in the heterogeneous mixture
of input samples. In some cases the classification can benefit from clinical biomarkers, such as
evidences of certain cell types [59], but in most cases we will have to rely on multiple clustering
techniques at once, see, e.g., [56,57]. Many common approaches cluster expression profiles [60], often
relying on non-negative matrix factorization techniques [61] or earlier approaches such as k-means,
Gaussians mixtures or hierarchical/spectral clustering - see the review in [62]. For glioblastoma
and breast cancer, for instance, mRNA expression subtypes provides good correlation with clinical
phenotypes [63–65]. However, this is not always the case as, e.g., in colorectal cancer such clusters
mismatch with survival and chemotherapy response [63]. Clustering of full exome mutation profiles
or smaller panels of genes might be an alternative as it was shown for ovarian, uterine and lung
cancers [66,67].

Using pipelines such as PicNic, we expect that the resulting subtypes will be routinely in-
vestigated, eventually leading to distinct progression models, which shall be characteristic of the
population-level trends of cancer initiation and progression.

2.2 Selection of driver events
In subtypes detection, it becomes easier to find similarities across input samples when more al-
terations are available, as features selection gains precision. In progression inference, instead, one
wishes to focus on m � n driver alterations, which ensure also an appropriate statistical ratio
between sample size (n, here the subtype size) and problem dimension (m).

Multiple tools filter out driver from passenger mutations. MutSigCV identifies drivers mutated
more frequently than background mutation rate [68]. OncodriveFM avoids such estimation but
looks for functional mutations [69]. OncodriveCLUST scans mutations clustering in small regions
of the protein sequence [70]. MuSiC uses multiple types of clinical data to establish correlations
among mutation sites, genes and pathways [71]. Some other tools search for driver CNAs that affect
protein expression [72]. All these approaches use different statistical measures to estimate signs of
positive selection, and we suggest using them in an orchestrated way, as done by platforms such as
Intogen [73].

We anticipate that such tools will run independently on each subtype, as driver genes will likely
differ across them, mimicking the different molecular properties of each group of samples; also, lists
of genes produced by these tools might be augmented with prior knowledge about tumor suppressors
or oncogenes.

2.3 Fitness equivalence of exclusive alterations
When working at the ensemble-level, identification of “groups of mutually exclusive” alterations is
crucial to derive a correct inference. This step of PicNic is another attempt to resolve part of the
inter-tumor heterogeneity, as such alterations could lead to the same phenotype (i.e., hence resulting
“equivalent” in terms of progression), despite being genotypically “alternative”, i.e., exclusive, across
the input cohort. This information shall be used to detect alternative routes to cancer progression
which capture the specificities of individual patients.
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A plethora of recent tools can be used to detect groups of fitness equivalent alterations, according
to the data available for each subtype; greedy approaches [74, 75] or their optimizations, such as
MEMO, which constrain search-space with network priors [76]. This strategy is further improved
in MUTEX, which scans mutations and focal CNAs for genes with a common downstream effect
in a curated signalling network, and selects only those genes that significantly contributes to the
exclusivity pattern [77]. Other tools such as Dendrix, MDPFinder, Multi-Dendrix, CoMEt, MEGSA
or ME, employ advanced statistics or generative approaches without priors [78–83].

In such groups, we distinguish between hard and soft forms of exclusivity, the former assuming
strict exclusivity among alterations, with random errors accounting for possible overlaps (i.e., the
majority of samples do not share alterations from such groups), the latter admitting co-occurrences
(i.e., some samples might have common alterations, within a group) [77].

CAPRI is currently the only algorithm which incorporates this type of information, in inferring
a model. Each of these groups are in fact associated with a “testable hypothesis” written in the well-
known language of propositional Boolean formulas5. Consider the following example: we might be
informed that apc and ctnnb1 mutations show a trend of soft-exclusivity in our cohort – i.e., some
samples harbor both mutations, but the majority just one of the two mutated genes. Since such
mutations lead to β-catenin deregulation (the phenotype), we might wonder whether such state of
affairs could be responsible for progression initiation in the tumors under study. An affermative
response would equate, in terms of progression, the two mutations. To test this hypothesis, one may
spell out formula apc ∨ ctnnb1 to CAPRI, which means that we are suggesting to the inference
engine that, besides the possible evolutionary trajectories that might be inferred by looking at the
two mutations as independent, trajectories involving such a “composite” event, shall be considered
as well. It is then up to CAPRI to decide which, of all such trajectories, is significant, in a statistical
sense.

In general, formulas allow users to test general hypotheses about complex model structures
involving multiple genes and alterations. These are useful in many cases: for instance, where
we are processing samples which harbour homozygous losses or inactivating mutations in certain
genes (i.e., equally disruptive genomic events), or when we know in advance that certain genes are
controlling the same pathway, and we might speculate that a single hit in one of those decreases the
selection pressure on the others. We note that, with no hypothesis, a model with such alternative
trajectories cannot be analyzed, due to various computational limitations inherent to the inferential
algorithms (see [40]).

From a practical point of view, CAPRI’s formulas/hypotheses-testing features “help” the inference
process, but do not “force” it to select a specific model, i.e., the inference is not biased. In this
sense, the trajectories inferred by examining these composite model structures (i.e., the formulas)
are not given any statistical advantage for inclusion in the final model. However, in spite of a natural
temptation to generate as many hypotheses as possible, it is prudent to always limit the number
of hypotheses according to the number of samples and alterations. Note that this approach can
also be extended to accommodate, for instance, co-occurrent alterations in significantly mutated
subnetworks [84,85].

5There, logical connectives such as ⊕ (the logical “xor”) act as a proxy for hard-exclusivity, and ∨ (the logical
“disjunction”) for soft one. Besides from exclusivity groups, other connectives such as logical conjunction can be
used.
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2.4 Progression inference and confidence estimation
We use CAPRI to reconstruct cancer progression models of each identified molecular subtype, pro-
vided that there exist a reasonable list of driver events and the groups of fitness-equivalent exclusive
alterations. Since currently CAPRI represents the state of the art, and supports complex formulas
for groups of alterations detected in the earlier PicNic step, it was well-suited for the task.

CAPRI’s input is a binary n × (m + k) matrix M with n samples (a subtype size), m driver
alteration events (0/1 Bernoulli random variables) and k testable formulas. Each sample in M is
described by a binary sequence: the 1’s denote the presence of alterations. CAPRI first performs a
computationally fast scan of M to identify a set S of plausible selective advantage relations among
the driver alterations and the formulas; then, it reduces S to the most relevant ones, Ŝ ⊂ S Each
relation is represented as an edge connecting drivers/formulas in a Graphical Model – which shall be
termed Suppes-Bayes Causal Network. This network represents the joint probability distribution6 of
observing a set of driver alterations in a cancer genome, subject to constraints imposed by Suppes’
probabilistic causation formalism [42].

Set S is built by a statistical procedure. Among any pair of input drivers/formulas x and y,
CAPRI postulates that x→ y ∈ S could be a selective advantage relation with “x selecting for y” if
it estimates that two conditions hold

1. “x is earlier than y”;

2. “x’s presence increases the probability of observing y”.

Such claims, grounded in Suppes’ theory of probabilistic causation, are expressed as inequalities
over marginal and conditional distributions of x and y. These are assessed via a standard Mann-
Withney U test after the distributions are estimated from a reasonable number (e.g., 100) of non-
parametric bootstrap resamples of M (see Supplementary Material). CAPRI’s increased performance
over existing methods can be motivated by the reduction of the state space within which models
are searched, via S.

Optimization of S is central to our tolerance to false positives and negatives in Ŝ. We would like
to select only the minimum number of relations which are true and statistically supported, and build
our model from those. CAPRI’s implementation in TRONCO [41] selects a subset by optimizing a
score function which assigns to a model a real number equal to its log-likelihood (probability of
generating data for the model) minus a penalty term for model complexity – a regularization term
increasing with Ŝ’s size, and hence penalizing overly complex models. It is a standard approach to
avoid overfitting, and usually relies on the Akaike or the Bayesian Information Criterion (AIC or BIC)
as regularizers. Both scores are approximately correct; AIC is more prone to overfitting but likely
to provide also good predictions from data and is better when false negatives are more misleading
than positive ones. BIC is more prone to underfitting errors, thus more parsimonious and better

6Technically, for a set of m alterations modeled by variables x1, . . . ,xm, such a network is a Graphical Model
representing the factorization of the joint distribution – P(x1, . . . ,xm) – of observing any of the alterations in a
genome (i.e., xi = 1). This factorization is made compact as the model encodes the statistical dependencies in its
structure via

P(x1, . . . ,xm) =
m∏
i=1

P(xi | πi)

where πi = {xj | xj → xi ∈ Ŝ} are the “parents” of the i-th node. These are those from which the presence of the
i-th alteration is predicted. In our approach these edges are the pictorial representation of the selective advantage
relations where the alterations in πi select for xi.
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in opposite direction. As often done, we suggest approaches that to combine but distinguish which
relations are selected by BIC versus AIC. Details on the algorithm are provided as see Supplementary
Material.

Statistical confidence of a model. In-vitro and in-vivo experiments provide the most convinc-
ing validation for the newly suggested selective advantage relations and hypotheses, yet this is out
of reach in some cases.

