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Test adequacy metrics defined over the structure of a program, such as Modified Condition and Decision Coverage (MC/DC),
are used to assess testing efforts. Unfortunately, MC/DC, can be “cheated” by restructuring a program to make it easier to
achieve the desired coverage. This is concerning, given the importance of MC/DC in assessing the adequacy of test suites
for critical systems domains. In this work, we have explored the impact of implementation structure on the efficacy of test
suites satisfying the MC/DC criterion using four real world avionics systems.

Our results demonstrate that test suites achieving MC/DC over implementations with structurally complex Boolean ex-
pressions are generally larger and more effective than test suites achieving MC/DC over functionally equivalent, but struc-
turally simpler, implementations. Additionally, we found that test suites generated over simpler implementations achieve
significantly lower MC/DC and fault finding effectiveness when applied to complex implementations, whereas test suites
generated over the complex implementation still achieve high MC/DC and attain high fault finding over the simpler im-
plementation. By measuring MC/DC over simple implementations, we can significantly reduce the cost of testing, but in
doing so we also reduce the effectiveness of the testing process. Thus, developers have an economic incentive to “cheat”
the MC/DC criterion, but this cheating leads to negative consequences. Accordingly, we recommend organizations require
MC/DC over a structurally complex implementation for testing purposes to avoid these consequences.
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1. INTRODUCTION
Test adequacy metrics defined over the structure of a program, such as statement coverage, branch
coverage, and decision coverage, have been used for decades to assess the adequacy of test suites.
Of particular note is Modified Condition and Decision Coverage (MC/DC) criterion [Chilenski and
Miller 1994], as it is used as an exit criterion when testing highly critical software in the avionics
industry. For certification of such software, a vendor must demonstrate that the test suite provides
MC/DC of the source code [RTCA 1992].
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Unfortunately, it is well known that structural coverage criteria, including MC/DC, can easily be
“cheated” by restructuring a program to make it easier to achieve the desired coverage [Rajan et al.
2008]. This is concerning: a straightforward way to reduce the difficulty of achieving MC/DC over
a program is to introduce additional variables to factor complex Boolean expressions into simpler
expressions.

We have examined the effect of program structure transformations by comparing test suites nec-
essary to cover programs consisting of simple decisions (consisting of at most one logical operator)
versus programs in which more complex expressions are used. We refer to these versions as the
non-inlined and inlined programs, respectively.

To understand the effect of program structure on the MC/DC criterion, we have focused on four
dimensions—the cost to produce a MC/DC-satisfying test suite, the fault finding effectiveness of the
produced suite, the ability of that suite to cover other structural representations of that system, and
the effectiveness of that suite when applied to other representations. To that end, we have produced
inlined and non-inlined implementations of four real-world avionics systems, generated test cases
over those structures, generated hundreds to thousands of mutants, and used those mutants and
various test oracles to assess fault finding when those tests are executed.

From our results, we can conclude that program structure has a dramatic effect on not only the
coverage achieved, but also the cost and fault finding effectiveness of the testing process. Test
suites achieving MC/DC over inlined implementations are generally larger than test suites achiev-
ing MC/DC over non-inlined implementations, requiring 125.00%-1,566.66% more tests. While it is
clearly more expensive to achieve MC/DC over the inlined system, this effort yields fault finding im-
provements of up to 4,542.47%. Test suites generated over non-inlined implementations achieve sig-
nificantly less MC/DC when applied to inlined implementations, attaining 13.08%-67.67% coverage
on the more complex implementation. We also found that test suites generated over non-inlined im-
plementations cannot be expected to yield effective fault finding on inlined implementations, finding
17.88-98.83% fewer faults than tests generated and executed on the inlined implementation. On the
other hand, tests generated using the inlined implementation generally attained 100% MC/DC on
the non-inlined system, and found up to 5,068.49% more faults than tests generated and executed
on the non-inlined implementation.

Given that the inlined and non-inlined programs are semantically equivalent, the degree to which
this simple transformation influences the effectiveness of the MC/DC criterion is cause for concern.
We believe these results are concerning, particularly in the context of certification: we have demon-
strated that by measuring MC/DC over simple implementations, we can significantly reduce the
cost of testing, but in doing so we also reduce the effectiveness of testing. Thus developers have an
economic incentive to “cheat” the MC/DC criterion (and by building tools similar to those used in
our study, the means), but this cheating leads to negative consequences.

Based on these results, we strongly recommend that organizations using MC/DC metric in their
software development efforts measure MC/DC on an inlined version of the system under test. While
developers may choose to create non-inlined versions of the program with numerous intermediate
variables for clarity or efficiency, such programs make it significantly easier to achieve MC/DC, with
negative implications for testing effectiveness. In the absence of a metric that is robust to structural
changes in the system under test, the use of tools, similar to those used in our study, can significantly
improve the quality of the testing process.

This work is an expansion of two previous papers [Rajan et al. 2008] in which we studied the
effect of program structure on coverage of MC/DC obligations [Rajan et al. 2008; Heimdahl et al.
2008]. In the first study, we examined how well a test suite generated to achieve maximum achiev-
able coverage over a non-inlined system achieves coverage over an inlined system [Rajan et al.
2008]. Although this coverage result is important, the utility of a coverage metric is ultimately de-
fined by how well test suites satisfying that metric are able to detect faults in the code. Thus, in the
second study, we examined the effectiveness of test suites generated over inlined and non-inlined
implementations on a set of seeded mutations [Heimdahl et al. 2008]. This report repeats those
experiments using an improved experimental framework and updated definitions of the MC/DC
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Version 1: Non-inlined Implementation

expr_1 = in_1 or in_2; //stmt1
out_1 = expr_1 and in_3; //stmt2

Version 2: Inlined Implementation

out_1 = (in_1 or in_2) and in_3;

Sample Test Sets for (in 1, in 2, in 3):

TestSet1 = {(TFF),(FTF),(FFT),(TTT)}
TestSet2 = {(TFT),(FTT),(FFT),(TFF)}

Fig. 1. Example of behaviorally equivalent implementations with different structures

obligations. We have conducted more rigorous studies, including: generating many more test suites
for each system structure using more advanced test generation techniques, using most—if not all—
mutants instead of a small random sampling, considering an additional type of test oracle—the
largest common oracle—and performing more thorough statistical analyses. Our expanded and re-
executed studies confirm the trends observed in the results of the previous work in a more rigorous
fashion, and allow us to discuss the implications of our results in more detail. Additionally, we
have added a fourth analysis to our experiment studying the effect of using one structure for test
generation and another for test execution.

The remainder of the paper is organized as follows. In the next section, we provide background
on MC/DC and problems related to program structure. Section 3 introduces our experimental setup
and the case examples used in our investigation. Results and statistical analyses are presented in
Section 4. In Section 5, we summarize our findings and their implications for practice. Section 6
discussed threats to validity. Finally, Section 7 discusses related work and we conclude in Section 8.

