

Edinburgh Research Explorer

A generic approach to software support for linguistic annotation
using XML

Citation for published version:
Carletta, J, McKelvie, D, Isard, A, Mengel, A, Klein, M & Møller, MB 2005, A generic approach to software
support for linguistic annotation using XML. in G Sampson & D McCarthy (eds), Corpus Linguistics:
Readings in a Widening Discipline: Open Linguistics (Paperback). Continuum, pp. 449-459.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Corpus Linguistics: Readings in a Widening Discipline

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/a-generic-approach-to-software-support-for-linguistic-annotation-using-xml(c1179bff-1a29-4b26-be87-33be3251c395).html

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 1

A generic approach to software support for linguistic annotation using XML *

Jean Carletta, David McKelvie, Amy Isard

Human Communication Research Centre and Language Technology Group,
University of Edinburgh

Andreas Mengel

Institut für Maschinelle Sprachverarbeitung, University of Stuttgart

Marion Klein

Deutsches Forschungszentrum für Künstliche Intelligenz, Saarbrücken

Morten Baun Møller

Natural Interactive Systems Laboratory, Odense University

Large-scale linguistic annotation is currently employed for a wide range of
purposes, including comparing communication under different conditions,
testing psycholinguistic hypotheses, and training natural language engines.
Current software support for linguistic annotation is poor, with much of it written
for one-off tasks using special purpose data representations and handling
routines. This impedes research because developing special purpose software is
slow, and also makes it difficult to use existing annotations in analyses or
applications for which they were not originally intended. XML, a text mark-up
language which admits the possible annotations and allows reference to external
files containing, for instance, speech and graphics, can be used as the basis of a
representational format for linguistic annotation. XML is already a standard
outside the linguistics community, and therefore is well-supported with basic
processing software. It allows more formal and explicit representation of a wider
range of possible annotation structures than formats currently in use. However,
it can also be used for completely unstructured data or for data with an implicit
structure which the annotators have yet to discover. Together with XSL, an
emerging standard for XML transduction which makes it easier to display XML
texts, adopting XML will enable faster tool development and more flexible data
re-use.

1. Introduction
High-speed computing has enabled large-scale linguistic annotation in service

of a wide range of research methods and applications. However, research progress is
hampered by the lack of infrastructure for annotation technologies; much annotation
is supported with special-purpose tools, making it difficult either to develop new
coding systems or to place multiple annotations on the same source. We describe the
range of reasons people have for annotating corpora, and the kinds of annotations
which they perform. We then review the tools which have been used to support
annotation for more than one particular set of codes. Annotation tools can be built

* This work was funded by EPSRC (UK) grant GR/L29125 (NSCOPE) and EC Telematics Project
LE4-8370 (MATE). The writing of section 3 was made easier by the existence of the web page
http://morph.ldc.upenn.edu/annotation/, for which we thank the Linguistic Data Consortium, although
our set of features and implicit user communities are perhaps wider than theirs, and the consolidation of
the material presented is our own.

Correspondence concerning this article should be addressed to Jean Carletta, Human Communication
Research Centre, Language Technology Group, University of Edinburgh, 2 Buccleuch Place,
Edinburgh EH8 9LW, Scotland. Electronic mail may be sent to J.Carletta@edinburgh.ac.uk.

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 2

using a common annotation processing engine based on XML, a text mark-up
language which can represent non-hierarchical structures via "stand-off" annotation.
XML allows reference to, for instance, speech and pictures via links to external files.
Because the language is already used widely for document processing, basic
capabilities such as parsing and validity checking for it are already well-supported.
We argue that adopting this common approach will enable faster tool development for
the community as a whole and promote more complete research by making it easier to
relate different annotations.

2. What is Linguistic Annotation and What is it Used For?
By linguistic annotation, we mean any sort of annotation which one might like

to add to linguistically derived data. This might mean adding free-format notes to
specific points in the data, or it might be applying systematic codes which can then be
analysed statistically. Although there are several communities performing linguistic
annotation, researchers in one are not always aware of researchers in another because
they do not use data in the same way. Perhaps the largest scale use of linguistic
annotation is in speech and language engineering, where annotations are typically
used to build predictive models for natural language applications. Modellers can
either be engineering-biased, looking for any easily automatable codes which aid
prediction for a particular corpus (for instance, many current approaches to "message
understanding", Chinchor, 1998), or theory-biased, where the features chosen are
intended to have wider applicability, and the model, explanatory power (e.g., Shriberg
et al., 1998). Where the modelling is exploratory rather than hypothesis-driven,
purely statistical techniques such as machine learning, Markov modelling, or data
mining may be employed to impose their own structure on the data. Linguists with a
stronger theoretical bias may use very similar, cross-annotated data, but conduct their
investigations inferentially, with research hypotheses determined ahead of time and
formally tested (e.g., Bard et al., in press). Psychologists also use linguistic
annotations if they are studying language (e.g., Levelt, 1983 on disfluency) or
working in areas where hypotheses can be tested by looking at language differences
(e.g., Doherty-Sneddon et al., 1997, on the effects of video-mediation; Gottman,
1979, on dysfunctional marriages). Finally, researchers within traditions arising from
the humanities often need to mark up linguistic data (Weitzman & Miles, 1994), but
are more likely to restrict themselves to qualitative analyses, with the notes as an aide
memoire, than researchers from other disciplines (but see Silverman, 1993). Like
language engineers, they also annotate automatically, based on pattern-matching in
the surface-form of the text with which they are working.