Nonetheless, statistical validation approaches can be used almost universally to assess the con-
fidence of edges, parent sets and whole models, either via hypothesis-testing or bootstrap and cross-
validation scores for Graphical Models. We briefly discuss approaches that are implemented in
TRONCO, and refer to the Supplementary Materials for additional details.

First, CAPRI builds S by computing two p-values per edge, for the confidence in condition (1)
and (2). In addition, for each edge x → y, it computes a third p-value via hypergeometric testing
against the hypothesis that the co-occurrence of x and y is due to chance. These p-values measure
confidence in the direction of each edge and the amount of statistical dependence among x and y.

Second, for each model inferred with CAPRI we can estimate (a posteriori) how frequently our
edges would be retrieved if we resample from our data (non-parametric bootstrap), or from the
model itself, assuming its correctness (parametric bootstrap) [86]. Also, we can measure the bias
in CAPRI’s construction of S due to the random procedure which estimates the distributions in
condition (1) and (2) (statistical bootstrap).

Third, scores can be computed to quantify the consistency for the model against bias in the
data and models. For instance, non-exhaustive k-fold cross-validation can be used to compute the
entropy loss for the whole model, and the prediction and posterior classification errors for each edge
or parent set [87].

3 Results

3.1 Evolution in a population of MSI/MSS colorectal tumors.
It is common knowledge that colorectal cancer (CRC) is a heterogeneous disease comprising different
molecular entities. Indeed, it is currently accepted that colon tumors can be classified according
to their global genomic status into two main types: microsatellite unstable tumors (MSI), fur-
ther classified as high or low, and microsatellite stable (MSS) tumors (also known as tumors with
chromosomal instability). This taxonomy plays a significant role in determining pathologic, clinical
and biological characteristics of CRC tumors [88]. Regarding molecular progression, it is also well
established that each subtype arises from a distinctive molecular mechanism. While MSS tumors
generally follow the classical adenoma-to-carcinoma progression described in the seminal work by
Vogelstein and Fearon [89], MSI tumors result from the inactivation of DNA mismatch repair genes
like mlh-1 [90].

With the aid of the TRONCO package, we instantiated PicNic to process colorectal tumors
freely available through TCGA project COADREAD [56] (see Supplementary Figure S1), and in-
ferred models for the MSS and MSI-HIGH tumor subtypes (shortly denoted MSI) annotated by the
consortium. In doing so, we used a combination of background knowledge produced by TCGA and
new computational predictions; to a different degree, some knowledge comes from manual curation
of data and other from tools mentioned in PicNic’s description (see Figure 2). Data and exclusiv-
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ity groups for MSI tumors are shown in Figure 3, the analogous for MSS tumors is provided as
Supplementary Material.

For the models inferred, which are shown in Figures 4 and 5, we evaluated various forms of
statistical confidence measured as p-values, bootstrap scores (in what follows, npb denotes non-
parametric bootstrap and the closer to 100 the better), and cross-validation statistics reported
in the Supplementary Material. Many of the postulated selective advantage relations (i.e., model
edges) have very strong statistical support for COADREAD samples, although events with similar
marginal frequency may lead to ambiguous imputed temporal ordering (i.e., the edge direction). In
general, we observed that overall the estimates are slightly better in the MSS cohort (entropy loss
< 1% versus 3.8%), which is expected given the difference in sample size of the two datasets (152
versus 27 samples), see Material and Methods for details.

Interpretation of the models. Our models capture the well-known features distinguishing MSS
and MSI tumors: for the former apc, kras and tp53 mutations as primary events together with
chromosomal aberrations, for the latter braf mutations and lack of chromosomal alterations. Of all
33 driver genes, 15 are common to both models - e.g., apc, braf, kras, nras, tp53 and fam123b
among others (mapped to pathways like wnt, mapk, apoptosis or activation of T-cell lymphocites),
although in different relationships (position in the model), whereas new (previously un-implicated)
genes stood out from our analysis and deserve further research.

MSS (Microsatellite Stable). In agreement with the known literature, in addition to kras, tp53
and apc as primary events, we identify pten as a late event in the carcinogenesis, as well as
nras and kras converging in igf2 amplification, the former being “selected by” tp53 muta-
tions (npb 49%), the latter “selecting for” pik3ca mutations (npb 81%). The leftmost portion
of the model links many wnt genes, in agreement with the observation that multiple con-
current lesions affecting such pathway confer selective advantage. In this respect, our model
predicts multiple routes for the selection of alterations in sox9 gene, a transcription factor
known to be active in colon mucosa [91]. Its mutations are directly selected by apc/ctnnb1
alterations (though with low npb score), by arid1a (npb 34%) or by fbxw7 mutations (npb
49%), an early mutated gene that both directly, and in a redundant way via ctnnb1, relates
to sox9. The sox family of transcription factors have emerged as modulators of canoni-
cal wnt/β-catenin signaling in many disease contexts [92]. Also interestingly, fbxw7 has
been previously reported to be involved in the malignant transformation from adenoma to
carcinoma [93]. The rightmost part of the model involves genes from various pathways, and
outlines the relation between kras and the pi3k pathway. We indeed find selection of pik3ca
mutations by kras ones, as well as selection of the whole MEMO module (npb 64%), which is
responsible for the activation of the pi3k pathway [56]. smad4 proteins relate either to kras
(npb 34%), and fam123b (through atm) and tcf7l2 converge in dkk2 or dkk4 (npb 81, 17
and 34%).

MSI-HIGH (Microsatellite Unstable). In agreement with the current literature, braf is the most
commonly mutated gene in MSI tumors [94]. CAPRI predicted convergent evolution of tu-
mors harbouring fbxw7 or apc mutations towards deletions/mutations of nras gene (npb
21, 28 and 54%), as well as selection of smad2 or smad4 mutations by fam123b mutations
(npb 23 and 46%), for these tumors. Relevant to all MSI tumors seems again the role of
the pi3k pathway. Indeed, a relation among apc and pik3ca mutations was inferred (npb
66%), consistent with recent experimental evidences pointing at a synergistic role of these
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mutations, which co-occurr in the majority of human colorectal cancers [95]. Similarly, we
find consistently a selection trend among apc and the whole MEMO module (npb 48%). In-
terestingly, both mutations in apc and erbb3 select for kras mutations (npb 51 and 27%),
which might point to interesting therapeutic implications. In contrast, mutations in braf
mostly select for mutations in acvr1b (npb 36%), a receptor that once activated phospho-
rylates smad proteins. It forms receptor complex with acvr2a, a gene mutated in these
tumors that selects for tcf7l2 mutations (npb 34%). Tumors harbouring tp53 mutations
are those selected by mutations in axin2 (npb 32%), a gene implicated in wnt signalling
pathway, and related to unstable gastric cancer development [96]. Inactivating mutations in
this gene are important, as it provides serrated adenomas with a mutator phenotype in the
MSI tumorigenic pathway [97]. Thus, our results reinforce its putative role as driver gene in
these tumors.

By comparing these models we can find similarity in the prediction of a potential new early event
for CRC formation, fbxw7, as other authors have recently described [93]. This tumor suppressor
is frequently inactivated in human cancers, yet the molecular mechanism by which it exerts its
anti-tumor activity remains unexplained [98], and our models provide a new hypothesis in this
respect.

4 Discussion
This paper represents our continued exploration of the nature of somatic evolution in cancer, and
its translational exploitation through models of cancer progression, models of drug resistance (and
efficacy), left- and right-censoring, sample stratification, and therapy design. Thus this paper em-
phasizes the engineering and dissemination of production-quality computational tools as well as
validation of its applicability via use-cases carried out in collaboration with translational collabo-
rators: e.g., colorectal cancer, analyzed jointly with epidemiologists currently studying the disease
actively. As anticipated, we reasserted that the proposed model of somatic evolution in cancer not
only supports the heterogeneity seen in tumor population, but also suggests a selectivity/causality
relation that can be used in analyzing (epi)genomic data and exploited in therapy design – which we
introduced in our earlier works [39,40]. In this paper, we have introduced an open-source pipeline,
PicNic, which minimizes the confounding effects arising from inter-tumor heterogeneity, and we have
shown that PicNic can be effective in extracting ensemble-level evolutionary trajectories of cancer
progression.

When applied to a highly-heterogeneous cancer such as colorectal, PicNic was able to infer
the role of many known events in colorectal cancer progression (e.g., apc, kras or tp53 in MSS
tumors, and braf in MSI ones), confirming the validity of our approach7. Interestingly, new players
in CRC progression stand out from this analysis such as fbxw7 or axin2, which deserve further
investigation. In colon carcinogenesis, although each model identifies characteristic early mutations
suggesting different initiation events, both models appear to converge in common pathways and
functions such as wnt or mapk.