2. BACKGROUND AND MOTIVATION
A test suite provides MC/DC over the structure of a program or model if every condition within a
decision has taken on all possible outcomes at least once, and every condition has been shown to
independently affect the decision’s outcome (note here that when discussing MC/DC, a decision is
defined to be an expression involving any Boolean operator).

Independent effect is defined in terms of masking, which means that the condition has no effect
on the value of the decision as a whole. As an example, consider the trivial program fragments in
Figure 1. The program fragments have different structures but are functionally equivalent. Version
1 is non-inlined with intermediate variable expr 1, and Version 2 is inlined with no intermediate
variables. Given a decision of the form in 1 or in 2, the truth value of in 1 is irrelevant if in 2
is true, so we state that in 1 is masked out. A condition that is not masked out has independent
effect for the decision.

Based on the definition of MC/DC, TestSet1 in Figure 1 provides MC/DC over program Ver-
sion 1 but not over Version 2; the test cases with in 3 = false contribute towards MC/DC of the
expression in 1 or in 2 in Version 1 but not over Version 2 since the masking effect of in 3
= false is revealed in Version 2.

In contrast, MC/DC over the inlined version requires a test suite to take the masking effect of
in 3 into consideration as seen in TestSet2. This disparity in MC/DC over the two versions can
have significant ramifications with respect to fault finding of test suites. Suppose the code fragment
in Figure 1 is faulty and the correct expression should have been in 1 and in 2 (which was
erroneously coded as in 1 or in 2). TestSet1would be incapable of revealing this fault since
there would be no change in the observable output, out 1. On the other hand, any test set providing
MC/DC of the inlined implementation would be able to reveal this fault.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 0, Pub. date: 2014.
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Input 3

Input 1

Input 2

Out 1

Fig. 2. Simulink model of example in Figure 1

Programs may be structured with significant numbers of intermediate variables for many reasons,
for example, for clarity (nice program structure), efficiency (no need to recompute commonly used
values), or to make it easier to achieve the desired MC/DC (MC/DC tests are easier to find if the
decisions are simple). The programs may be restructured automatically via machine transformation,
or they may be structured by the developers to improve program comprehension.

The potential problems with decision structure are not confined only to code. The move to-
wards Model-based Development in the critical systems community makes test-adequacy measure-
ment a crucial issue in the modeling domain. Coverage criteria such as MC/DC are being used in
conjunction with modeling tools such as Simulink [Mathworks Inc. 2015] and SCADE [Esterel-
Technologies 2004] for testing models. Currently, MC/DC measurement over models in these tools
is being done in the weakest possible manner [Mathworks Documentation 2015]. For example, Fig-
ure 2 is a Simulink model equivalent to the example in Figure 1. MC/DC of such models is currently
defined on a “gate level” (analogous to the MC/DC measurement over Version 1 in Figure 1). Since
there are no complex decisions in this definition of MC/DC, MC/DC measured this way is suscep-
tible to the masking problem discussed above, and test suites designed to provide MC/DC over the
models may therefore provide poor fault finding capability. Thus, the current approach to measuring
MC/DC over such models is cause for concern. For simplicity, in the remainder of this report, we
refer to a “model” or “program” as the “implementation” since the concerns discussed here are the
same regardless of whether we are discussing a model or a program.

Given the economic incentive to change implementation structure to ease certification, and the
natural tendency of developers to simplify system structure, we believe understanding how imple-
mentation structure impacts the effectiveness of the MC/DC criterion is worthwhile. In particular,
we are concerned that using a simpler implementation structure may be detrimental to the effec-
tiveness of the testing process. In particular, we would like to know how implementation structure
impacts (1) the coverage achieved by test suites built to satisfy MC/DC across differing implemen-
tation structures compare to one another, and (2) how constructing test suites to satisfy MC/DC for
different implementation structures impacts fault finding effectiveness.

3. STUDY OBJECTIVES AND DESIGN
To investigate how MC/DC is affected by the structure of an implementation, we explored three key
research questions:

— Question 1 (Q1): How does the implementation structure impact the cost, as measured by the
number of test inputs required, of achieving MC/DC?

— Question 2 (Q2): How does the implementation structure impact the effectiveness, as measured
by the number of faults detected, of test suites achieving MC/DC?

— Question 3 (Q3): How well do test suites generated over a structurally simple implementation
satisfy MC/DC for a semantically equivalent, but structurally complex implementation? Similarly,
how well do test suites generated over the structurally complex implementation satisfy MC/DC
for the simpler non-inlined implementation?
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— Question 4 (Q4): How effective are test suites generated over a structurally simple implemen-
tation at detecting faults in a semantically equivalent, but structurally complex implementation?
Similarly, how effective are test suites generated over the structurally complex implementation at
detecting faults for the simpler non-inlined implementation?

The first two questions address how varying implementation structure impacts two key questions
related to a test coverage criterion: how much does it cost?, and how effective are tests suites that sat-
isfy it? Such questions are relevant when assessing the practical differences of cost and effectiveness
that occur when varying the implementation structure. The third question is relevant in the context
of MC/DC’s role in certification of software. We would like to know if measuring coverage over a
structurally simple implementation (e.g., as represented in Simulink) instead of more structurally
complex implementation (e.g., as written by developers in C code) results in different measure-
ments, as lower coverage results may imply inadequate test data. A related question is whether the
source of the test suites impacts the effectiveness of those tests when those tests are executed against
a different structure. If tests are generated using a structurally simple implementation, will they be
effective at detecting faults in the structurally complex implementation?

Note that while the answers to these questions are likely to be related, as demonstrated by work
exploring the impact of test suite size and structural coverage on fault finding effectiveness [In-
ozemtseva and Holmes 2014; Namin and Andrews 2009], a practically significant relationship is
not guaranteed. It is trivial to construct small examples in which changing the structure has a strong
impact on fault finding effectiveness, the number of test inputs required, etc. However, it is possible
that—in practice—substantial differences in MC/DC correspond to only insignificant differences in
fault finding. It is, therefore, important to quantify the degree to which implementation structure can
impact the cost and effectiveness of test suites satisfying MC/DC in practice, as it is this information
that should drive decision making.

3.1. Choice of MC/DC Criterion
Chilenski investigated three different notions of MC/DC [Chilenski 2001], namely: Unique-Cause
MC/DC, Unique-Cause + Masking MC/DC, and Masking MC/DC. In this report we use Masking
MC/DC [Hayhurst et al. 2001] to determine the independence of conditions within a Boolean ex-
pression. In Masking MC/DC, a basic condition is masked if varying its value cannot affect the
outcome of a decision due to the structure of the decision and the value of other conditions. To
satisfy masking MC/DC for a basic condition, we must have test states in which the condition is not
masked and takes on both true and false values.

