
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the Efficiency of Recurrent Neural Network Optimization
Algorithms

Citation for published version:
Krause, B, Lu, L, Murray, I & Renals, S 2015, On the Efficiency of Recurrent Neural Network Optimization
Algorithms. in OPT2015 Optimization for Machine Learning at the Neural Information Processing Systems
Conference, 2015.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
OPT2015 Optimization for Machine Learning at the Neural Information Processing Systems Conference, 2015

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/on-the-efficiency-of-recurrent-neural-network-optimization-algorithms(1d513f35-0f22-466f-8447-b71a3a930591).html


On the Efficiency of Recurrent Neural Network
Optimization Algorithms

Ben Krause, Liang Lu, Iain Murray, Steve Renals
University of Edinburgh Department of Informatics

s1470305@sms.ed.ac.uk, llu@staffmail.ed.ac.uk,
i.murray@ed.ac.uk, s.renals@ed.ac.uk

Abstract

This study compares the sequential and parallel efficiency of training Recurrent
Neural Networks (RNNs) with Hessian-free optimization versus a gradient descent
variant. Experiments are performed using the long short term memory (LSTM)
architecture and the newly proposed multiplicative LSTM (mLSTM) architecture.
Results demonstrate a number of insights into these architectures and optimization
algorithms, including that Hessian-free optimization has the potential for large
efficiency gains in a highly parallel setup.

1 Introduction

Recurrent neural networks (RNNs) have achieved remarkable success in a number of machine learning
tasks including speech recognition (Robinson et al., 1996; Graves et al., 2013; Sak et al., 2014),
language modelling (Mikolov et al., 2010), image captioning (Vinyals et al., 2015; Xu et al., 2015),
and machine translation (Sutskever et al., 2014; Cho et al., 2014). However, training RNNs remains a
challenging optimization problem. The recursive nature of recurrent weight matrices can lead simple
gradient based algorithms to become unstable, or converge very slowly. Heuristics such as gradient
clipping (Pascanu et al., 2013) and specially designed architectures such as LSTM (Hochreiter
and Schmidhuber, 1997) have made RNNs work on difficult problems. However, these methods
generally require the use of small minibatches for efficient training, rendering them unable to fully
take advantage of highly parallelizable hardware such as GPUs. The Hessian-free optimization
algorithm has been used to train RNNs with much larger batch sizes (Martens and Sutskever, 2011;
Sutskever et al., 2011), allowing greater use of parallelization. However, it is non-trivial to compare
the efficiency of Hessian-free optimization with commonly used first order algorithms, because the
efficiency ratio of methods with different batch sizes is highly dependent on the hardware being used.
Additionally, second order methods tend to make larger but more computationally expensive updates
than first order methods. We compare Hessian-free optimization to gradient descent with gradient
norm clipping in both a stochastic and a large batch setting, using two metrics of efficiency: the
first proportional to runtime on fully parallelizable hardware, and the second proportional to runtime
on fully sequential hardware. Since the performance of RNN optimization is highly architecture
dependent, this study focuses on the widely used LSTM architecture, and the newly proposed
multiplicative LSTM architecture (Krause, 2015), which builds on the multiplicative RNN (Sutskever
et al., 2011).

The standard RNN architecture operates over a sequence of input and output pairs of T timesteps,
and predicts the output O(t) using the input I(t) as well as the previous hidden state H(t− 1), i.e.

H(t) = f (WhiI(t) +WhhH(t− 1)) (1)
O(t) = g (WohH(t)) (2)

where Whi,Whh and Woh are weight matrices, and f(·) is the hidden layer nonlinear activation
function (e.g. tanh), and g(·) denotes the output layer activation function (e.g. softmax). Training
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an RNN with stochastic gradient descent is difficult due to the vanishing/exploding gradient problem
(Bengio et al., 1994; Hochreiter et al., 2001), as the gradient tends to decay or explode exponentially
as it is back-propagated through time. This problem makes it difficult for RNNs to learn long-term
dependencies, which has previously been addressed through choice of architecture and optimization
algorithms. LSTMs are popular because their gated units control the transition of memory states,
making them less susceptible to vanishing gradient problems. Multiplicative RNNs (mRNNs,
Sutskever et al., 2011), on the other hand, rely on the strength of 2nd order algorithms to handle
pathological curvature, and allow complex transitions between states by factorizing the recurrent
weight matrix in a standard RNN as

Whh = Whm diag(WmiI(t))Wmh. (3)

A multiplicative LSTM – a combination of mRNNs and LSTM – was shown to be especially
successful at the task of character level modelling (Krause, 2015). This paper presents further insights
on optimizing these RNN architectures.