7As a further investigation for CRC, we leave as future work to check whether the inferred progression are also
representative of other subtyping strategies for colorectal cancer, with particular reference to recent works which
show marked interconnectivity between different independent classification systems coalescing into four consensus
molecular subtypes [99].
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However, both models have some clear distinctive features. Specific events in MSS include
mutations in intracellular genes like ctnnb1 or in pten, a well-known tumor suppressor gene. On
the contrary, specific mutations in MSI tumors appear in membrane receptors such as acvr1b,
acvr2a, erbb3, lrp5, tgfbr1 and tgfbr2, as well as in secreted proteins like igf2, possibly
suggesting that such tumors need to disturb cell-cell and/or cell-microenvironment communication
to grow. At the pathway level, genes exclusively appearing in the MSI progression model accumulate
in specific pathways such as cytokine-cytokine receptor, endocytosis and tgf-β signaling pathway.
On the other hand, genes in MSS progression model are implicated in p53, mTOR, sodium transport
or inositol phosphate metabolism.

Our study also highlighted the translational relevance of the models that we can produce with
PicNic (see Supplementary Figure S12). The evolutionary trajectories depicted by our models can,
for instance, suggest previously-uncharacterized phenotypes, help in finding biomarker molecules
predicting cancer progression and therapy response, explain drug resistant phenotypes and predict
metastatic outcomes. The logical structure of the formulas describing alterations with equivalent
fitness (i.e., the exclusivity group) can also point to novel targets of therapeutic interventions.
In fact, exclusivity groups that are found to have a role in the progression can be screened for
synthetic lethality among such genes – thus explaining why we do not observe phenotypes where
such alterations co-occur. In this sense, our models describe also such clonal signatures which,
though theoretically possible, are not selected. We call such conspicuously absent phenotypes anti-
hallmarks [100].

Our models have other applications to both computational and cancer research. Our models,
as encoded by Suppes-Bayes Causal Networks could be used as informative generative models for
the genomic profiles for the cancer patients. In fact, as known in machine learning, such generative
models are extremely useful in creating better representation of data in terms of, e.g., discriminative
kernels, such as Fisher [101]. In practice, this change of representations would allow framing common
classification problems in the domain of our generative structures, i.e., the models, rather than the
data. As a consequence, it is possible to create a new class of more robust classification and
prediction systems.

One may think of these representations as those bringing us closer to phenotypic (and causal)
representation of the patient’s tumor, replacing its genotypic (and mutational) representation. We
suspect that such representations will improve the accuracy of measurement of the biological clocks,
dysregulated in cancer and critically needed to be measured in order to predict survival time, time
to metastasis, time to evolution of drug resistance, etc. We believe that these “phenotypic clocks”
can be used immediately to direct the therapeutic intervention.

Clearly, applicability and reliability of techniques such as PicNic is very much dependent on
the background of data available. At the time of this writing, the quality, quantity and reliability
of (epi)genomic data available, e.g., in public databases, is related to the ever increasing com-
putational and technological improvements characterizing the wide area of cancer genomics. Of
similar importance is the availability of wet-lab technologies for models validation. Our recent work
on SubOptical Mapping technology, for instance, points to the ability to cheaply and accurately
characterize translocation, indels and epigenomic modifications at the single molecule and single
cell level [102, 103]. This technology also provides the ability to directly validate (or refute) the
hypotheses generated by PicNic via gene-correction and single cell perturbation approaches.

To conclude, the precision of any statistical inference technique, including PicNic, is influenced
by the quality, availability and idiosyncrasies of the input data – the goodness of the outcomes
improving along with the expected advancement in the field. Nevertheless, the strength of the
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proposed approach lies in the efficacy in managing possibly noisy/ biased or insufficient data, and
in proposing refutable hypotheses for experimental validation.

5 Materials and methods
Processing COADREAD samples with PiCnIc. We instantiated PicNic to process clinically
annotated high MSI-HIGH and MSS colorectal tumors collected from The Cancer Genome Atlas
project “Human Colon and Rectal Cancer” (COADREAD) [56] – see Supplementary Figure S1.
Details on the implementation and the source code to replicate this study are available as Supple-
mentary Material. COADREAD has enough samples, especially for MSS tumors, to implement a
consistent and significant statistical validation of our findings – see Supplementary Table S1.

In brief, we split subtypes by the microsatellite status of each tumor as annotated by the con-
sortium (so, step I of PicNic is done by exploiting background knowledge rather than computational
predictors). It should be expected that if this step is skipped or this classification is incorrect, the
resulting models would noticeably differ. Once split into groups, the input COADREAD data is
processed to maintain only samples for which both high-quality curated mutation and CNA data
are available; for CNAs we use focal high-level amplifications and homozygous deletions.

Then, for each sample we select only alterations (mutations/CNAs) from a list of 33 driver genes
manually annotated to 5 pathways in [56] - wnt, raf, tgf-β, pi3k and p53 (Supplementary Figures
S2 and S3). This list of drivers, step II of PicNic, is produced by TCGA, as a result of manual
curation and running MutSigCV.

In the next module of the pipeline, we fetch groups of exclusive alterations. We scanned these
groups by using the MUTEX tool (Supplementary Table S2), and merged its results with the
group that TCGA detected by using the MEMO tool, which involves mainly genes from the pi3k
pathway. Knowledge on the potential exclusivity among genes in the wnt (apc,ctnnb1) and raf
(kras,nras,braf) pathways was exploited as well. Groups were then used to create CAPRI’s
formulas; we also included hypotheses for genes which harbour mutations and homozygous deletions
across different samples, see Supplementary Table S3. Data and exclusivity groups for MSS tumors
are shown in Supplementary Figure S4 and S5.

CAPRI was run, as the last step of PicNic, on each subtype, by selecting recurrent alterations
from the pool of 33 pathway genes and using both AIC/BIC regularizer. Timings to run the relevant
steps of the pipeline are reported in the Supplementary Material. In the models of Figures 4 and
Figure 5 each edge mirrors selective advantage among the upstream and downstream nodes, as
estimated by CAPRI; Mann-Withney U test is carried out with statistical significance 0.05, after
100 non-parametric bootstrap iterations.

The significance of the reconstructed models and the input data is assessed by computing all the
statistics/tests discussed in the Main text (temporal priority, probability raising and hypergeometric
testing p-values, bootstrap and cross-validation scores). Motivation and background on each of
these measures is available in the Supplementary Materials. A table with their values for edges
with highest non-parametric bootstrap scores is in Supplementary Figure S8.

For the MSS cohort all the p-values are strongly significant (p�0.01) except for the temporal
priority of the edges connecting mutations in fam123b and atm, and erbb2 alterations (mutations
and amplifications), which leads us to conclude that, even if these pairs of genes seem to undergo
selective advantage, the temporal ordering of their occurrence is ambiguous and failed to be imputed
correctly from the datasets, analyzed here. The same situation occurs in MSI-HIGH tumors, for the
relation between kras and erbb3. Non-parametric and statistical bootstrap estimations are used

14



to assess the strength of all the findings (Supplementary Figures S6 and S7). Moreover, any bias
in the data is finally evaluated by cross-validation (Supplementary Figures S8-S11) and common
statistics such as entropy loss, posterior classification and prediction errors. In general, most of the
selective advantage relations depicted by the inferred models present a strong statistical support,
with the MSS cohort presenting the most reliable results.

Summary implementation for COADREAD (PicNic steps, Figure 2): (1) TCGA clinical classi-
fication, (2) MutSigCV and TCGA manual curation, (3) MEMO, MUTEX and knowledge of wnt
and raf pathways and (4) CAPRI.

Implement your own case study with PiCnIc/TRONCO. TRONCO started as a project
before PicNic, and is our effort at collecting, in a free R package, algorithms to infer progression
models from genomic data. In its current version it offers the implementation of the CAPRI
and CAPRESE algorithms, as well as a set of routines to pre-process genomic data. With the
invention of PicNic, it started accommodating software routines to easily interface CAPRI and
CAPRESE to some of the tools that we mention in Figure 2. In particular, in its current 2.0
version it supports input/output for the Matlab Network Based Stratification tool (NBS) and
the Java MUTEX tool, as well as the possibility to fetch data available from the cBioPortal for
Cancer Genomics (http://cbioportal.orghttp://cbioportal.org), which provides a Web resource
for exploring, visualizing, and analyzing multidimensional cancer genomics data.