Unique-Cause MC/DC requires a unique cause—when a single condition is flipped, the result of
the expression changes—to independent impact. This means that, when faced with strongly-coupled
conditions in complex decision statements, there may be situations where no test can establish a
unique cause. Unique Cause + Masking MC/DC relaxes the unique cause requirement to all uncou-
pled conditions, and Masking MC/DC allows masking in all cases. Masking MC/DC is the easiest
of the three forms of MC/DC to satisfy since it allows for more independence pairs per condition
and more coverage test sets per expression than the other forms. In contrast, Chilenski’s analysis
showed that even though Masking MC/DC could allow fewer tests than Unique-Cause MC/DC, its
performance in terms of probability of error detection was nearly identical to the other forms of
MC/DC. This led Chilenski to conclude in [Chilenski 2001] that Masking MC/DC should be the
preferred form of MC/DC.

To better illustrate the definition of masking MC/DC, consider the expression A and B. To show
the independence of B, we must hold the value of A to true; otherwise varying B will not affect
the outcome of the expression. Independence of A is shown in a similar manner. Table I shows the
test suite required to satisfy MC/DC for the expression A and B. When we consider decisions with
multiple Boolean operators, we must ensure that the test results for one operator are not masked out
by the behavior of other operators. For example, given A or (B and C) the tests for B and C will
not affect the outcome of the decision if A is true. Table II gives one of the test suites that would
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Table I. Example of a
test suite that provides
Masking MC/DC over
A and B

A B A and B

T T T
T F F
F T F

satisfy masking MC/DC for the expression A or (B and C). Note that in Table II, test cases {2,4}
or {3,4} will demonstrate independence of condition A under Masking MC/DC. However, these
test cases will not be sufficient to show independence of A under Unique Cause MC/DC since the
values for conditions B and C are not fixed between the test cases.

Table II. Example of a test suite
that provides Masking MC/DC over
A or (B and C)

A B C A or (B and C)

F T T T
F T F F
F F T F
T F F T

3.2. Experimental Design
In our study, we performed the following steps for each case example:

— Generated inlined and non-inlined implementation versions: We transformed the implementa-
tion structure, creating one version with a high degree of expression complexity (inlined version)
and one version with a low degree of expression complexity (non-inlined version). This is de-
tailed in Section 3.4. Note that unless specified, the remaining steps are applied to both the inlined
and non-inlined version separately (e.g., separate mutant sets are generated for the inlined and
non-inlined versions).

— Generated mutants: We generated the full pool of mutants, each containing a single fault, for
each system. We then removed functionally equivalent mutants. (Section 3.5.)

— Generated tests satisfying the MC/DC criterion: We generated a set of tests satisfying the
MC/DC criterion. The JKind model checker [Hagen 2008; Gacek 2015] was used to generate
each set of tests, resulting in a test set with one test case for each obligation. (Section 3.6.)

— Generated reduced test suites: We generated 100 reduced test suites using a greedy reduction
algorithm. Each reduced test suite maintains the coverage provided by the full test suite. (Sec-
tion 3.6.)

— Selected oracles: We used two test oracles in our study: an output-only oracle considering all
outputs, and a maximum oracle considering all internal variables and all outputs. (Section 3.7.)

— Ran tests on mutants: We ran each mutant and the original case example using every test gener-
ated, and collected the internal state and output variable values produced at every step. This yields
raw data used for assessing fault finding in our study. (Section 3.8.)

— Assessed fault finding ability of each oracle and test suite combination: We determined how
many mutants were detected by every oracle and a reduced test suite combination. (Section 3.8.)

We generated test obligations, extracted concrete test cases from JKind counter-examples, and
executed the tests on the mutants using an in-house suite of tools designed for testing models written
in the Lustre synchronous language. This framework is open-source and freely available from
https://github.com/djyou/lustre.
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3.3. Case Examples
We used four industrial synchronous reactive systems developed by Rockwell Collins Inc. in our
experiment. Information related to these systems is provided in Table III. We list the number of
Simulink subsystems, which are analogous to functions, and the number of blocks, analogous to
operators. We also list the number of calculated expressions in the Lustre implementations.

Table III. Case example information. NI = non-inlined, I = inlined
# Simulink Subsystems # Blocks Lustre Expressions NI Lustre Expressions I

DWM 1 3,109 11,439 576 28
DWM 2 128 429 121 19

Vertmax Batch 396 1,453 417 31
Latctl Batch 120 718 129 20

All four systems were modeled using the Simulink notation from Mathworks Inc. [Mathworks
Inc. 2015] and were translated to the Lustre synchronous programming language [Halbwachs 1993]
to take advantage of existing automation. This is analogous to the automated code generation done
from Simulink using Real Time Workshop from Mathworks. In practice, Lustre would be automat-
ically translated to C code. This is a syntactic transformation, and if applied to C, the results of this
study would be identical.

3.3.1. Flight Guidance System. A Flight Guidance System (FGS) in an aircraft compares the
measured state of an aircraft (position, speed, and altitude) to the desired state and generates pitch
and roll-guidance commands to minimize the difference between those two states. The FGS consists
of the mode logic, which determines what lateral and vertical modes of operation are active at
any given time, and the flight control laws that are used to compute the pitch and roll guidance
commands. The two FGS systems used in this work, Vertmax Batch and Latctl Batch, describe the
vertical and lateral mode logic for the Rockwell Collins FCS 5000 flight guidance system family.

3.3.2. Display Window Manager. The Display Window Manager (DWM) models, DWM 1 and
DWM 2, represent two of the five major subsystems of the DWM of the Rockwell Collins ADGS-
2100, an air transport-level commercial display system. The DWM acts as a “switchboard” for the
system, routing information to the aircraft displays and managing the location of two cursors that
can be used to control applications by the pilot and copilot. The DWM must update the applica-
tions being displayed in response to user selections and must handle reversion in case of hardware
application failures. The DWM systems decide what information is most critical and moves this
information to the remaining displays.

3.4. Implementation Structure
For each case example, we generate two versions that are semantically equivalent, but syntacti-
cally different. We term these the inlined and non-inlined versions of the implementation, described
below.

3.4.1. Non-inlined Implementation Structure. In a non-inlined implementation, the structure of
the implementation is similar to the structure of the original Simulink model. Each signal from the
Simulink model has been preserved, resulting in a very large number of internal state variables, with
each internal state variable corresponding to a relatively simple expression. A small example of a
non-inlined implementation is given in Figure 3.

Unlike our previous studies exploring program structure [Rajan et al. 2008; Heimdahl et al. 2008],
in this study, the structure is flattened such that the implementation has only one Lustre node. In
Lustre, a node is a subprogram—a single callable block of code. If the model consists of multiple
nodes, all of the nodes are combined into a single node (i.e., the code of external functions is
imported into the calling block). This node flattening is conducted for compatibility purposes with
experimental infrastructure and does not impact the results of the study.
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node exampleProgramNode(input_1: bool;
input_2: bool;
input_3: int;
input_4: bool)

returns (output_1: bool);
var

internal_1: bool;
internal_2: bool;
internal_3: bool;
internal_4: bool;
internal_5: bool;
internal_6: bool;

let
internal_1 = input_1 AND input_2;
internal_2 = input_3 > 100;
internal_3 = internal_1 OR input_4
internal_4 = IF (internal_3) THEN internal_2 ELSE input_1;
internal_5 = input_3 > 50;
internal_6 = IF (internal_5) THEN internal_4 ELSE input_2;
output_1 = internal_6;

tel;

Fig. 3. Example non-inlined implementation.