Just as the users of linguistic annotation are diverse, so are the kinds of
annotations which are performed. Some linguistic annotation is of phenomena which
one would properly describe as linguistic: syntax, for instance, or pragmatic
information such as dialogue acts reflecting a speaker’s intentions. This annotation is
not necessarily confined to that which can conveniently be attached to orthographic
transcription, but may include, for instance, phonological or intonational information
which requires access to speech waveforms. Other linguistic annotation is of allied
phenomena which are not properly linguistic but are theoretically related to linguistic
phenomena (e.g., kinesics). These may require access to video as well as to speech.
Still other annotations are of interest for natural language processing (for instance,
non-intentional coughing, areas of high background noise, and speech recognizer
output). Finally, most corpora require documentation about the data which they
contain, which can most conveniently be distributed as part of the corpus itself in the

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 3

form of headers, as the Text Encoding Initiative1 (TEI) recommends (Sperberg-
McQueen & Burnard, 1994). In addition to information about the corpus, such
headers can usefully contain information about the annotations which have been
performed upon it. Software supporting linguistic annotation must handle all of these
types of annotation properly if it is to be useful for all of the communities involved.

Each of these disciplines and types of annotation places somewhat different
strains on support technologies. For instance, in the psychological tradition,
researchers tend to restrict themselves to one or two annotations tailored carefully to a
particular set of hypotheses. Data re-use is discouraged, except occasionally when
data is re-analysed in order to test a new theory. Because the data is quite simple,
once the hypothesis has been tested, there is nothing further to be done with it. On the
other hand, corpus linguists prefer to annotate many phenomena on the same material
and re-use it for several purposes. Visualization and purely exploratory modelling,
although taking a similar approach to data collection, require much larger amounts of
data than hypothesis-driven research. Researchers from the humanities need
annotation which can be flexibly defined, often without much computing
infrastructure, but may not need large-scale handling. Researchers who wish to
annotate spoken waveforms or videos require much more complex capabilities than
those who can work simply from orthographic transcription or written text.

Despite these differences, each tradition using linguistic annotation requires the
same basic support. For speech, orthographic transcription usually comes first,
followed by attachment of free-format notes and/or systematic codes. As well as
supporting transcription, annotation, and coding, software needs to support correction
of everything which has previously been done to the speech data; coding often reveals
errors in other codings applied to the same data as well as to the base transcription. It
must be possible to write new routines which code data automatically. Finally, there
must be tools which aid data analysis, whether they are data displays which help the
user explore the codes present, decision-support tools to aid theory-building,
descriptive statistics, inferential tests, or statistical techniques to find structure in the
data.

3. Current support for annotation
There are very many annotation support tools which have been built to support

orthographic transcription for specific transcription conventions or data entry and
display for specific coding schemes. Special-purpose tools are undoubtedly useful,
but the lack of more generic support impedes research progress. People will always
need to develop new transcription and coding systems. New theories require different
data before they can be tested. However, even the same theory may require coding
scheme modifications when applied to new data. For instance, an early workshop2 of
the Discourse Resource Initiative found that dialogue act schemes are usually most
reliable on the corpora for which they were developed, and TOBI (Silverman et al.,
1992), the most prominent prosodic coding scheme, is typically modified before it is
applied to languages other than North American English (Mayo, Aylett, & Ladd,
1997; Beckman & Jun, 1996). Although theory-motivated researchers strive for
domain and language independent coding distinctions, the further removed from

1 See http://etext.lib.virginia.edu/TEI.html.
2 Organized by Marilyn Walker, Lynette Hirschman, Johanna Moore and Aravind Joshi, and held at the
University of Pennsylvania, March 1996. See http://www.georgetown.edu/luperfoy/Discourse-
Treebank/dri-kickoff.html.

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 4

surface-level decisions, the less reliable a scheme will be (Bakeman & Gottman,
1997). The use of tools which are hard-wired for particular annotations makes it
difficult to compare different existing codings on the same data, and to develop new
coding schemes, tempting people to use schemes which don’t quite fit and making
research impossible for those without easy access to their own computer
programmers. There are currently several software packages used to support various
kinds of annotation where the tags themselves are not prespecified.