We plan to extend TRONCO in the future to support other similar tools and become an integral
part of daily laboratory routines, thus facilitating application of PiCnIc to additional use cases.
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Figure 1: A. Problem statement. (left) Inference of ensemble-level cancer progression models from
a cohort of n independent patients (cross-sectional). By examining a list of somatic mutations or
CNAs per patient (0/1 variables) we infer a probabilistic graphical model of the temporal ordering
of fixation and accumulation of such alterations in the input cohort. Sample size and tumor het-
erogeneity complicate the problem of extracting population-level trends, as this requires accounting
for patients’ specificities such as multiple starting events. (right) For an individual tumor, its clonal
phylogeny and prevalence is usually inferred from multiple biopsies or single-cell sequencing data.
Phylogeny-tree reconstruction from an underlying statistical model of reads coverage or depths es-
timates alterations’ prevalence in each clone, as well as ancestry relations. This problem is mostly
worsened by the high intra-tumor heterogeneity and sequencing issues. B. The PiCnIc pipeline for
ensemble-level inference includes several sequential steps to reduce tumor heterogeneity, before ap-
plying the CAPRI [40] algorithm. Available mutation, expression or methylation data are first used
to stratify patients into distinct tumor molecular subtypes, usually by exploiting clustering tools.
Then, subtype-specific alterations driving cancer initiation and progression are identified with sta-
tistical tools and on the basis of prior knowledge. Next is the identification of the fitness-equivalent
groups of mutually exclusive alterations across the input population, again done with computa-
tional tools or biological priors. Finally, CAPRI processes a set of relevant alterations within such
groups. Via bootstrap and hypothesis-testing, CAPRI extracts a set of “selective advantage rela-
tions” among them, which is eventually narrowed down via maximum likelihood estimation with
regularization (with various scores). The ensemble-level progression model is obtained by combining
such relations in a graph, and its confidence is assessed via various bootstrap and cross-validation
techniques.
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* Data marked as ✗ can be used when it is persistent (i.e., do not revert back to their original state) during tumor progression. Other: data not common to most tumor types such as fusions or partial tandem duplication. 
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Figure 2: The PiCnIc pipeline. We do not provide a unique all-encompassing rationale to instantiate
PiCnIc as all steps refer to research area currently development, where the optimal approach is
often dependent on the type of data available and prior knowledge about the cancer under study.
References are provided for each tool that can be used to instantiate PiCnIc: NMF [61], k-Means,
Gaussian Mixtures, Hierarchical/Spectral Clustering [62], NBS [66], MutSigCV [68], OncodriveFM
[69], OncodriveCLUST [70], MuSiC [71] Oncodrive-CIS [72] Intogen [73], Ratio [74], RME [75],
MEMO [76], MUTEX [77], Dendrix [78], MDPFinder [79], Multi-Dendrix [80], CoMEt [81], MEGSA
[82], ME [83], CAPRI [40], CAPRESE [39], Oncotrees [31, 33], Distance-based [32], Mixtures [34],
CBN [35,36], Resic [37] and BML [38].
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Figure 3: A. MSI-HIGH colorectal tumors from the TCGA COADREAD project [56], restricted
to 27 samples with both somatic mutations and high-resolution CNA data available and a selection
out of 33 driver genes annotated to wnt, ras, pi3k, tgf-β and p53 pathways. This dataset
is used to infer the model in Figure 5. B. Mutations and CNAs in MSI-HIGH tumors mapped
to pathways confirm heterogeneity even at the pathway-level. C. Groups of mutually exclusive
alterations were obtained from [56] - which run the MEMO [76] tool - and by MUTEX [77] tool. In
addition, previous knowledge about exclusivity among genes in the ras pathway was exploited. D.
A Boolean formula input to CAPRI tests the hypothesis that alterations in the ras genes kras,
nras and braf confer equivalent selective advantage. The formula accounts for hard exclusivity
of alterations in nras mutations and deletions, jointly with soft exclusivity with kras and nras
alterations.
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Figure 4: Selective advantage relations inferred by CAPRI constitute MSS progression; input
dataset in Supplementary Figure S3 and S4. Formulas written on groups of exclusive alterations,
e.g., sox9 amplifications and mutations, are displayed in expanded form; their events are connected
by dashed lines with colors representing the type of exclusivity (red for hard, orange for soft), logical
connectives are squared when the formula is selected, and circular when the formula selects for a
downstream node. For this model of MSS tumors in COADREAD, we find strong statistical support
for many edges (p-values, bootstrap scores and cross-validation statistics shown as Supplementary
Material), as well as the overall model. This model captures both current knowledge about CRC
progression – e.g, selection of alterations in pi3k genes by the kras mutations (directed or via the
MEMO group, with BIC) – as well as novel interesting testable hypotheses – e.g., selection of sox9
alterations by fbxw7 mutations (with BIC).
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Figure 5: A. Selective advantage relations inferred by CAPRI constitute MSI-HIGH progression;
input dataset in Figure 3. Formulas written on groups of exclusive alterations are expanded as
in Figure 4. For each relation, confidence is estimated as for MSS tumors and reported as Sup-
plementary Material. In general, this model is supported by weaker statistics than MSS tumors –
possibly because of this small sample size (n=27). Still, we can find interesting relations involving
apc mutations which select for pik3ca ones (via BIC) as well as selection of the MEMO group
(erbb2/pik3ca mutations or igf2 deletions) predicted by AIC. Similarly, we find a strong selection
trend among mutations in erbb2 and kras, despite in this case the temporal precedence among
those mutations is not disentangled as the two events have the same marginal frequencies (26%). B.
Evolutionary trajectories of clonal expansion predicted from two selective advantage relations in the
model. apc-mutated clones shall enjoy expansion, up to acquisition of further selective advantage
via mutations or homozygous deletions in nras. These cases should be representative of different
individuals in the population, and the ensemble-level interpretation should be that “apc mutations
select for nras alterations, in hard exclusivity” as no sample harbour both alterations. A similar
argument can show that the clones of patients harbouring distinct alterations in acvr1b – and
different upstream events – will enjoy further selective advantage from mutation in the tgfbr2
gene.
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A Reproducing this study

Code availability

The implementation of PiCnIc shown in the Main Text was performed by using, as core,
the r language, and other external Java tools which we reference in this document. In r,
much of the data processing and inference is done by exploiting the current version of the
open-source

TRanslational ONCOlogy (TRONCO, [41], version 2.3)

package which implements up-to-date statistical algorithms to estimate cancer progression
models from a list of genomic lesions (e.g., somatic mutations, copy number variations or
persistent epigenetic states) in a population of independent tumors, or in a single patient.

TRONCO’s official webpage is reachable from the Software section of our group’s webpage

http://bimib.disco.unimib.it/

By navigating to the Case Studies section of TRONCO’s official webpage one can find the source
code to replicate this study (i.e., the PicNic’s implementation) along with the documentation
detailing all the implementation, as well as the data that we used. This should allow easy
implementation of similar studies in different contexts.
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B Glossary
This glossary of terms shall be of help to readers not familiar with the concepts mentioned in the
Main Text. For clarity, terms are separate in two categories according to the fact that they are
common to the statistics or the cancer biology communities. Each term which is included in this
glossary appears in color.

Terms common to the statistics community

Term Meaning

Boolean for-
mula

In CAPRI, a formula written with standard logical operators which capture a relation among
a group of alterations. In PicNic, these are used to detect alternative routes to selective
advantage from mutually exclusive alterations. See: Fitness equivalence.

Ensemble
level progres-
sion inference

Detection of the relations of selective advantage across the permanent alterations in
a cohort of independent tumors (cross-sectional data). When aggregated in a graphi-
cal model, these shall picture the most common evolutionary trajectories in the popula-
tion/cancer under study. See also: inter-tumor heterogeneity.

Graphical
models

In this context, a direct acyclic graph with nodes (alterations) and edges (selective ad-
vantage relations), as a shorthand to represent the joint probability of observing a set of
alterations in a sample (i.e., a cancer genotype). See also: Suppes-Bayes Causal Net-
work, Model selection.

Individual
level progres-
sion inference

Detection of clonal signatures and their prevalence in individual tumors by scanning multi-
region or single-cell sequencing data; clones are then displayed in a phylogenetic tree
structure. See also: intra-tumor heterogeneity.

Model selec-
tion

The process of selecting a model which fits data, according to some criterion. In CAPRI, this
is done by balancing model likelihood (a measure of to which degree data can be explained by
the model) and model complexity (the size of the graphical model). See: regularization.

Phylogenetic
tree

In this context, rooted tree where each node is a clone, and edges represent ancestry relations
among clones.

Regularization Common approach to avoid overfitting (false-positives) duringmodel selection – in CAPRI
this is achieved by using the standard AIC/BIC which penalize with different severity graph-
ical models which contain many selective advantage relations.

Simposon’s
paradox

A paradox in statistics, in which a trend appears in different groups of data but disappears
or reverses when these groups are combined. In this context, this shall refer to genuine
selective advantage relations which are not inferred unless data coming from different
populations is separated before doing inference. See: heterogeneity, subtypes, formulas
.

Suppes-Bayes
Causal Net-
works

A specific type of graphical model returned by CAPRI algorithm, where each edge satisfies
Suppes’s conditions of probabilistic causation subsuming temporal ordering and positive
statistical dependence – the statistical approach to estimate selective advantage among
the alterations.
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Terms common to the cancer biology community

Term Meaning

Alterations Somatic mutations: A change in the genome of a cell that is not inherited from a parent, but
is acquired. CNVs: Structural variation of large regions of DNA segments, including deletions,
insertions, duplications and complex multi-site variants.

Bulk se-
quencing

Genome sequencing from single tumor samples, each containing a large number of cells. The
resulting genomic profiles are derived from a mixture of cells with potentially distinct evolutionary
histories.

Clones;
Clonal ex-
pansion

Clone: group of cells sharing an identical genome and that derive from a common ancestor. Clonal
expansion: the production of descendent cells all arising originally from a single cell. In the scenario
of cancer development, tumors develop through a series of clonal expansions, in which the most
favorable clonal population survives and proliferate.

Cross-
sectional
data

Unique snapshots of data derived from samples that are collected at unknown time points. Usually
derived from bulk sequencing technologies.

Driver; Pas-
senger

Driver: (epi)genetic alteration that provides a selective advantage to a cancer clone. Passen-
ger: alteration of a cancer cell that does not increase its fitness.