2 First-order and second-order optimization of RNNs

A learning algorithm for RNNs must be able to compensate for vanishing and exploding gradients to
learn long range dependencies and keep updates stable. A simple approach is first-order stochastic
gradient descent with gradient norm clipping (Pascanu et al., 2013), which reduces the step size in
the direction of the gradient when the magnitude of the gradient exceeds a certain threshold. While
this method only explicitly addresses the exploding gradient problem, an LSTM architecture can be
used in combination with this optimization method to address vanishing gradients.

Second-order optimization approaches take advantage of the full curvature matrix, which can be used
to appropriately rescale the gradient according to the second derivatives. As the second derivatives
are expected to decay and explode at a similar rate to first derivatives (Martens, 2010), they can
provide a sensible rescaling to account for the training difficulties of RNNs. In Newton’s method, the
error function F(·) is approximated by the second order Taylor series expansion around the current
estimate of the model parameters θ, and the update of the model parameters ∆θ is obtained as

∆θ = −H(F(θ))−1∇F(θ). (4)

However, storing and inverting the curvature matrix H(F(θ)) is inefficient and computationally
infeasible for large neural networks. Hessian-free optimization uses the conjugate gradient method to
exploit the potentially sparse and low rank structure of the curvature matrix to solve the linear system

H(F(θ))∆θ = −∇F(θ), (5)

instead of directly computing Eq. (4). Because the conjugate gradient method is only guaranteed to
converge for a positive semi-definite matrix, the Hessian matrix H(F(θ)) can be approximated using
the Gauss–Newton matrix (G) which only includes positive curvature. In this case, matrix-vector
products (Gv) required by the conjugate gradient method can be computed efficiently using the
method derived by Schraudolph (2002). However, the matrix G is poorly conditioned, which makes
conjugate gradients converge far outside the region where the local Taylor series approximation
is accurate. Damping methods such as Tikhonov damping and structural damping can be used to
improve the condition of the matrix G (Martens and Sutskever, 2011).

Batch sizes: Batching can be used to train RNNs by splitting the training data into sequences of fixed
length. For both first and second order algorithms, Bg sequences are used in parallel to approximate
the gradient. In Hessian-free optimization, Bc training examples must also be used for computing
Gv products during conjugate gradient iterations. Since there are many conjugate gradient iterations
per gradient computation, Bg is typically several times larger than Bc because it is relatively cheap
to get a more accurate approximation to the gradient. While first order methods must rely on many
small updates to converge, Hessian-free optimization can use larger batch sizes. An accurate local
approximation of the curvature allows large updates, justifying the cost of processing a large batch.

Batch size greatly affects the efficiency and effectiveness of RNN optimization. Small batch sizes give
noisy estimates of the derivative information cheaply, which can be very efficient if there is limited
variance in the gradient across training examples. Larger batches give better derivative estimates, but
also require more computation. However, the cost of this extra computation can be relatively cheap,
as batch updates are easily parallelized.
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Optimization methods for neural networks are traditionally evaluated by measuring the convergence
rate over the number of training epochs. However, this is not a sensible approach for comparing
first and second order methods as well as approaches with different batch sizes, as the number of
epochs will not be a consistent measure of the computation time required. Furthermore, the ratio of
computational efficiency of algorithms of different batch sizes will depend highly on the hardware
being used. For these reasons, we derive two new units of training computation proportional to
computation time using fully sequential and fully parallelized operations for an RNN of fixed size.

Sequential computation cost measures: In a computer that can only perform sequential operations,
the computation time will be proportional to the number of floating point operations performed. We
reflect this extreme with the number of batch dependent forward passes, PD, which is proportional
to the amount of computation in a forward pass through a single training sequence of fixed length
for an RNN of fixed size. For a first order gradient algorithm, one forward pass and one gradient
computation must be performed for It training iterations. Since a gradient computation requires
approximately twice the computation of a forward pass,

PD = 3ItBg, for first order methods.