3.4.2. Inlined Implementation Structure. As with the non-inlined implementation, in the inlined
implementation, the structure is first flattened such that the implementation has only one Lustre
node. Once this has been completed, we then inline most, but not all, of the intermediate variables
into the model. When inlining a variable, we substitute the expression corresponding to the variable
wherever the variable is referenced, and then remove the variable from the implementation (as it
is no longer referenced). This has the effect of (1) reducing the number of internal state variables,
as inlined variables are removed from the model, (2) increasing the complexity of expressions,
as inlined variables are substituted wherever they are referenced, and (3) increasing the number
of nested if-then-else expressions, as such expressions are often substituted into then and
else branches.

MC/DC is defined exclusively over traditional imperative structures (such as those
found in C, Java, etc.); we therefore restrict our inlining to prevent syntactic con-
structs impossible in imperative implementations from arising. In particular, we do
not place if-then-else expressions inside if conditions. In Lustre, a statement
of the form result = if (if (internal 1 and internal 2) then internal 3
else internal 4) then true else false) is a valid expression. In an imperative lan-
guage, the if condition would need to be contained in a separately evaluated expression. While
this is valid in Lustre implementations, it is impossible in imperative implementations, and would
prevent us from accurately measuring coverage over structural coverage criteria.

In Figure 4, we present an inlined version of the implementation from Figure 3. As we can see,
the inlined version has been reduced from five internal state variables to zero, with the set of ex-
pressions condensed to one, considerably more complex, expression. This expression illustrates
how inlining can increase complexity both in terms of Boolean/relational expressions and nest-
ing of if-then-else statements. For example, we see that the condition formerly represented
by internal 3 has been inlined, and the if-then-else expression formerly represented by
internal 4 has been nested inside another if-then-else statement. As we will see shortly,
while these transformations result in semantically equivalent implementations, their impact on test-
ing is significant.
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node exampleProgramNode(input_1: bool;
input_2: bool;
input_3: int;
input_4: bool)

returns (output_1: bool);
let

output_1 =
IF (input_3 > 50)
THEN

IF ((input_1 AND input_2) OR input_4)
THEN input_3 > 100
ELSE input_1 ELSE input_2;

tel;

Fig. 4. Example inlined implementation.

3.5. Mutant Generation
We have created mutations (faulty implementations) of each case example by automatically intro-
ducing a single fault into the correct implementation. Each fault was seeded by either inserting a
new operator into the system or by replacing an existing operator or variable with a different opera-
tor or variable. The type of faults used to create mutants may impact the effectiveness of the selected
oracle data when used to test the actual system under test. Note that the type of mutants used in the
evaluation in this report are similar to those used by Andrews et al.—where the authors found that
generated mutants are a reasonable substitute for actual failures in testing experiments [Andrews
et al. 2006]—and similar to those used by Just et al., who found a significant correlation between
mutant detection and real fault detection [Just et al. 2014].

We seed the following classes of faults:

— Arithmetic: Changes an arithmetic operator (+, -, /, *, mod, exp).
— Relational: Changes a relational operator (=, 6=, <,>,≤,≥).
— Boolean: Changes a Boolean operator (∨,∧, XOR).
— Negation: Introduces the Boolean operator ¬.
— Delay: Introduces the delay operator on a variable reference (that is, uses the stored value of the

variable from the previous computational cycle rather than the newly computed value).
— Constant: Changes a constant expression by adding or subtracting 1 from int and real constants,

or by negating Boolean constants.
— Variable Replacement: Substitutes a variable occurring in an equation with another variable of

the same type.

For each system, we generated all mutants that could possibly be created using the selected mu-
tation operators. The number and types of mutants are listed in Table IV. One risk of mutation
testing is functionally equivalent mutants, in which faults exist but these faults cannot cause a fail-
ure, which is an externally visible deviation from correct behavior. For our study, we used model
checking to detect and remove functionally equivalent mutants. This is made possible due to our
use of synchronous reactive systems as case examples—each system is finite, and thus determin-
ing equivalence is decidable. (Equivalence checking is fairly routine on the hardware side of the
synchronous reactive system community; Van Eijk provides a good introduction [Van Eijk 2002].)
Thus for every mutant used in our study, there exists at least one trace that can lead to a user-visible
failure, and all fault finding measurements indeed measure actual faults detected.

In order to make fair fault finding comparisons between implementations, we used
min(noninlined,inlined) mutants in our experiments. For the implementation where we did not use
the full pool of mutants, we selected mutants so that the fault ratio for each fault class was approx-
imately uniform. That is, assume for some example, there are R possible Relational faults and B
possible Boolean faults. For a uniform fault ratio, we would seed x relational faults and y Boolean
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Table IV. Mutant information for each case example. NI = non-inlined, I = inlined
DWM 1 DWM 2 Vertmax Batch Latctl Batch

NI I NI I NI I NI I
Total Mutants 8,489 13,303 931 1,858 4,411 6,712 1,036 954

Equivalent Mutants 344 919 15 61 152 182 40 42
Total Used 8,145 8,145 916 916 4,259 4,259 912 912

Arithmetic
Total 8 277 0 0 0 0 0 0

Equivalent 0 19 0 0 0 0 0 0
Used 8 170 0 0 0 0 0 0

Relational
Total 691 792 14 73 15 231 5 36

Equivalent 83 99 0 1 1 30 1 16
Used 608 458 14 37 14 131 4 20

Boolean
Total 11 111 44 189 452 861 64 85

Equivalent 0 25 0 9 99 95 4 6
Used 11 57 44 92 353 500 55 79

Negation
Total 1,041 2,004 290 574 1,443 2,187 333 303

Equivalent 18 81 7 18 17 20 14 9
Used 1,023 1,270 283 283 1,426 1413 292 294

Delay
Total 3,466 5,081 337 671 1,511 2,432 373 352

Equivalent 21 128 0 22 1 15 8 3
Used 3,445 3,270 337 331 1,510 1576 334 349

Constant
Total 1,522 3,167 54 112 84 300 41 84

Equivalent 149 395 7 0 16 17 7 7
Used 1,373 1,830 47 57 68 185 31 77

Replacement
Total 1,750 1,824 192 239 906 701 220 94

Equivalent 73 172 1 11 18 5 6 1
Used 1,677 1,091 191 116 888 454 196 93

faults in the implementation so that x/R = y/B. For example, if there are 88 possible Boolean
faults and 12 possible relational faults, and we wanted to select 25 mutants, we could select 0.25
as our fault ratio and our resulting set would contain 22 Boolean faults and 3 relational faults. This
uniform ratio means that—despite setting a controlled number of mutants—we do not bias the dis-
tribution of fault types used in our experiments. The number of mutants for each type of fault reflects
the distribution if all possible mutants were used.