Exclusivity
of alter-
ations

Group of alterations which manifest few or no co-occurences in a cohort of different samples, and
might be fitness-equivalent for tumor progression. Hard exclusivity: when co-occurrences shall be
considered the result of random errors. Soft exclusivity: when few co-occurrences shall be possible.
See: formulas.

Fitness A cell’s ability of surviving, proliferating and adapting to environmental changes, usually within an
environment with limited and depleting resources (e.g., oxygen or nutrients).

Fitness
equivalence

Groups of driver alterations, functional to the same pathway or equally dysruptive, that can inde-
pendently confer a selective advantage to a cancer cell. Multiple co-occurrence of such alterations
to provide no further advantage, hence leading to mutually exclusive alteration patterns across
distinct samples.

Hallmark of
cancer

Common traits or phenotypic properties that are supposed to drive the transformation of normal
cells to cancer cells. Anti-hallmark: clonal profiles that are usually not observed, yet being
theoretically possible.

Inter-tumor
heterogene-
ity

The phenomenon according to which different patients with the same cancer type usually display
a few common alterations. This is the major problem of inferring ensemble-level cancer pro-
gression models.

Intra-tumor
heterogene-
ity

Intra-tumor heterogeneity is related to possible coexistence of different cancer clones, with different
evolutionary histories and different mutational profiles, within the same tumor. This is the major
problem of inferring individual-level cancer progression models.

Multiregion
sequencing

Collection of genomic data obtained by processing multiple spatially separated biopsy samples from
the same individual tumor.

Next Gen-
eration
Sequencing
(NGS)

New technologies for sequencing genomes at high speed and low cost, including, e.g., full-
genome/exome sequencing, genome resequencing, transcriptome profiling (RNA-Seq), DNA-protein
interactions (ChIP-Seq), and epigenome characterization.

Selective ad-
vantage rela-
tion

In successive waves of clonal expansions one or more cells of the same clone can (progressively)
increase their fitness through the acquisition of additional driver alterations, leading to the
emergence and development of a fitter clone. In this case a relation of selective avantage connects
the earlier to the succeeding alterations.

Single-cell
sequencing

Recent technology based on the retrieval and analysis of genomic information from individual cells,
rather than from mixtures of cells.

Synthetic
lethality

The phenomenon according to which two otherwise non-lethal alterations lead the cell death when
they co-occur within the same cell. See: Anti-hallmark
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C PicNic’s implementation for COADREAD samples
Here we detail all the steps implemented to use PicNic for CRC progression inference.

C.1 TCGA COADREAD project data
COADREAD provides genome-scale analysis of samples with exome sequence, DNA copy number,
promoter methylation, messenger RNA and microRNA expression data, which we used to define
the input dataset. In particular, only samples with both mutations and CNAs profiles were used in
the analysis. Supplementary Table S1 details the dataset.

Dataset used to infer models presented in the Main Text. Samples published in [56] were
used as, to the best of our knowledge, these represent the highest–quality data made available by
COADREAD as of today; for these samples TCGA provides somatic mutation profiles and high-
resolution focal CNAs via GISTIC. These are obtained from TCGA data freeze as of 2 February
2012, downloaded on 12 March 2015, from repository:

https://tcga-data.nci.nih.gov/docs/publications/coadread_2012/

The following files were processed to produce the data:

• TCGA_CRC_Suppl_Table2_Mutations_20120719.xlsx
Somatic mutations profiles obtained via whole-exome sequencing of 224 colorectal tumors by
TCGA. Data available consists of 15995 mutations in 228 samples, provided in the Man-
ual Annotation Format (MAF). Samples were selected to univocally match the 224 pa-
tients as of the TCGA guidelines for aliquote disambiguation, see https://wiki.nci.nih.
gov/display/TCGA/TCGA+barcode. All the mutations annotated by TCGA – truncating
(De_novo_Start_OutOfFrame, Frame_Shift_Del, Frame_Shift_In, Nonsense_Mutation, Splice_Site,
Frame_Shift_Ins, In_Frame_Del), silent (Silent) and missense (Missense_Mutation) – were
considered for analysis; notice that the majority of them are missense, see Figures S7 and S8.

• crc_gistic.txt.zip
Focal Copy Number Alterations (CNAs) for 564 patients derived from whole-genome sequenc-
ing using the Illumina HiSeq platform. High-level gains and homozygous deletions were con-
sidered for analysis by selecting entries with GISTIC scores ± 2;

• crc_clinical_sheet.txt
Clinical data summary with patient stage and Micro Satellite Stabe/Unstable (MSS/MSI)
status being any of: MSS, MSI-high and MSI-low.

The list of patients used was first reduced to those having both CNAs and somatic mutation
data, and then was split into two groups: MSI-HIGH and MSS. The training cohort has 152 MSS
and 27 MSI-HIGH samples; samples flagged as low MSI were excluded from the study as they have
not been shown to differ in their clinicopathologic features or in most molecular features from MSS
tumors [?].
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C.2 Driver events selection
In the TCGA COADREAD study [56] integrated analysis of mutations, copy number and mRNA
expression changes in 195 tumours with complete data was performed. Part of the analysis was
carried out by using the MutSig tool [68], as well as manual curation. Samples were grouped by
mutation status, and recurrent alterations in key CRC pathways were identified in [56] (Fig. 4,
Supplementary Fig. 6 and Supplementary Table 1) as a result, we can use the consortium’s list of
33 driver genes annotated to 5 pathways and use these to extract our progression models. These
are well-known cancer genes, frequently reported as relevant to colorectal progression and to the
major pathways involved in CRC. Driver events are alterations in:

• wnt genes (14): apc, dkk-4, tcf7l2, ctnnb1, lrp5, fbxw7, dkk-1, fzd10, arid1a,
dkk-2, fam123b, sox9, dkk-3 and axin2;

• rtk/ras genes (5): erbb2, erbb3, nras, kras and braf;

• tgf-β genes (5): tgfbr1, smad3, tgfbr2, smad4, acvr1b, acvr2a and smad2;

• igf2/pi3k genes (5): igf2, irs2, pik3ca, pik3r1 and pten;

• p53 genes (2): tp53 and atm.

In the Main Text, rtk/ras and igf2/pi3k pathways are shortly denoted as ras and pi3k.
The distinct types of mutations detected in these genes are shown in Figure S7, as well as the

overall rate of COADREAD mutations. The spatial distribution (per gene) of such mutations is
shown in Figure S8.

C.3 Mutual exclusivity groups of alterations.
Groups of alterations showing a trend of mutual exclusivity were scanned with MUTEX and mu-
tations and CNA hitting any of the 33 selected genes as input. MUTEX was run independently
on MSS and MSI-HIGH groups (Supplementary Table S2, running times: approximately 6 and 3.5
hours, respectively, on a standard Desktop machine).

We selected only groups with score < 0.2, where the score is derived from p-values corrected
for false discovery rate. 3 groups are found for MSI-HIGH tumors and 6 for MSS. For MSI-HIGH
tumors, the three predicted groups consists of genes acvr1b, acvr2a, tp53 and erbb2, of genes
braf, nras and tgfbr2, and of genes kras and braf.

Further groups of exclusive alterations were considered consistent with results reported in [56].
These include groups derived by consolidated knowledge of colorectal progression: the well-known
wnt alterations in apc/ctnnb1 [?], as well as ras alterations in kras, nras and braf genes [74].
Similarly, we used also a group collected by scanning non-hypermutated tumors with the MEMO
tool in [56] - this group includes pik3ca, pten, erbb2 and igf2 genes. These groups were restricted
to account only for genes actually altered in a certain subtype, e.g., MSI-HIGH tumors lack ctnnb1
mutation, making the Wnt group irrelevant. Groups for MSS tumors are shown as Supplementary
Figure S9, groups for MSI-HIGH tumors are in the Main Text.
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C.4 CAPRI’s execution
Background on the algorithm. CAPRI algorithm can be executed in two different modes,
originally dubbed as “supervised” when formulas are given in input for testing, and “unsupervised”
when this is not the case. This paper deals with the former; see the Main Text for the interpretation
of formulas in this context and [40] for a derivation of the algorithm. CAPRI is a three-steps
procedure, which we briefly recall here.

1. CAPRI starts by creating a “lifted” representation of the input data M which includes the
input formulas; each formula – which is written in propositional logic – is so evaluated to
yield a new column in the dataset. This is the input processed by the algorithm, which starts
by selecting a set of candidate model edges, which are then used to constrain a score-based
Bayesian model-selection problem [40].

2. The initial set of selective advantage relations S, which determines the model edges x → y,
is computed by evaluating the following inequalities

(Temporal priority) p(x) > p(y)

(Probability raising) p(y | x) > p(y | ¬x) ,

where p(·) is a marginal probability, p(· | ·) is a conditional, ¬x is the negation of x and either
x or y is not a formula. It is interesting to observe that probability raising implies that
x and y are positively statistically dependent, thus imposing a minimum threshold on their
association [39].