3.1 ESPS/xwaves
Xwaves3 is an environment for the analysis and manipulation of speech signals.

As one of its many capabilities, it allows one to label spans of speech with text
strings. This makes it a popular choice for supporting any data transcription and
coding which requires time-alignment to the speech signal. Tags are stored in a
separate file from the speech signal, identifying the span to which they apply.
Xwaves itself imposes no structure on the set of tags for a speech file; each refers
simply to a span using offsets from the start of the speech data file, and not to any
other tags in the set.

3.2 GATE
GATE4 (Cunningham, Wilks, & Gaizauskas, 1996) is an architecture which is

meant to support natural language processing (NLP) applications by allowing users to
implement automatic tagging procedures, hand-annotate the same information, and
compare the results. Because of the NLP focus, it has no speech capabilities,
although it is possible to use it on orthographic transcriptions of spoken language.
GATE is based on the TIPSTER file architecture popularized by MUC.5 Annotations
are defined in a TIPSTER standard format and are identified by a basic type, with
further attributes, if desirable. GATE stores annotations separately from the data
being annotated, using character offsets from the beginning of the file to define a
span, or set of spans, to which the annotation refers. As a result, the annotations
themselves all point to the underlying data and are unstructured with respect to each
other. There can be difficulties if the underlying data changes; this does not happen in
most NLP applications, but can during manual annotation of speech, where closer
listening during coding often reveals flaws in the basic transcription. GATE includes
a tool for manual annotation in which the user selects an annotation type from a menu
and sweeps out a span which the annotation covers; attributes are entered and
corrections to the span or type made via a pop-op window. Existing annotations can
be edited using a similar interface. The manual annotation tool can be configured to
show where annotations occur on a display of the text, and to hide types not currently
of interest. GATE also includes a tool for comparing hand and automatic annotations
of the same annotation type. This tool does not show the base text, but displays the
two annotation files in adjacent windows, with annotations which span the same text
are aligned horizontally. This tool also performs some basic statistics comparing the
two annotations.

3 See http://www.entropic.com/products/speechtechtoolkits.html.
4 See http://www.dcs.shef.ac.uk/research/groups/nlp/gate/.
5 See http://www.itl.nist.gov/iaui/894.02/related_projects/tipster/.

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 5

3.3 N.b.
N.b. (Flammia & Zue, 1995) is a tool which supports the annotation of a tree-

structured set of tags. It uses SGML, a predecessor of XML, as its file format. N.b.
allows the user to specify a hierarchy of tags using its own tag description language,
but the display of tags is fairly rigid. Indentation is used to convey hierarchical
structure, and a user-definable list of colours corresponds to the tag types, with the
user able to specify that some tags should not be shown. There is also one special-
purpose display function for drawing parse trees. N.b. itself does not support analysis
of the annotations, but it is possible to extract information from them using, for
instance, the LT NSL library of SGML handling tools.6 It does support very good
connections to external programs to aid working with the data via a method of
supporting external function calls, so that, for instance, one can make the display call
other existing programs to view waveforms, listen to speech, and show related
graphics.

3.4 The Alembic Workbench
The Alembic Workbench7 (Day et al., 1997) is much like a cross between the

annotation tools part of GATE and N.b.. Like GATE, it is primarily intended to
support the comparison between automatic and manually-produced tags, but like N.b.,
it uses SGML as a file format and allows the user to define tag hierarchies, with the
ability to configure the foreground and background colours used for different tags in
the display. Alembic additionally allows some user interface configuration, by way of
decoupling tag names from exactly what appears on the workbench menus and by
allowing the user to specify their own keyboard shortcuts to the tags. Tagging
comparisons are shown not by aligning different windows by text span, but by
underlining spans with differences in a display of the source text. In addition to
supporting annotation, Alembic supports extraction of text spans covered by named
tags.

3.5 Software for qualitative data analysis
A number of software packages8 (e.g., ATLAS.ti, NUD*IST, and "The

Ethnographer") exist for performing qualitative data analysis, mostly within the
humanities. They are usually used on written text. Although in speech terms, they
cannot do more than note the timing of an annotation with respect to an audio file,
some people use them for analysing speech, especially from transcription. These
packages are interestingly different from what the speech and language community
think of as annotation support tools, in that they support ad hoc notes and the
development of systematic coding schemes as well as coding itself. Users tend to
start with a wide set of fairly sparse codes, with structure emerging as the analysis
progresses. Codes are either applied to presegmented text units or to arbitrary text
spans, which may overlap each other. At any time, code sets can be structured and
restructured, using query languages to explore the data coded so far and graphical user
interfaces to describe the suspected relationships. Supported structures are usually
hierarchical but can be as complicated as networks with user-defined types for links
among the code types (c.f. ATLAS.ti). Although the research methodology

6 See http://www.ltg.ed.ac.uk/software/index.html.
7 See http://www.mitre.org/technology/alembic-workbench/.
8 See http://www.atlasti.de/index.html for ATLAS.ti, or http://www.scolari.co.uk/ for a range of tools
supporting qualitative data analysis.