3.6. Coverage Directed Test Input Generation
There exist several methods of generating tests to satisfy coverage criteria. We adopt
counterexample-based test generation approaches based on existing model checking approaches
to generate tests satisfying the MC/DC criterion [Gargantini and Heitmeyer 1999; Rayadurgam and
Heimdahl 2001]. We have used the JKind model checker in our experiments [Hagen 2008; Gacek
2015].

We performed the following steps separately using the inlined and non-inlined case examples:

(1) We processed the Lustre source code to generate coverage obligations for MC/DC. Each cov-
erage obligation represents a property that should be satisfied by some test (e.g., some branch
covered, some condition evaluates to true).

(2) These obligations were inserted into the Lustre source code as trap properties—that is, the
negation of the properties [Gargantini and Heitmeyer 1999]. Essentially, by asserting that these
obligations can never be made true, the model checker can produce a counterexample showing
how the property can be met.

(3) We ran the model and properties through JKind. This produces a list of counterexamples, each
of which corresponds to the satisfaction of some coverage obligation.

(4) Each counterexample is translated into a test input.

Note that some coverage obligations are unsatisfiable, i.e., there does not exist a test that satisfies
the coverage obligation. (This can occur, for example, if infeasible combinations of conditions are
required by some coverage obligation.) Nevertheless, by using this approach, we ensure that the
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Table V. Unreduced test suite measurements. NI = non-inlined, I = inlined.

NI # of MC/DC % NI MC/DC I# of MC/DC % I MC/DC
Obligations Obligations Achvievable Obligations Obligations Achievable

DWM 1 2038 100.00% 3806 98.74%
DWM 2 530 98.68% 2192 100.00%

Vertmax Batch 1732 100.00% 1858 96.99%
Latctl Batch 380 100.00% 260 99.62%

maximum number of satisfiable obligations are satisfied. A listing of the number of obligations and
the percent of achievable coverage can be found in Table V.

This approach generates a separate test for each coverage obligation. While a simple method of
generating tests, in practice, this results in a large amount of redundancy in the tests generated, as
each test likely covers several coverage obligations. For example, in branch coverage, a test satisfy-
ing an obligation for a nested branch will also satisfy obligations for outer branches. Consequently,
the test suite generated for each coverage criterion is generally much larger than is required to sat-
isfy the coverage criterion. Given the correlation between test suite size and fault finding effective-
ness [Namin and Andrews 2009], this has the potential to yield misleading results—unnecessarily
large test suites may lead us to conclude that a coverage criterion yields an effective test suite, when,
in reality, it is the size of the test suite that is responsible for the effectiveness.

To avoid this, we reduce each naive test suite generated while maintaining the coverage achieved.
This reduction is done using a simple greedy algorithm following these steps:

(1) Each test is executed, and the coverage obligations satisfied by each test are recorded. This
provides the coverage information used in subsequent steps.

(2) We initialize two empty sets: obs contains satisfied obligations and reduced contains our re-
duced test suite. We initialize a set tests containing all tests from our naive test suite.

(3) We randomly select and remove a test t from tests. If the test satisfies an obligation not currently
in obs, we add it to reduced, and add the obligations satisfied by t to obs. Otherwise we discard
the test.

(4) We repeat the previous step until tests is empty or all obligations have been satisfied.

Due to the randomization, the size and contents of reduced suites may vary quite a bit between
suite generations. For example, due to the random test selection, this reduction approach may choose
ten tests that each cover a single new obligation when there may exist a single test that covers
all ten. Thus, while this reduction approach results in smaller test suites, it is not guaranteed to
produce the smallest possible test suites. To prevent us from selecting a test suite that happens to
be exceptionally good or exceptionally poor relative to the set of possible reduced test suites, we
produce 100 randomly reduced test suites using this process.

3.7. Test Oracles
In our study, we use what are known as expected value oracles as our test oracles [Staats et al.
2012a]. Consider the following testing process for a software system: (1) the tester selects inputs
using some criterion—structural coverage, random testing, or engineering judgment; (2) the tester
then defines concrete, anticipated values for these inputs for one or more variables (internal variables
or output variables) in the program. Past experience with industrial practitioners indicates that such
oracles are commonly used in testing critical systems, such as those in the avionics or medical
device fields.

We explore the use of two types of oracles: an output-only oracle that defines expected values for
all outputs, and a maximum oracle that defines expected values for all outputs and all internal state
variables. The output-only oracle represents the oracle most likely to be used in practice, whereas the
maximum oracle represents an idealistic scenario where we can monitor each expression assignment
in the system. In practice, the maximum oracle is often prohibitively expensive to specify. However,
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it offers the ability to assess the effect of oracle selection on fault finding [Gay et al. 2015a; Staats
et al. 2012a].

Table VI. Oracle sizes for each case example and implementation

Implementation # Output Variables Total # Variables

DWM 1 Inlined 7 28
Non-inlined 7 576

DWM 2 Inlined 9 19
Non-inlined 9 124

Vertmax Batch Inlined 2 32
Non-inlined 2 417

Latctl Batch Inlined 1 20
Non-inlined 1 129

The number of variables in each oracle for the inlined and non-inlined implementations can be
seen in Table VI. Regardless of implementation, the number of variables in the output-only oracle
will remain the same. However, as a result of the inlining process, the number of expressions in the
inlined implementation will be far smaller than in the simple non-inlined implementation. Thus, the
size of the maximum oracle will be far smaller for the inlined implementation. We will explore the
implications of oracle size in the following section.

3.8. Data Collection
After generating the full test suites and mutant set for a given case example, we ran each test suite
against every mutant and the original case example. For each run of the test suite, we recorded the
value of every internal variable and output at each step of every test using the Lustre interpreter in
our test generation framework. This process yielded a complete set of values produced by running
the test suite against every mutant and the correct implementation for each case example.

To determine the fault finding of a test suite t and oracle o for a case example we simply compare
the values produced by the original case example against every mutant using (1) the subset of the full
test suite corresponding to the test suite t and (2) the subset of variables corresponding to the oracle
data for oracle o. The fault finding effectiveness of the test suite and oracle pair is computed as the
number of mutants detected (or “killed”) divided by the total number of non-equivalent mutants
created. We perform this analysis for each oracle and test suite for every case example yielding a
very large number of measurements per case example. We use the information produced by this
analysis in later sections to explore our research questions.

4. RESULTS
For each case example, we began with a large test suite that achieved the maximum achievable fault
finding for the criterion. We then subsequently used a randomized test suite reduction algorithm to
generate 100 reduced test suites. Finally, we computed the size and fault finding of each resulting
test suite our pool of non-equivalent mutants using both test oracles.