In each of CAPRI’s executions, the distribution of the observed marginals and conditionals are
estimated by K non-parametric bootstrap resamples; practically, this means that we create a
bootstrapped approximation for each of the four populations p̂(x), p̂(y), p̂(y | x) and p̂(y | ¬x).
Then, we use a single-tail non-parametric Mann-Withney U test of the difference in mean to
test the hypothesis that one of the two populations is more probable than the other, e.g.,
p̂(x) > p̂(y). With this test, we can compute two p-values, one for each condition. An edge is
included in S if at least the p-value for probability raising is below a significance threshold
p∗ and an edge is said not to be orientable if its p-value for temporal priority is above the
same threshold. Cycles x1 → x2 → . . . xk → x1 that might appear in S are broken by deleting
the edge with minimum p-value; both K and p∗ are custom parameters.

3. Optimization of S, namely detection of the subset S∗ of S with the edges that we include in
the final progression model is done by optimizing, via hill climbing or tabu search, the score
with regularization

S∗ , arg min
Ŝ⊂S

{
−2 log[L(Ŝ |M)] + θ|Ŝ|

}
, (1)

where L(·) is the model likelihood and M is the input data; the estimated optimal solution is
S∗, which is displayed as a Suppes-Bayes Causal Network. The different regularization strate-
gies mentioned in the Main Text, BIC and AIC, are obtained by the following parametrization:

(Bayesian Information Criterion) θ , log(n)

(Akaike Information Criterion) θ , 2.
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Besides edges, a model has a set of parameters θ which define the conditional probability table
of each edge and should be fit from data; these are necessary if one wishes to use a model as a
“generator” of further data. For discrete-valued graphical models, for each parent set πx → y,
parameter θ(y) = p(y | πx) can be taken either as the maximum likelihood estimate from the
lifted input, or by using a Bayesian interpretation [87].

Usage in this context. CAPRI was run, on each group of tumors, by selecting alterations from
the pool of 33 pathway genes; every alteration on a gene x is included if any of these apply:

• the alteration frequency of x - sum of mutation and CNA frequency - is greater than 5%;

• x it is part of an exclusivity group.

The set of selected events for MSI-HIGH training tumors is shown in the Main Text, the analogous
set for MSS tumors is shown as Supplementary Figure S10.

CAPRI was executed in its supervised mode by writing formula over groups and genes with
multiple alterations associated, as explained in the Main Text. For instance, for MSI-HIGH tumors
with alterations in ras pathway we grouped hard exclusivity of nras mutations and deletions, with
soft exclusivity of kras and braf mutations. Our aim was to account for a small subset of samples
with concurrent kras and nras alterations (see Figure 2, Main Text). The list of all Boolean
formulas written over groups is in Table S3; this approach was adopted also when a gene harbors
multiple alterations in a subtype, e.g., erbb2 in MSS training samples which shows a trend of soft
exclusivity between mutations and amplifications. We used both AIC and BIC scores to regularize
inference after 100 non-parametric bootstrap iterations for estimation of the preliminary selective
advantage relations – Mann-Whitney U test was performed with a minimum threshold p∗ = 0.05.
In most cases p-values are orders of magnitude below p∗ - exact values reported as Dataset File S1.
CAPRI’s models with such p-values and non-parametric bootstrap confidence are shown in Figures
S11 and S12, statistical validation of the models is discussed in the next section.

D Statistical validation of the models
P-values from hypothesis testing, as well as scores from k-fold cross-validation and various boot-
strapping techniques can be used to measure the statistical consistency of models and data, each one
capturing different potential errors in the inference process. Approaches such as cross-validation
and bootstrap are sometimes also used in the (ex novo) generation and inference of models from
data (see, e.g., bootstrap consensus models [?]), but we only use them here for the a posteriori
evaluation of a model’s confidence, and we interpret them as a quantitative measure for the relative
assessment of each model’s relation.

All the p-values and the scores that we present here are computed within TRONCO.

D.1 Edge p-values
As explained in §C.4, for each model edge x→ y we get two p-values by assessing temporal priority
and probability raising via Mann-Whitney U testing.

For each edge, a p-value for the hypergeometric test of overlap between alteration profiles x and
y can be computed. More precisely, we test if there is a difference between the number of samples
containing both x and y versus the total population of samples with x, y, or both. We would like
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the overlap to be significant as those samples – that determine the joint probability of x and y –
are those supporting the presence of a selection trend among x and y.

An edge is fully supported if all three p-values are below a custom significance threshold, e.g.,
0.05 or even better 0.01. Some edges might have the p-value for temporal priority above the
threshold. If so, the selection trend might be still significant, but the temporal order of x and y –
i.e., the direction of selection – is not supported by the data.

D.2 Bootstrap
We used non-parametric and statistical bootstrap techniques to measure the goodness-of-fit, as
originally proposed in [?]. In this case, we distinguish two type of errors that one could make in
the inference process, estimating the presence or absence of edges in the model:

• Type I errors: incorrect rejection of a true H0 (null-hypthesis), i.e., a “false positive” edge
that we wrongly include.

• Type II errors: incorrect acceptance (failure to reject) of a false H0, i.e., a “false negative”
edge that we miss.

Non-parametric bootstrap [86] computes scores to be interpreted here as follows. If a model
contains an edge x→ y that is a true positive, we expect its score to be high. In other words, when
we sample with repetition subsets of the original data and re-run the inference process we expect to
often find models which contain the edge x→ y. Conversely, for a node y without incoming edges,
or equivalently for any edge x→ y which is correctly excluded from a model – a true negative – we
would expect its bootstrap score to be low. However, this reasoning can be also generalized to whole
models, where we count how many times we re-infer exactly the same model. Clearly, such scores
will depend also on the empirical probabilities of the nodes in our data, and their deviation from
the true probabilities of the phenomenon. So, one might expect rare events to be less frequently
bootstrapped, which results in a lower estimate; however, such counts can be anyway interpreted
as measures of repeatability of our findings8.

The above bootstrap approach depends on two random number generators: one to shuffle data
(the a posteriori bootstrap), and one to evaluate CAPRI’s inequalities via hypothesis testing (the
internal CAPRI’s bootstrap, see C.4). Thus, to ensure that no bias is introduced by the random
number generators, we performed a statistical bootstrap by holding data fixed, and re-estimating
CAPRI’s inequalities with generators initialized with different seeds. We evaluated the robustness
of our scores for all edges imputed to be genuine and hence, high-scoring.

Notice that, in principle, even parametric bootstrap scores could be computed if we used the
model to generate bootstrapped data [86]. However, as the support of the distribution subsumed
by a model with n nodes consists of 2n possible outcomes, sampling uniformly from large models
might be computationally hard. For this reason, and because such scores are overestimates of the
non-parametric ones, we did not include them in our computation.

The MSS and MSI progression models are annotated with the non-parametric bootstrap scores
in Figures S11 and S12. Non-parametric and statistical bootstrap scores for a set of selected edges

8Bootstrapping techniques have been widely used to gauge uncertainty in estimates, but also subjects of philo-
sophical debate about their precise interpretation, especially when coupled with various significance thresholds –
unlike the situation with a p-value for a null hypothesis. An exhaustive review on the topic is provided by Soltis
in [?]. We follow the ideas originally developed in the area of phylogenetic analysis [?], suggesting that the scores
can be alternatively interpreted as a measure of accuracy of the method or of the robustness of the data [?].
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are shown and commented in Figure S13. For the same set of edges, we also report the p-values
for CAPRI’s inequalities assessed in the MSS and MSI progression models (temporal priority and
probability raising, as a measure of the selectivity among the alterations, and hypergeometric, as a
measure of the randomness in the overlap of two alteration profiles). Additional comments are in
the caption.

D.3 Cross-validation
Next we study the sufficiency of the data sizes for model inference and its ability to characterize the
underlying progression (goodness-of-data). Thus, we focus on the Type III errors, which occur when
the sample size is inadequate or the sample is a poor descriptor for the reference phenomenon9,
and thus failing to represent the progression. For this purpose, we used cross-validation with the
data used for the models built (see the Main Text), and followed the best practices developed by
the Bayesian Networks community [87].

TRONCO exploits the cross-validation routines implemented in the bnlearn package [?]. The
approach that we adopt is a k-fold non-exhaustive cross-validation, which we repeat 10 times to
average its results. Exhaustive strategies might be used for datasets of small sample size. Each run
of cross-validation consists in computing a loss function for a model; its steps are the followings:

• split randomly the data in k = 10 groups, and then repeat the following two steps, for each
group in turn:

1. set one of the groups to be the “training” Mtr;
2. merge the others k − 1 to be the “test” Mte;
3. by holding fixed the model structure (i.e., the edges in S∗), fit the model parameters θ

over the training data via maximum likelihood estimates, compute a score over the test
Mte (see below) and the corresponding loss;

• combine the k loss estimates to give an overall loss for data.

Let θtr be the parameters fit from the training set Mtr, and S∗ the edges in the model, three
scores are computed with cross-validation:

1. the negative entropy of a model – i.e., the negated expected log-likelihood of the test set for
the Bayesian network fitted from the training set, that is

eloss(S∗,θtr) = −E[L(S∗,θtr |Mte)] .

2. the prediction error for a single node x and its parents set X, i.e., we measure how precisely
we can predict the values of x by using only the information present in its local distribution
θtr(x). This parameter corresponds to computing the misclassification rates from pte(x), the
empirical marginal probability of x estimated from the test.