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 6

supported by this software is very different from that in language and speech, the
underlying technology can be quite similar, in that it relies on keeping track of
annotated data and displaying it sensibly.

4. Requirement for integrated and structured (but not monolithic) support
Each of these coding architectures provides some degree of support for its

adherents. However, the current support situation is limiting in several ways.

First, the use of idiosyncratic, and sometimes proprietary, data formats makes
the exchange of data difficult. Apart from discouraging users from adopting better
software when it comes along and from using analytical packages to which export
was not predicted by the software developers, this also divides research communities.
Software use spreads by word of mouth. Without the ability to look at data in the
same way, communication across disciplines is limited, despite quite striking
similarities in the annotations performed (e.g., that used by Eggins & Slade, 1997; for
analysing casual conversations and the dialogue act codings used within
computational linguistics, Carletta et al., 1997; Jurafsky, Shriberg, & Biasca, 1997).

Second, by failing to incorporate sufficient flexibility in how annotations are
added to the data and displayed, current support still makes it difficult to establish
new coding schemes. Although these architectures have come some way in
decoupling exact tag names from display and coding methods, there is still work to be
done on formal languages for relating tags to these methods, so that interfaces can be
tailored to the user’s needs.

 Figure 1: An example of data matching the overlapping hierarchies model.

Third, architectures which support only tree-structured data may not be
sufficiently general for current purposes. Some theories are rigidly hierarchical, but
even then, working with more than one kind of annotation on the same data requires
one to at least represent multiple, overlapping hierarchies cantilevered off the same
units. Figure one gives an example of such a treatment, where the base unit is
orthographic transcription and the annotations reflect dialogue structure, intonational

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 7

phrasing, syntax, and disfluency without specifying the relationships among these
types. The base unit can of course be anything which is sensible for the annotations
being presented; research concentrating on aspects of the speech may wish to use
phonetic transcription or regular short spans of the speech, for instance, whereas for
some pragmatics research, the base unit might more simply be complete dialogue
turns.

However, not all linguistic theories lead to tree-structured codes. The more
generic lattice is quite common; it is useful for representing, among other things, re-
entrancy in grammatical structure and the relationships among possible words heard
in speech recogniser output. Taylor et al. (1999) additionally argue for the relevance
of parallel, related lists where the mapping between the lists is many-to-many but
preserves the order of the elements in each. Although it may seem fairly harmless to
have tools which do not support the full range of codings which one might wish to
perform, they can be subtly damaging to linguistic theory. Users will often maintain
polite fictions about their theories for the sake of the support which the software
provides (for instance, treating dialogue moves as if they segment utterances, even
though this is incorrect in the case of sentence completions). It is important for tools
to support structures which are theoretically-motivated and not just those which are
easy to implement. As theories develop and as the relationships among annotations
becomes better understood, theories can change; for instance, in figure one, there may
be a relationship between placement of disfluencies and syntactic structure which is
yet to be discovered. Tools should therefore allow for the user to discover, formalize,
and add new structures to the data, as suggested by ATLAS.ti.

Fourth, despite the inadequacy of tree-structures for linguistic annotation,
software which treats tags as completely unstructured mark-up over spans of speech
(c.f., Xwaves) or of transcription (c.f., GATE) is unhelpful. The key to providing
good support is using a data model which humans can understand. Two examples
will suffice to show that structure is important to human users. First, think of the data
analyst wishing to know, for instance, how prosody and dialogue structure are related.
His research questions might include whether prosodic features differ at game-internal
move boundaries from those at game boundaries, and whether the intonation of a
reply move is affected by the type of the enclosing game. Since the analyst’s
questions are formed around the structure which he perceives in the data, the most
natural way for him to pose these queries in the interface is by reference to that
structure. This suggests that structured data models are important for end users, at
least those with some theoretical interests. (Those who only wish to train on the
statistical patterns in the data can do so without phrasing specific queries or
visualizing the results.) Second, structure is also important earlier on, during the
development of support tools. Software developers attempting to write usable
interfaces to the data need to understand the structure which users will be expecting to
see. Data sets where this structure is not reflected in the data manipulation and
display methods imposes an extra burden on the human because it requires that
information to be carried in the head.