For Hessian-free optimization, the gradient must also be computed at each training iteration, and
additionally, a Gv product must be performed for Ic conjugate gradient iterations. A Gv product
requires approximately 4 times the computation of a forward pass, so

PD = 3ItBg + 4IcBc, for Hessian-free methods.

Parallel computation cost measures: On the opposite end of the spectrum would be a computer
that has enough processors to fully parallelize batches so that computation time is independent of
batch size. To reflect this scenario, we measure the number of batch independent forward passes, PI ,
in which the batch size terms become irrelevant:

PI = 3It, for first order methods
PI = 3It + 4Ic, for Hessian-free methods.

3 Experiments

Experiments were carried out to compare the efficiency and effectiveness of Hessian-free optimization
compared with a variant of gradient descent with norm clipping for small and large batch sizes for
LSTM and mLSTM RNN architectures, trained on sequences of length 200. We compared stochastic
Hessian-free optimization (Kiros, 2013) (SHF) with Bg =320 and Bc =32, large batch Hessian-free
optimization (BHF) withBg =14000 andBc =3500, stochastic gradient descent (SGD) withBg =32,
and large batch gradient descent (BGD) with Bg = 3500. The training and validation error were
measured over training as a function of our computational cost measures PI and PD. We benchmarked
these architectures and optimization methods with the task of character level sequence modelling.
Character level models are challenging to optimize, and push the limits of fitting algorithms, making
them a good option for benchmarking advanced optimization methods. These experiments were run
on a subset of the Penn Treebank corpus (catalog.ldc.upenn.edu/LDC99T42), containing
the first 2.8 million characters for training, and approximately 200,000 for validation (same data set
as used in (Krause, 2015)). These experiments used the Penn Treebank corpus in its raw form, with
no preprocessing, and numbers and rare words included. The LSTM and mLSTM had approximately
220,000 and 215,000 trainable parameters respectively.

Results: Convergence plots for training error as a function of training computation are presented
in Figure 1. Validation error was also obtained, however it is not included in the graphs. SHF and
BGD for LSTM were too inefficient to fully converge in the time allotted. mLSTM with stochastic
Hessian-free optimization achieved the best validation error of 1.82 bits/char. Other runs for both
mLSTM and LSTM that converged all had validation errors that ranged from 1.89-1.93 bits/char.

4 Discussion

There are several important insights from these experiments. The first is that Hessian-free optimization
was far more efficient than gradient descent at the batch level, regardless of the architecture being
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Figure 1: Training errors (bits/char) for LSTM over batch independent (upper left) and batch
dependent (upper right) computation, and mLSTM over batch independent (lower left) and batch
dependent (lower right) computation.

trained. This suggests that the curvature in the error surface was significant, and that enforcing
conjugacy of the search directions with respect to the curvature matrix was greatly increasing the
convergence rate. For LSTM, there was very little difference in the batch independent convergence
rate of BGD and SGD, suggesting that the gradient of LSTM can be well approximated with a few
examples. This may partially explain why LSTM has traditionally been easy to optimize with first
order methods. In mLSTM on the other hand, the batch independent convergence rate was similar for
BGD and SGD at the beginning of training, but BGD began to converge faster fairly early on. This
suggests that the gradient of mLSTM has a higher variance across training examples than LSTM.

There was an enormous difference in the performance of SHF optimization for LSTM and mLSTM.
In LSTM, SHF failed to fully converge, suggesting a greater variance in the curvature across training
examples for LSTM. In roughly the same number of training iteration, SHF applied to mLSTM
achieved by far the best training and generalization results in these experiments. It is likely that the
large stochastic updates observed in this run created a sort of weight noise that improved regularization,
and possibly helped avoid local minima.

An important comparison can be drawn from SGD, which is used in nearly all LSTM experiments,
and BHF, which was more than an order of magnitude more efficient on this dataset with full
parallelization. While full parallelization is not a realistic goal, large compute clusters and multi
GPU machines can often come close to this. Overall, these experiments highlight several important
differences in training LSTMs and mLSTMs with first and second order algorithms. The results
suggest that Hessian-free methods have the potential to be much more efficient on highly parallelizable
hardware.
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