3. the posterior classification error for a single node x and one of its parent node y ∈ X – i.e.,
the values of x are predicted using only the information present in y by likelihood weighting
and Bayesian posterior estimates.

9Consider the case where the samples are from two different unknown and heterogeneous groups, with random
chance making low values to be sampled from a group that actually has a majority of high values, and vice versa.
In this case, the samples will not be the best descriptor of the two groups.
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See [?] for a discussion on these loss functions. The first statistics measures the log-likelihood loss
when we “forget” some of the samples used to infer a model (indeed, the test samples); see Figure
S14. Roughly, we are measuring how the model’s predictive power changes as we look at the data
from different viewpoints. This is a score for a whole model, it has no scale – so cannot be used to
say how good the models/data are, in any absolute sense. Nonetheless, it can be used to evaluate
how “stable” a model is, for a certain dataset.

The second and third statistics measure the accuracy of the parent-set, X, for a child x; the
second statistics dealing with the whole parent set as predictor, and the third, the individual
contribution of each of the parents. For these two statistics, we desire the prediction error to be
low, as a measure of goodness. These are shown in Figure S13 (selected edges), S15 and S16 (all
edges, prediction error).

E Supplementary Tables and Figures

Datasets (CNAs and mutations provided by TCGA)

statistics alteration type

cancer† n m |G| mutations amplifications deletions

MSI-HIGH 27 16100 13798 11556 2888 1656

MSS 152 21317 16371 12417 6925 1975
† Samples were classified as MSI-HIGH/LOW and MSS by TCGA; see flag
MSI_status in clinical data available for the COADREAD project.

Table S1: COADREAD Data. Data used in this study, derived from the TCGA COADREAD
project [56].
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MUTEX parameters

Parameter Value Description

signalling-network - MUTEX network†

max-group-size 5 maximum size of a result group

first-level-random-iteration 10000 number of randomisation to estimate null distribu-
tion of member p-values in groups

second-level-random-iteration 100 number of runs to estimate the null distribution of
final scores

fdr-cutoff - false-discovery-rate cutoff maximising the expected
value of true positives - false positives is estimated
from data

search-on-signaling-network TRUE reduce the search space using the signalling network
† Manually curated from Pathway Commons, SPIKE and SignaLink databases. Provided with the tool; available
for download at https://code.google.com/p/mutex/.

MUTEX groups with score < .2

MSI-HIGH Groups score q-value

1 kras, braf, 0.095 0.48

2 nras, braf, tgfbr1 0.1677 0.45

3 erbb2, tp53, acvr1b, acvr2a 0.1703 0.355

MSS Groups score q-value

1 tp53, atm, 0.051 0.34

2 arid1a, tp53 0.075 0.193

3 kras, nras, braf, 0.0864 0.1975

4 ctnnb1, apc, dkk2, 0.098 0.144

5 dkk1, tp53, atm, dkk2 0.1387 0.176

6 pik3ca, tp53, atm 0.164 0.207

Table S2: MUTEX: parameters and results. Top: Parameters used to run MUTEX on the
original TCGA MSS/MSI-HIGH datasets with input CNA and somatic mutations in the pathway
genes described in text. Bottom: MUTEX identified 3 and 6 groups of alterations showing a trend
of mutual exclusivity in these groups with score below the suggested cutoff of 0.2.
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Formulas input for testing to CAPRI†

MSI-HIGH tumors description

1 (nras:m ⊕ nras:d) ∨ kras:m ∨ braf:m raf exclusivity

2 pik3ca:m ∨ erbb2:m ∨ pten:m ∨ igf2:d MEMO group

3 (acvr1b:m ⊕ acvr1b:d) ∨ acvr2a:m ∨ tp53:m ∨ erbb2:m MUTEX group

4 (nras:m ⊕ nras:d) ∨ tgfbr1:m ∨ braf:m MUTEX group

5 kras:m ∨ braf:m MUTEX group

6 acvr1b:m ⊕ acvr1b:a multiple alterations

7 nras:m ⊕ nras:a multiple alterations

8 fbxw7:m ∨ fbxw7:a multiple alterations ‡

MSS tumors description

1 (apc:m ⊕ apc:d) ∨ ctnnb1:m wnt exclusivity

2 (kras:m ∨ kras:a) ∨ (nras:m ⊕ nras:a) ∨ (braf:m ⊕ braf:a) raf exclusivity and MEMO group

3 pik3ca:m ∨ (erbb2:m ∨ erbb2:a) ∨ (pten:m ⊕ pten:d) ∨ igf2:a MEMO group

4 (tp53:m ⊕ tp53:d) ∨ (atm:m ⊕ atm:d) MUTEX group

5 (tp53:m ⊕ tp53:d) ∨ arid1a:m MUTEX group

6 (tp53:m ⊕ tp53:d) ∨ arid1a:m MUTEX group

7 (apc:m ⊕ apc:d) ∨ ctnnb1:m ∨ dkk2:m MUTEX group

8 (tp53:m ⊕ tp53:d) ∨ (atm:m ⊕ atm:d) ∨ dkk2:m ∨ dkk1:m MUTEX group

9 (tp53:m ⊕ tp53:d) ∨ (atm:m ⊕ atm:d) ∨ pik3ca:m MUTEX group

10 (apc:m ⊕ apc:d) multiple alterations

11 (tp53:m ⊕ tp53:d) multiple alterations

12 (smad4:m ⊕ smad4:d) multiple alterations

13 (tcf7l2:m ⊕ tcf7l2:d) multiple alterations

14 (atm:m ⊕ atm:d) multiple alterations

15 (nras:m ⊕ nras:d) multiple alterations

16 (erbb2:m ∨ erbb2:a) multiple alterations

17 (pten:m ⊕ pten:d) multiple alterations

18 (smad2:m ⊕ smad2:a) multiple alterations

19 (dkk4:m ⊕ dkk4:a) multiple alterations

20 (sox9:m ⊕ sox9:d) multiple alterations

21 (braf:m ⊕ braf:a) multiple alterations
† Events type: mutation (m), deletion (d), amplification (a). Hard (⊕) and soft (∨) exclusivity.

‡ Formula not included as it creates a duplicated signature in the dataset.

Table S3: CAPRI formulas from exclusivity groups. Formulas created for the groups, and
input to CAPRI for testing. These are either derived from exclusivity groups or from genes involved
in different types of alterations.

39



Figure S6: PicNic pipeline processing MSI-HIGH/MSS tumors. We process with PicNic
Microsatellite Stable and highly unstable tumors collected from the The Cancer Genome Atlas
project “Human Colon and Rectal Cancer” (subtypes annotations provided as clinical data). We
implement a study on selected somatic mutations and focal CNAs in 33 driver genes manually
annotated with 5 pathways in the COADREAD project. We scan groups of exclusive alterations
with computational tools run by us and by TCGA, and we exploit previous knowledge on CRC; we
select which alterations we input to CAPRI. Next, inference is performed with various settings of
regularization and confidence. Statistical confidence of the models is assessed with standard tech-
niques from the literature (p-values from statistical testing, bootstrap scores and cross-validation
statistics).
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Figure S7: Mutations annotated by TCGA for the driver genes. Top: the majority of
the mutations annotated by TCGA for the driver genes that we consider are missense – this in
almost all genes and in all the cohort. Bottom: overall summation of the frequencies determine the
mutations across all driver genes.
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Figure S8: Lolliplot diagrams of TCGA mutations. Diagrams generated from the cBio portal
for the COADREAD project (see http://www.cbioportal.org/). These display the physical distri-
bution of the annotated mutations for each gene. Here we shown only genes with a total mutation
count greater than 15; fam123b is called with its synonym amer1, as in the portal.
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Exclusivity groups for MSS tumors
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Figure S9: Groups of exclusive alterations for MSS tumors. Knowledge-based groups of
exclusive alterations consist of: kras, nras and braf genes (raf pathway) and apc and ctnnb1
genes (wnt pathway). The MEMO [76] group identified in [56] in this cohort consists of genes
pik3ca, erbb2, igf2 and pten. Finally, 6 groups are predicted by MUTEX [77] with score below
.2, one of these is equivalent to the known exclusive alterations in raf pathway.
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Figure S10: Selected data for MSS tumors. Colorectal tumors with Microsatellite Stable
clinical status in the TCGA COADREAD project, restricted to 152 samples with both somatic
mutations and CNA data available. 33 driver genes annotated with 5 pathways are selected from
the list published in [56] to automatically detect groups of mutually exclusive alterations. Events
selected for reconstruction are those involving genes altered in at least 5% of the cases, or part of
group of alterations showing an exclusivity trend (see Figure S9). This dataset is used to infer the
set of selective advantage relations which constitute the MSS progression model presented in the
Main Text.
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Figure S11: Non-parametric bootstrap scores for MSS progression. Progression model for
MSS tumors with confidence shown as edge labels. The first label represents the relation confidence
estimated with 100 non-parametric bootstrap iterations, the second and third are p-values for
temporal priority and probability raising. Red p-values are above the minimum significane threshold
of .05. See Figure 4 in the Main Text for an interpretation of this model.
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Figure S12: Non-parametric bootstrap scores for MSI-HIGH progression. Progression
model for MSI-HIGH tumors with confidence shown as edge labels. The first label represents the
relation confidence estimated with 100 non-parametric bootstrap iterations, the second and third
are p-values for temporal priority and probability raising. Red p-values are above the minimum
significane threshold of .05. See Figure 5 in the Main Text for an interpretation of this model.
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Data