Using these numbers, we measured the following:

— Original Number of Obligations: The number of MC/DC obligations. This is usually slightly
larger than the size of the original unreduced test suite, as unachievable obligations have no
corresponding test input.

— Percent Achievable Obligations: The percent of MC/DC obligations that can be covered. This
coverage is maintained during test suite reduction.

— Median Fault Finding: Median fault finding across reduced test suites.
— Median Test Suite Size: Median test suite size across reduced test suites.
— Relative Change in Median Test Suite Size: We measure the relative increase (as a percentage)

in median test suite size when generating tests using the inlined implementation as compared to
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Table VII. Median (µ) reduced test suite size across case example.

Non-inlined µ Size Inlined µ Size % Size Increase
DWM 1 27.00 450.00 1,566.66%
DWM 2 69.00 250.00 262.32%

Vertmax Batch 68.00 334.00 391.18%
Latctl Batch 28.00 63.00 125.00%

Table VIII. Median (µ) fault finding measurements across case example. FF = fault finding,
OO = output-only oracle, MX = maximum oracle

Non-inlined µ FF (OO) Inlined µ FF (OO) % FF Increase (OO)
DWM 1 1.46% 67.78% 4,542.47%
DWM 2 85.04% 88.81% 4.43%

Vertmax Batch 51.22% 85.60% 67.12%
Latctl Batch 61.02% 74.94% 22.81%

Non-inlined µ FF (MX) Inlined µ FF (MX) % FF Increase (MX)
DWM 1 72.28% 68.01% -6.28%
DWM 2 94.54% 88.97% -5.89%

Vertmax Batch 92.32% 85.68% -7.19%
Latctl Batch 92.33% 78.07% -15.44%

when generating tests using the non-inlined implementation. Positive percentages indicate that
the median test suite size is larger for the inlined implementation.

— Relative Change in Median Fault Finding: We measure the relative increase (as a percentage)
in median test suite fault finding effectiveness when generating tests using the inlined imple-
mentation as compared to when generating tests using the non-inlined implementation. Positive
percentages indicate that the median effectiveness is larger when generating test suites using the
inlined implementation.

— Median Coverage of Non-inlined Suites over Inlined Implementation: We measure the me-
dian MC/DC achieved when using test suites generated from the non-inlined system over the
inlined implementation. 100% indicates no change; the test suite achieves 100% of the achiev-
able MC/DC over both systems.

— Median Coverage of Inlined Suites over Non-inlined Implementation: We measure the me-
dian MC/DC achieved when using test suites generated from the inlined system over the non-
inlined implementation.

— Median Fault Finding of Non-inlined Suites over Inlined Implementation: We measure the
median fault finding across reduced test suites generated from the non-inlined implementation
over the inlined implementation.

— Median Fault Finding of Inlined Suites over Non-inlined Implementation: We measure the
median fault finding across reduced test suites generated from the inlined implementation over
the non-inlined implementation.

The measurements for unreduced test suites are given in Table V, and the measurements for
reduced test suites are given in Tables VII (test suite size), VIII (fault finding), X (coverage across
implementation types), and XI (fault finding across implementation types).

We can see four patterns. First, per Q1 (see Table VII), the number of test inputs required to
satisfy MC/DC over the inlined implementation is often significantly higher than the number of test
inputs required to satisfy MC/DC over the non-inlined implementation, with increases of 125.00%-
1,566.66%. Thus, the cost of satisfying MC/DC, in terms of the number of test inputs we must create
and execute, tends to increase as the implementation structure’s complexity increases.

Second, per Q2 (see Table VIII), the effectiveness of test suites achieving maximum MC/DC
also varies with implementation structure. When making use of the common output-only oracle,
test suites satisfying MC/DC over the inlined structure outperform those satisfying MC/DC over
the non-inlined structure, with relative differences ranging from a slight increase (4.43%) to a large
increase (4,542.47%) in median fault finding.
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Table IX. Measurements across case example for the largest oracle common to both imple-
mentations. µ = median, FF = fault finding, LCO = largest common oracle

Non-inlined µ FF (LCO) Inlined µ FF (LCO) % FF Increase (LCO)
DWM 1 5.27% 68.01% 1,190.51%
DWM 2 85.26% 88.97% 4.35%

Vertmax Batch 53.48% 85.68% 60.21%
Latctl Batch 67.00% 78.07% 16.52%

Table X. Median (µ) coverage results across implementation type

µ % Achievable MC/DC of
Non-inlined Suites over Inlined Implementation

DWM 1 13.08%
DWM 2 53.25%

Vertmax Batch 31.95%
Latctl Batch 67.67%

µ % Achievable MC/DC of
Inlined Suites over Non-inlined Implementation

DWM 1 100.00%
DWM 2 100.00%

Vertmax Batch 100.00%
Latctl Batch 99.31%

fault finding results when making use of the maximum oracle demonstrate the opposite effect—
test suites that satisfy MC/DC over the non-inlined structure slightly outperform those that satisfy
MC/DC over the inlined structure, finding between 5.89 and 15.44% fewer mutants. However, this
can easily be explained by the size of the maximum oracles for each implementation, as noted in
Table VI. Because of the inlining process, the maximum oracles for the inlined systems are far
smaller than those for the non-inlined systems. The inlined systems calculate and store the results
of a smaller number of expressions. These additional points of observation give the non-inlined
implementation a clear advantage in observing faults when using an oracle that checks the behavior
of all possible observation points.

In practice, however, using such a large oracle would be prohibitively expensive, as the tester
would have to explicitly specify the expected behavior for each variable. Even if they did that, the
monitoring overhead from observing all of those variables may negatively impact the behavior of
the system. If testing software on an embedded system, a tester may not even be able to observe
all of the internal variables. Thus, although the maximum oracle for non-inlined systems does yield
effective fault finding potential, its use may not be practical.

As the non-inlined implementation always contains more variables than the inlined implemen-
tation, the non-inlined implementation can always have an oracle that checks the behavior at more
points of observation than the inlined implementation. A more equal comparison would be to com-
pare the fault finding effectiveness of tests generated from both implementations with the largest
possible fixed-sized oracle with variables that appear in both implementations (dubbed the largest
common oracle). If we use the maximum oracle for the inlined implementation to compare fault
finding effectiveness, we can increase the number of observation points while assessing the fault
finding capability of the generated tests on a more equivalent basis. The results for the largest com-
mon oracle can be seen in Table IX.