Although for the sake of the humans working with the data, good support for
linguistic annotation should include some specification of the data’s structure, this
structure need not necessarily be represented in the data’s file format. One can build
access methods to unstructured data which effectively impose the structure between
the user and the data itself. Conversely, having structure present in the file format
does not necessarily help the user unless the access methods also reflect that structure.

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 8

The important thing is for the human interface to the data to be structured as similarly
to how they think of the data as possible. However, there is a good argument for
making the structure at least discernible from the file format used to store the data.
People like file formats which are inspectable, especially when they are writing
software tools. Inspectable file formats at least give hints about how to work with the
data efficiently and the chance of getting around the data model if it happens not to be
as intuitive as the designer hoped. In addition, most access to the data will divide it
along structural lines, and so computationally, sometimes having the structure present
can improve efficiency. Inspectable file formats are not always possible  one of
their drawbacks is that they take up more space  but a structured model of the data
ought to reside somewhere, and there are benefits to reflecting it in the data format
itself.

Note that, despite the limitations of current annotation support, the answer is not
to build one integrated tool which supports all of the possible functions which every
speech data user could possibly want. The needs of different kinds of research are so
varied that such a tool would be unnecessarily cumbersome. In addition, some user
functions, such as statistical analysis and display or annotation of individual
properties based on the speech and not on some form of transcription, are so well
supported by commercial software that a new, integrated tool would be very unlikely
to supplant the current ones. Others, such as visualization and machine learning, may
not yet be so well-supported, but are being developed in other disciplines. It is only
the core functions which are currently poorly supported  adding linguistic
annotations to a data source, displaying them, and manipulating, extracting or
counting annotations which fit some given description. Implementors have shirked
away from implementing general purpose tools which allow one to specify complex
structures for the data because historically this has been difficult. Single structures
are of course easier to represent and handle. In particular, algorithms for dealing with
tree structures are well-developed. Alternatively, with unstructured tags there is no
structure to represent, and at least then data can be maintained quite simply using
standard storage techniques such as tries or hash tables. However, the World Wide
Web Consortium (W3C) is now promoting a reasonable representational
infrastructure for working with structured data in the form of XML.

5. XML: A formal language for structured data representation
The Extensible Markup Language (XML) (Bray, Paoli, & Sperberg-McQueen,

1998), a development of the Standard Generalised Markup Language (SGML)
(Goldfarb, 1990), is a meta-language for defining markup languages. A markup
language is a way of annotating the structure of a class of text documents. XML is
not same kind of language as the better known Hypertext Markup Language (HTML).
HTML is a mark-up language which web browsers know how to interpret, whereas
XML is a language in which languages like HTML can be formally defined. In XML,
structural annotations are represented by means of tags, or elements, representing the
information by virtue of their names and the attribute/value pairs associated with the
element. For instance, the following example shows one way of marking up an XML
element indicating the scope of a disfluency over an orthographic transcription of the
speech. In the example, the XML markup is given in bold face. Cough and disf are
the names of elements, where cough is intended to be interspersed with the
orthographic transcription and disf, to operate over it. Type is the name of an attribute
for the disf element, and "replacement", the value for that attribute:

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 9

(1) Go <cough/> <disf type="replacement"> aro- above </disf> the swamp.
Although not an absolute requirement when using the language, XML users can

specify a document-type definition (DTD) which formally defines the tags which are
allowable within a particular text and the allowable relationships among the different
kinds of tags. One particularly popular DTD defines HTML, but DTDs can be written
to define any document type required. For instance, when marking up disfluencies
along Levelt’s (1989) theory, one might wish to specify that the disfluency should
contain a reparandum, followed by a moment of interruption, followed by an optional
editing term, followed by a repair. This structure can be specified in the DTD by
means of a context free grammar in which one specifies the allowable contents of any
given type of element. Since each element has its own content model, DTDs specify
a document’s structure by hierarchical decomposition, starting with an element
covering the entire document.

 Figure 2: Stand-off annotation for the data in figure one.

Although the main structure represented in a DTD is hierarchically
decomposable, as is much of the structure proposed by individual linguistic theories,
it is perfectly possible to represent non-hierarchical relationships among tags. For
markup which has no normative rules about what tags a document will include or
where the tags will appear, but where tags do not "cross" each other by requiring
different decompositions of the same basic material, users can simply fail to specify a
DTD. This is especially useful whilst developing a systematic coding scheme. More
complex arrangements can be achieved through the use of stand-off annotation
(Thompson & McKelvie, 1997). In this approach, each data stream and each level of
annotation is kept as separate XML coded files and aligned using links between
elements which convey the intended structure. For instance, basic syntactic,
intonational, disfluency, and dialogue structure annotation could be represented over

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 10

the orthographic transcription in the example using stand-off annotation, as shown in
figure two. In the figure, the syntax href="B_word_file#id(B1)" is a link to the
word element with the id "B1" in the file B_word_file. This representation
expresses the structure that dialogue games are made up of dialogue moves by having
the game element point to move elements rather than pointing to word elements
directly. Annotators whose do not wish to presuppose theoretical relationships such
as the one embodied in this choice, are, of course, free to arrange the links among
their elements differently. However, where such relationships are known to hold
because of the theory underlying the annotation, it is undoubtedly easier to work with
the data when the relationships are explicitly represented.