selects # selected # Non-
parametric

Statistical Temporal	
Priority

Probability	
Raising

Hypergeom
etric

μ σ μ σ

1 KRAS 71 PIK3CA 23 82% 100% 6,20E-92 7,63E-92 2,77E-05 1,51E-01 0,00E+00 1,51E-01 0,00E+00
2 KRAS 71 MEMO 40 64% 100% 6,64E-92 3,68E-88 7,68E-03 2,63E-01 0,00E+00 2,63E-01 0,00E+00
3 FBXW7 19 XOR_SOX9 9 49% 100% 3,15E-83 2,57E-85 1,66E-03 5,92E-02 0,00E+00 5,92E-02 0,00E+00 Deletion
4 ARID1A 11 SOX9 8 34% 100% 1,73E-20 6,09E-78 9,25E-04 5,26E-02 0,00E+00 5,26E-02 0,00E+00 Amplification
5 PIK3CA 23 TCF7L2 2 34% 54% 2,05E-92 5,56E-89 0,00E+00 1,32E-02 0,00E+00 1,32E-02 0,00E+00 Mutation
6 TCF7L2 14 DKK4 3 32% 95% 1,15E-91 1,33E-64 6,34E-04 1,97E-02 0,00E+00 1,97E-02 0,00E+00 Pattern

7 FAM123B 15 ATM 15 48% 48% 4,61E-01 2,70E-91 9,82E-04 1,01E-01 4,44E-03 1,02E-01 4,65E-03
8 ERBB2 7 ERBB2 7 64% 51% 1,27E-01 4,01E-77 5,46E-05 5,99E-02 6,54E-03 6,05E-02 6,05E-03

Data

selects # selected # Non-
parametric

Statistical Temporal	
Priority

Probability	
Raising

Hypergeom
etric

μ σ μ σ BIC	 30%
1 ATM 15 DKK4 3 81% 70% 3,59E-92 2,97E-68 7,93E-04 2,70E-02 3,73E-03 1,97E-02 0,00E+00 AIC	 50%
2 APC 119 DKK4 6 53% 100% 4,70E-92 1,21E-104 0,00E+00 3,95E-02 0,00E+00 3,95E-02 0,00E+00
3 KRAS 71 SMAD4 17 50% 69% 6,06E-92 3,49E-73 3,72E-02 1,12E-01 0,00E+00 1,12E-01 0,00E+00
4 ARID1A 11 XOR_SOX9 9 50% 90% 2,20E-09 1,02E-77 1,60E-03 5,72E-02 4,44E-03 7,24E-02 0,00E+00
5 TP53 89 NRAS 13 49% 91% 5,62E-92 1,35E-69 1,22E-01 8,55E-02 0,00E+00 4,20E-01 0,00E+00

p-values

<	0,01
0,01	-	0,05

Data >	0,05

selects # selected # Non-
parametric

Statistical Temporal	
Priority

Probability	
Raising

Hypergeom
etric

μ σ μ σ

1 APC 10 PIK3CA 5 66% 100% 2,53E-65 3,81E-72 4,73E-02 2,41E-01 4,36E-02 2,19E-01 3,24E-02
2 ARID1A 11 DKK2 5 62% 100% 3,62E-71 3,31E-76 5,72E-03 1,85E-01 0,00E+00 2,00E-01 3,12E-02
3 PIK3CA 5 DKK4 2 58% 100% 4,83E-53 2,65E-75 2,85E-02 1,37E-01 3,51E-02 1,30E-01 4,36E-02
4 APC 10 XOR_NRAS 3 54% 100% 2,51E-78 5,36E-89 0,00E+00 1,11E-01 0,00E+00 1,11E-01 0,00E+00
5 APC 10 SMAD3 2 48% 79% 9,11E-81 8,62E-81 0,00E+00 7,41E-02 0,00E+00 7,41E-02 0,00E+00
6 ERBB2 4 SMAD2 2 48% 92% 3,87E-28 6,69E-68 0,00E+00 1,41E-01 1,56E-02 1,37E-01 2,50E-02
7 NRAS 2 ACVR1B 1 48% 68% 2,93E-20 1,88E-40 0,00E+00 7,04E-02 1,17E-02 3,70E-02 0,00E+00
8 FAM123B 8 SMAD4 4 46% 100% 4,12E-51 1,98E-66 3,99E-03 1,78E-01 3,40E-02 1,96E-01 3,05E-02
9 AXIN2 5 TP53 4 32% 86% 1,32E-07 9,08E-69 1,28E-02 1,74E-01 3,05E-02 1,59E-01 3,51E-02
# LRP5 7 TGFBR2 2 30% 69% 8,32E-74 3,42E-84 0,00E+00 8,52E-02 3,51E-02 7,41E-02 0,00E+00

# ERBB3 7 KRAS 7 27% 50% 3,62E-01 4,18E-77 4,65E-03 1,56E-01 2,34E-02 1,48E-01 0,00E+00

Data

selects # selected # Non-
parametric

Statistical Temporal	
Priority

Probability	
Raising

Hypergeom
etric

μ σ μ σ

1 APC 10 KRAS 7 51% 100% 8,53E-34 5,84E-75 4,27E-02 1,56E-01 2,34E-02 2,59E-01 0,00E+00
2 APC 10 MEMO 8 48% 100% 3,44E-18 1,93E-64 9,10E-02 4,15E-01 4,88E-02 3,96E-01 3,92E-02

error
(mean	μ,	stdev	σ)	
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Posterior	classification
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Figure S13: COADREAD statistics for models confidence. For BIC models we show statistics
for edges with non-parametric bootstrap score approximately greater than 30%, for AIC models
those greater than 50%s. i) p-values (100 repetition of non-parametric bootstrap, prior to Wilcoxon
testing) for each edge statistics of selective advantage (direction and statistical dependence, and
hypergeometric). In general, the edges that we selected show very strong support (p � 10−10),
but for those edges connecting events with the same marginal frequencies, where we can not be
confident in the edge direction (p > 0.05) but still we find strong statistical dependence. (ii)
A posteriori model confidence against Type I and II errors estimated with non-parametric and
statistical bootstraps (100 repetitions) – edges annotated in Figures S11 and S12. (iii) Values of
posterior classification and prediction errors are estimated from 10 repetitions of 10-fold cross-
validation. The former reports how much error is due to predicting, for each set of edges X =
{x1, . . . , xn} → y, the value of y according to the value of each xi ∈ X. The latter reports the same
statistics when we predict y from the whole set of parents X.
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Entropy loss for MSS model
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Log-Likelihood Loss (disc.)

BIC
 score:  -2487.12
logLik:  -2318.82
   loss:  0.663 %

AIC
 score:  -2377.89
logLik:  -2294.89
   loss:  0.661 %
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Entropy loss for MSI model
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Log-Likelihood Loss (disc.)

BIC
 score:  -466.15
logLik:  -385.4
   loss:  3.89 %

AIC
 score:  -429.25
logLik:  -361.25
   loss:  3.844 %

Figure S14: Entropy loss for MSI-HIGH/MSS models. Violin plot computed from 10 runs
of k-fold cross-validation with k = 10, where we compute the “loss of log-likelihood” at each fold.
In the plot and in the table we report also the overall log-likelihood, as well as the BIC and AIC
scores for the models. We present the ratio of log-likelihood loss as a measure of stability of these
models for these two datasets – we can observe that the MSS models lose < 1% of their likelihood,
while the MSI lose slightly more (still, < 4%), possibly because of the smaller sample size. From
a statistical point of view, the greater (despite small) loss of likelihood by the models regularized
via BIC confirms its tendency to underestimate the true model (i.e., the model should have false
negatives, which could be AIC’s edges).
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Figure S15: Prediction error for each parent set of BIC and AIC models of MSS tumors.
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Figure S16: Prediction error for each parent set of BIC and AIC models of MSI-HIGH
tumors.

50



Figure S17: Models and the phenotype that they might explain. (biomarker) Indepen-
dent evolutionary trajectories depicted by a model might share common routes through a certain
alteration Y; that could point to a new biomarker harbored by most of the tumors under study.
(drug resistance) When a progression model branches in many independent sub-progressions,
each one identified by alterations X, Y and Z, if a certain drug is known to target only a certain
type of such clones (e.g., those where biomarker X is present), we might get insights on which are
the biomarkers which make the drug ineffective for certain patients (e.g., those were cancer evolves
through Y and Z). (metastatic) When a model is extracted from data representative of various
tumor stages, we might discover which “late events” are those conferring a metastatic phenotype
to a tumor – X in the figures. (anti-hallmarks) Relation between anti-hallmarks and formulas.
Exclusivity formulas allow to capture fitness-equivalent events (Y and Z in the figure), and the
presence of alternative routes – here those identified by the genotypes X/Y or X/Z. These could
point us to genotype/phenotype that we do no observe in our cohort – here the X/Y/Z – which
could be exploited for targeted therapy if a synthetic lethality is screened among Y and Z, the
anti-hallmark.
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