The effectiveness of test suites achieving maximum MC/DC paired with the largest common or-
acle is similar to that using the output-only oracle, with relative differences ranging from a 4.35 to
1,190.51% improvement in median fault finding when using tests generated over the inlined imple-
mentation. While the improvement in fault finding is more subdued than when using the output-only
oracle, we can still conclude that differences in fault finding roughly correspond to the previously
noted differences in test suite cost, with larger—but more effective—test suites resulting from the
use of more complex decisions in the implementations.
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Table XI. Median (µ) fault finding measurements across implementation type. I-on-NI means that tests
are generated using the inlined implementation and executed on the non-inlined implementation. NI-on-I
means that tests were generated using the non-inlined implementation and executed on the inlined im-
plementation. FF = fault finding, OO = output-only oracle, MX = maximum oracle, LCO = largest common
oracle, Incr. = increase.

I-on-NI % FF Incr. % FF Incr. NI-on-I % FF Incr. % FF Incr.
µ FF (OO) NI-on-NI I-on-I µ FF (OO) I-on-I NI-on-NI

DWM 1 75.46% 5,068.49% 11.33% 0.79% -98.83% -45.89%
DWM 2 90.50% 6.40% 1.90% 72.93% -17.88% -14.24%

Vertmax Batch 90.23% 76.16% 5.41% 29.37% -65.69% -42.66%
Latctl Batch 82.57% 35.48% 10.18% 48.58% -25.17% -20.39%

I-on-NI % FF Incr. % FF Incr. NI-on-I % FF Incr. % FF Incr.
µ FF (MX) NI-on-NI I-on-I µ FF (MX) I-on-I NI-on-NI

DWM 1 97.29% 34.60% 43.05% 2.74% -95.97% -96.21%
DWM 2 92.80% -1.80% 4.30% 72.93% -18.03% -22.86%

Vertmax Batch 96.90% 4.96% 13.10% 100.00% 16.71% 8.32%
Latctl Batch 98.47% 6.65% 26.13% 55.37% -29.07% -40.03%

I-on-NI % FF Incr. % FF Incr.
µ FF (LCO) NI-on-NI I-on-I

DWM 1 75.75% 1,217.39% 11.38%
DWM 2 90.50% 6.15% 1.72%

Vertmax Batch 90.40% 69.04% 5.51%
Latctl Batch 85.64% 27.82% 9.70%

Third, per Q3 (see Table X), we can see that test suites achieving 100% achievable MC/DC
of the non-inlined implementations always achieve less than 100% achievable coverage over the
inlined implementations, with coverage ranging from 13.08% to 67.67%. The reverse is not true,
test suites that achieve 100% achievable MC/DC of the inlined implementation generally achieve
close to, if not, 100% MC/DC of the non-inlined implementation. This highlights that not only does
the implementation structure impact the cost and effectiveness of test suites satisfying the MC/DC
criterion, it also can have a strong impact on the coverage achieved. We cannot expect to satisfy
MC/DC on a structurally simple implementation, and still achieve 100% coverage (or even similar
coverage levels) on a semantically equivalent—but more structurally complex—implementation.

Finally, to address Q4, we have examine the effect of implementation structure on test effective-
ness in more detail. We have executed tests generated over the non-inlined implementation on the
more complex inlined implementation, and executed tests generated over the inlined implementation
against the non-inlined implementation. In Table XI, we list the median fault finding effectiveness
of tests generated over the inlined implementation when executed against a non-inlined implemen-
tation. We then note the increase in fault finding over executing tests generated from the non-inlined
implementation against the same implementation and executing those test generated over the inlined
implementation against the same implementation. We then compare tests generated over the non-
inlined implementation and executed on the inlined structure against executing those same tests
on the non-inlined structure and executing the tests based on inlined structure against the inlined
structure.

From these results, we can see two key trends. First, we can see that not only are tests gener-
ated over the non-inlined implementation inadequate at covering the structure of the structurally
complex implementation, but they also generally achieve worse fault finding over the complex in-
lined implementation. Tests generated over the non-inlined implementation attain between 17.88 to
98.83% fewer faults over the inlined implementation than than tests generated using the complex
implementation to begin with. The exception to this is for the Vertmax Batch system, paired with
the maximum oracle, where fault finding improves by 16.71%.

The opposite is true when tests generated over the inlined system are executed against the simpler
non-inlined implementation. With the exception of DWM 2 with the impractically-large maximum
oracle, tests generated over the complex inlined implementation achieved fault finding gains ranging
from a modest 4.96% to a massive 5,068.49% over executing the tests generated using the simpler
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Table XII. Summary of statistical results

Hypothesis Results
1 H01 rejected for all systems.
2 H02 rejected for all systems.
3 H03 rejected for all systems.
4 H04 rejected for all systems.
5 H05 rejected for Latctl Batch. We fail to reject H05 for DWM 1, DWM 2, and Vertmax Batch.
6 H06 rejected for DWM 1, DWM 2, Latctl Batch, and Vertmax Batch (OO/LCO oracle).

We fail to reject H06 for Vertmax Batch with the maximum oracle.
7 H07 rejected for all systems.
8 H08 rejected for DWM 1, DWM 2, Latctl Batch, and Vertmax Batch (OO oracle).

We fail to reject H08 for Vertmax Batch with the maximum oracle.
9 H09 rejected for DWM 1, Vertmax Batch, Latctl Batch, and DWM 2 (OO/LCO oracle).

We fail to reject H06 for DWM 2 with the maximum oracle.

non-inlined implementation. This bolsters the results of Q3—we cannot expect tests generated from
the non-inlined implementation to be effective at identifying faults in other implementation struc-
tures. However, we can expect tests generated over more complex implementations to be effective
against other implementations.

Second, these results add an interesting extension to Q2. Not only are tests generated from the
inlined implementation effective when executed against the inlined implementation—but they may
be more effective when executed on the simpler version of the system structure. Tests generated
from the inlined structure are 1.72-43.05% more effective when executed over the non-inlined im-
plementation than when executed over the inlined implementation. This result reinforces the idea
that we should use the more structurally complex version of the implementation when producing
test cases, regardless of the final form that the system takes. It further indicates that we may be able
to find more faults by simplifying the implementation when we execute those test cases.

The results to these four analyses raise a number of questions and concerns. In particular, we
can see that the implementation structure potentially has a strong impact on both the cost and ef-
fectiveness of an MC/DC-driven testing process. This indicates that our choice of implementation
structure, like our choice of coverage criterion, is an important practical aspect of the software test-
ing process. This is further reflected in our results for Q3, which highlight the potential impact on
a certification process using MC/DC simply achieving MC/DC over some implementation does
not imply 100% coverage, or even high coverage, over all possible implementations. Similarly, our
results for Q4 reinforce that the choice of implementation is important when producing test cases.
Tests generated using a simple implementation cannot be expected to be effective when executed
on a complex implementation. The choice of implementation is important at both generation and
execution time. We discuss these issues in detail in Section 5.

4.1. Demonstration of Statistical Significance
To ensure that the results for Q1-Q4 are not due to chance, we propose and evaluate the following
hypotheses:

— Hypothesis (H1): A test suite satisfying MC/DC over the non-inlined implementation will re-
quire fewer tests relative to a test suite satisfying MC/DC over the inlined implementation.