Although XML was developed for use in text formatting, stand-off annotation
makes it possible to attach annotation not just to some form of orthographic
transcription, but to some more general representation of the data, such as the timeline
for the underlying speech. Note that in the data represented in figure one, the
orthographic transcription refers to time stamps from the speech. Although in the
example, all of the annotation is attached to the transcribed words or higher level
phenomena, one can just as easily attach annotations directly to the speech timeline
itself by using the same kind of representation adopted for the orthographic
transcription. Of course, if one’s data has video information synchronized with the
speech, this representation will also serve for representing video annotations.

Although annotations can be stored using this representation, there is nothing in
the XML shown which tells a support tool where to find external files in order to, for
instance, play the speech or show the scope of an annotation against a display of a
waveform. Speech and video could best be integrated into an XML data set if instead
of relying on an external file with its own format they were also represented in XML.
This would, however, take rather more diskspace than using one of the more
traditional formats! The most likely solution is to provide information for processing
the speech (such as how to put together the given start and end points into function
calls for playing it) in a corpus header, making the information clear enough that
applications can make use of it.

6. XSL: a formal language for representing formatting information
XML is designed to be machine-readable. Ideally, it would rarely (if ever) be

inspected directly. The Extensible Stylesheet Language (XSL) has been developed to
facilitate human-readable display of XML-encoded data. XSL has two parts: XSL
Transformations (XSLT), and XSL Formatting (XSLF). XSLF consists of definitions
specific to the typesetting of documents, and therefore is of little importance for
linguistic annotation. XSLT, described in (Clark, 1999), is simply a language for
defining transductions with XML data as input. Specifications expressed in XSLT are
called stylesheets. A stylesheet can be used, for instance, to obtain HTML from any
document conforming to the Text Encoding Initiative’s DTD for novels. The
transduction specified by this stylesheet might substitute an <H1> tag for the title,
<H2> tags for chapter headings, and so on. Although this is a common use for XSLT,
the transduction output can take any arbitrary form. Thus, other stylesheets for the
same input might create a table of contents or a text-only list of words in the order in
which they appear in the text. XSLT can also be used to transduce XML data into
XML conforming to a different DTD, modifying the structure of the existing data.

Stylesheets in XSLT can be defined to work over any XML-encoded input.
XSLT works by listing templates for the tags in a particular document which embody

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 11

production rules for dealing with the data. Each template defines both requirements
for the template to be considered a match and the output which matches should
produce. XSLT includes ways of defining global and local variables so that the exact
output of a template can rely on the input, either from the template’s match or from
XML which has previously been processed. Templates in a stylesheet are applied in
order of occurrence starting with the top element in the document. There is a
mechanism for top-down left-to-right traversal of the input document hierarchy, and a
default rule for unmatched elements.

7. Adapting XML and XSL for linguistic annotation
XSL is still under development. In addition, the main community of XML and

XSL users will always have somewhat different needs than people using them to work
with spoken language. As a result, there are a number of extensions to the current
versions of XML and XSL which are required for linguistic work, some of which can
be expected to occur in the main community and some of which must be provided
within this one.

First, XSLT currently does not allow for any way of accessing the DTD
structure of the input document. This means, for instance, that there is no way in the
language to obtain a list of attributes for a particular tag. This makes writing style
sheets cumbersome, and requires different style sheets even for very similar
document types. Allowing access to the input DTD is a change with the W3C intends
to make (Clark, 1999).

Second, XSLT is essentially a programming language, but a non-obvious one
because the application order and precedence of the templates is rather complicated.
This makes it somewhat difficult to write stylesheets, especially for those users
without computational backgrounds. However, this difficulty presents itself as much
outside the speech and language community as within it. Stylesheets are likely to
develop into something easier to work with even without our attention to the problem,
with software support to make them easier to write. Even as they stand, they are still
an improvement over the alternative, which is having no formal language for
decoupling data and display.

Third, because XSLT must match templates to parts of the document it is
processing, it includes a formal query language for XML, which performs these
matches. This query language currently focuses on detecting hierarchical structures
within the document, in line with the most frequent applications for XML. Thus for
strictly hierarchical linguistic annotations, the query language already expresses
structure the human user can work with. The problem comes in dealing with
linguistic annotations which cover several conflicting hierarchies or which are more
accurately described using different basic structures. If people are to be able to
extract meaningful information from the data or to write stylesheets for processing it,
the query language must allow them to express the structures native to the data. Since
speech annotations at their most basic at least usually have temporal ordering, it
should also allow the expression of temporal relationships among the tags, especially
where they are otherwise unstructured. Thus linguistic annotation requires the
specification of a more flexible query language than is likely ever to be included in
mainstream XML developments. Similarly, since the traversal mechanism for the
XSLT transduction process is based on top-down, left-to-right processing, for
linguistic applications which deviate greatly from the hierarchical norm, new traversal
mechanisms may be more appropriate. Despite XML’s privileging of tree structures,

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 12

XML still provides a better foundation for the model of other data structures than do
other architectures.

Finally, XSLT does not and is never likely to include the kind of support for
interaction with a document via a user interface which is required for editing and
coding. XSLT can be used to transduce the data into, for instance, objects in an
object-oriented programming language which can then be manipulated in an interface
and transformed back. However, for most XML applications there is no need for a
standard language in which such an interface can be defined. It is nonetheless
possible to define one. There are a limited number of well-supported techniques
which one might use for interacting with displayed data, such as various kinds of
menus, pop-up windows, and toolbars. Annotations themselves can be classified
using a fairly small set of mathematical relationships expressing how they work over
the data and over other annotations. This will certainly make it possible to specify
coding and display interfaces abstractly. In fact, there are already experiments in
generating usable coding interfaces for annotations automatically based on the coding
scheme’s DTD.9

8. Conclusions
Despite these further requirements, XML and XSL together provide a solid but

flexible basis for working with linguistic data. XML is an inspectable file format,
closely related to one which is already sometimes used for the annotation of
transcribed speech, and allows for integration with external files and external
processing routines. XML is sufficient for representing linguistic data as long as
stand-off annotation is employed. XSL can be used for transduction to display
outputs and for transforming the data to new structures as they are discovered. DTDs
provide sufficient structure for querying the data and building transductions for data
display and export when the tags form one or more hierarchies; more complex
structures require some data modelling over the top of currently supported structures,
but should still be easier to support upon this basis than upon a completely
unstructured tag set. No current XML developments aid the formal specification of
interfaces which allow the user to change XML data, but there is no work on such
specifications for any other data encoding, either. None of the rival encodings to
XML which have been used for linguistic data combine flexibility with formality of
structural specification to the same degree.

In addition to the flexibility and structure which XML provides, XML has the
advantage of already being in widespread use. It is increasingly being adopted as a
data format for import and export in existing packages. There is every reason to
believe that XSL will share XML’s success. Just the fact that these languages are
applicable standards for a wider community is reason enough for their adoption for
linguistic annotation. Using them makes it unnecessary to develop a new language
before the relationships between annotations in a particular corpus can be expressed.
When developing languages from scratch, it is easy to get the essential basic
properties wrong. In addition, because the community of XML users is much larger
than the community of people who wish to perform linguistic annotations, XML is
and will continue to be supported by a much better set of basic software tools than
anyone in the linguistics community would be able to provide. For instance, although
individual projects would be hard-pressed to provide such software for their own

9 Richard Tobin and Henry Thompson, personal communication.

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 13

formal languages, a number of XML parsers and basic handling libraries already
exist, along with graphical editors for DTDs, style sheets, and XML conformant to
any given DTD.10 XSL is itself an XML language, and developments within the W3C
suggest that DTDs may themselves be restructured to be XML-conformant,11 leaving
open the possibility of writing editors for DTDs and stylesheets using XML
technology itself. These tools cover the full range of platforms to which the varying
user communities have access, and are expected to continue to do so. Although
familiarising oneself with pre-existing formats and software takes time, using
standard, widespread languages and tools is more efficient in the long run.

9. References
 Bakeman, R., & Gottman, J. M. (1997). Observing Interaction: An

Introduction to Sequential Analysis. (second ed.). Cambridge: Cambridge University
Press.

 Bard, E., Anderson, A., Sotillo, C., Aylett, M., Doherty-Sneddon, G., &
Newlands, A. (in press). Controlling the intelligibility of referring expressions in
dialogue. Journal of Memory and Language.

 Beckman, M. E., & Jun, S.-A. (1996). K-ToBI (KOREAN ToBI) Labeling
Conventions (Working Papers in Phonetics (WPP) 966). Los Angeles, CA, USA:
Ucla.

 Bray, T., Paoli, J., & Sperberg-McQueen, C. M. (1998). Extensible Markup
Language (XML) Version 1.0: http://www.w3.org/TR/REC-xml.

 Carletta, J. C., Isard, A., Isard, S., Kowtko, J., Doherty-Sneddon, G., &
Anderson, A. (1997). The reliability of a dialogue structure coding scheme.
Computational Linguistics, 23(1), 13-31.

 Chinchor, N. A. (1998). Overview of MUC-7/MET-2. In N. A. Chinchor
(Ed.), Proceedings of the Seventh Message Understanding Conference (MUC-7) . San
Diego, CA: Science Applications International Corporation.

 Clark, J. (1999). XSL Transformations (XSLT) Version 1.0:
http://www.w3.org/TR/1999/07/WD-xslt-19990709.

 Cunningham, H., Wilks, Y., & Gaizauskas, R. (1996). GATE  a General
Architecture for Text Engineering, Proceedings of COLING-96. Copenhagen.

 Day, D., Aberdeen, J., Hirschman, L., Kozierok, R., Robinson, P., & Vilain,
M. (1997). Mixed-Initiative Development of Language Processing Systems, Fifth
Conference on Applied Natural Language Processing . Washington D.C., U. S. A.:
Association for Computational Linguistics.

 Doherty-Sneddon, G., Anderson, A. H., O’Malley, C., Langton, S., Garrod, S.,
& Bruce, V. (1997). Face-to-Face and Video Mediated Communication: A
Comparison of Dialogue Structure and Task Performance. Journal of Experimental
Psychology: Applied, 3(2), 105-125.

 Eggins, S., & Slade, D. (1997). Analysing Casual Conversation. London and
Washington: Cassell.

10 See http://www.oasis-open.org/cover/publicSW.html.
11 See http://www.w3.org/, cf. schemas.

Readings in Corpus Linguistics, ed. G. Sampson and D. McCarthy, London and NY:
Continuum International, 2002. Originally circulated on the web in 2000.

 14

 Flammia, G., & Zue, V. (1995). N.b.: A Graphical User Interface for
Annotating Spoken Dialogue. In J. Moore, M. Walker, M. Hearst, L. Hirschman, &
A. Joshi (Eds.), Working Notes from the AAAI Spring Symposium on Empirical
Methods in Discourse Interpretation and Generation (pp. 40-46). Palo Alto: AAAI.

 Goldfarb, C. F. (1990). The SGML Handbook: Clarendon Press.

 Gottman, J. M. (1979). Marital interaction: Experimental investigations. New
York: Academic Press.

 Jurafsky, D., Shriberg, L., & Biasca, D. (1997). Switchboard SWBD-DAMSL
Shallow-Discourse-Function Annotation Coders Manual, Draft 13 (Technical Report
97-02): University of Colorado Institute of Cognitive Science.

 Levelt, W. J. M. (1983). Monitoring and self-repair in speech. Cognition, 14,
41-104.

 Levelt, W. J. M. (1989). Speaking: From Intention to Articulation. Boston,
MA, USA: MIT Press.

 Mayo, C., Aylett, M., & Ladd, D. (1997). Prosodic Transcription of Glasgow
English: An Evaluation Study of GlaToBI. In A. Botinis, G. Kouroupetroglou, & G.
Carayiannis (Eds.), Proceedings of an ESCA Workshop: Intonation: Theory, Models
and Applications (pp. 231-234). Athens: ESCA and The University of Athens.

 Shriberg, E., Bates, R., Stolcke, A., Taylor, P., Jurafsky, D., Ries, K., Coccaro,
N., Martin, R., Meteer, M., & Van Ess-Dykema, C. (1998). Can Prosody Aid the
Automatic Classification of Dialog Acts in Conversational Speech? Language and
Speech, 41(3-4), 439-487.

 Silverman, D. (1993). Interpreting qualitative data : methods for analysing
talk, text and interaction. London: Sage.

 Silverman, K., Beckman, M., Pitrelli, J., Ostendorf, M., Wightman, C., Price,
P., Pierrehumbert, J., & Hirschberg, J. (1992). TOBI: A standard for labeling English
prosody, International Conference on Speech and Language Processing (ICSLP) .
Banff.

 Sperberg-McQueen, C. M., & Burnard, L. (1994). TEI Guidelines for
Electronic Text Encoding and Interchange (P3). Chicago and Oxford:
ACH/ACL/ALLC Text Encoding Initiative.

 Taylor, P., Black, A., & Caley, R. (1999). Heterogeneous Graphs as a
Mechanism for Representing Linguistic Information (unpublished manuscript).
Edinburgh: CSTR, University of Edinburgh.

 Thompson, H. S., & McKelvie, D. (1997). Hyperlink semantics for standoff
markup of read-only documents, Proceedings of SGML Europe.

 Weitzman, E. A., & Miles, M. B. (1994). Computer Programs for Qualitative
Analysis. Thousand Oaks CA: Sage.