— Hypothesis (H2): When making use of the output-only oracle, a test suite satisfying MC/DC
over the non-inlined implementation will achieve a lower level of fault finding relative to a test
suite satisfying MC/DC over the inlined implementation.

— Hypothesis (H3): When making use of the largest common oracle, a test suite satisfying MC/DC
over the non-inlined implementation will achieve a lower level of fault finding relative to a test
suite satisfying MC/DC over the inlined implementation.

— Hypothesis (H4): A test suite satisfying MC/DC over a non-inlined implementation will achieve
less than 100% MC/DC over an inlined implementation.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 0, Pub. date: 2014.



The Effect of Program and Model Structure on the Effectiveness of MC/DC Test Adequacy Coverage0:17

— Hypothesis (H5): A test suite satisfying MC/DC over an inlined implementation will achieve
less than 100% MC/DC over a non-inlined implementation.

— Hypothesis (H6): When using any oracle, a test suite satisfying MC/DC over the non-inlined
implementation will achieve a lower level of fault finding when executed against the inlined
implementation than on the non-inlined implementation.

— Hypothesis (H7): When using any oracle, a test suite satisfying MC/DC over the inlined imple-
mentation will achieve a lower level of fault finding when executed against the inlined imple-
mentation than on the non-inlined implementation.

— Hypothesis (H8): When using any oracle, a test suite satisfying MC/DC over the non-inlined
implementation will achieve a lower level of fault finding when executed against the inlined
implementation than a test suite satisfying MC/DC on the inlined implementation.

— Hypothesis (H9): When using any oracle, a test suite satisfying MC/DC over the non-inlined
implementation will achieve a lower level of fault finding when executed against the non-inlined
implementation than a test suite satisfying MC/DC on the inlined implementation.

To evaluate our hypotheses, we first formed null hypotheses as follows:

—H01: A test suite satisfying MC/DC over the non-inlined implementation will contain the same
number of tests as a test suite satisfying MC/DC over the inlined implementation.

—H02: When making use of the output-only oracle, a test suite satisfying MC/DC over the non-
inlined implementation will achieve the same level of fault finding relative to a test suite satisfying
MC/DC over the inlined implementation.

—H03: When making use of the largest common oracle, a test suite satisfying MC/DC over the
non-inlined implementation will achieve the same level of fault finding relative to a test suite
satisfying MC/DC over the inlined implementation.

—H04: A test suite satisfying MC/DC over a non-inlined implementation will achieve 100% cov-
erage over an inlined implementation.

—H05: A test suite satisfying MC/DC over an inlined implementation will achieve 100% coverage
over a non-inlined implementation.

—H06: When using any oracle, a test suite satisfying MC/DC over the non-inlined implementation
will achieve the same level of fault finding on both implementations.

—H07: When using any oracle, a test suite satisfying MC/DC over the inlined implementation will
achieve the same level of fault finding on both implementations.

—H08: When using any oracle, a test suite satisfying MC/DC over the non-inlined implementation
will achieve the same level of fault finding on the inlined implementation as a test suite satisfying
MC/DC over the inlined implementation.

—H09: When using any oracle, a test suite satisfying MC/DC over the non-inlined implementation
will achieve the same level of fault finding on the non-inlined implementation as a test suite
satisfying MC/DC over the inlined implementation.

To accept H1-H9, we must reject H01-H09. Our observations are drawn from an unknown dis-
tribution; therefore, we cannot fit our data to a theoretical probability distribution. To evaluate our
hypotheses without any assumptions on the distribution of our data, we use a one-sided (strictly
lower) Mann-Whitney-Wilcoxon rank-sum test [Wilcoxon 1945], a non-parametric hypothesis test
for determining if one set of observations is drawn from a different distribution than another set of
observations. As we cannot generalize across non-randomly selected case examples, we apply the
statistical test for each pairing of case example and oracle type with α = 0.051.

ForH1 throughH3, there exist two sets of data: one containing measurements for the 100 reduced
test suites satisfying 100% achievable coverage for non-inlined implementation, and one containing

1Note that we do not generalize across case examples or oracles as the needed statistical assumption, random selection
from the population of case examples or oracles, is not met. The statistical tests are used to only demonstrate that observed
differences are unlikely to have occurred by chance.
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measurements for the 100 reduced test suites satisfying 100% achievable coverage for inlined im-
plementation. For H1, these measurements are test suite sizes. For H2 and H3, these measurements
are fault finding effectiveness measurements. The application of the permutation test is therefore
straightforward. For H6-H9, a similar process is applied to that used for H1-H3. The sole differ-
ence is that, for H1-H3, we compared tests generated and executed on the same implementation to
tests generated and executed on the other implementation. ForH6-H9, the generation and execution
source may differ, as indicated by the individual hypotheses.

ForH4 andH5, we have only one set of data: the percentage of MC/DC achieved by each test suite
generated from one implementation and executed over the other implementation. When performing
the permutation test, we therefore use a set of equal size (100 records) consisting only of 100%
coverage—that is, we compare against test suites achieving the maximum achievable coverage.

We perform this statistical test using each case example. For H1-H4, our resulting p-values are
each very small—less than 0.0001. Given a traditional α = 0.05, we reject our null hypotheses
for all instances. We see that the results support our hypothesis, and in these scenarios we accept
H1-H4 for each case example.

For one of the case examples—Latctl Batch—we reject the null hypothesis H05. For the other
three systems—DWM 1, DWM 2, and Vertmax Batch—we fail to reject H05. In the latter cases,
tests generated to satisfy MC/DC over the inlined implementation almost always achieve 100% of
the achievable MC/DC obligations over the non-inlined implementation. In the case of Latctl Batch,
the tests generated over the inlined implementation achieve very high MC/DC, but fail to achieve
100% of the achievable coverage on average.

A natural question to ask is—why would tests created to achieve MC/DC over the inlined system
fail to achieve 100% coverage on the non-inlined system? Intuitively, the reverse is easy to imagine.
MC/DC on the inlined system will require specific combinations of input that will not be required to
achieve coverage of the non-inlined system. However, in general, the reverse can only happen when
every instance of the condition in the non-inlined decision, once inlined, does not independently
affect the outcome of any decision into which it is embedded. In this case, those conditions will
show up as ”unachievable” in the inlined model—no test can be produced that satisfies the test
obligation. In satisfying the obligation for the inlined system, we would be required to produce a
test that demonstrates this condition in its context. This test, by the nature of inlined code, would
typically be stronger than necessary to demonstrate it outside of its context (i.e., on the non-inlined
version of the system). These missing tests actually demonstrate that those conditions are, in fact,
dead code, once considered in the context in which they are used.

As indicated in Table X, the only system where tests created for the inlined implementation
fail to achieve 100% coverage on the non-inlined implementation is Latctl Batch. There are two
obligations that the inlined version of the suite fails to cover. One of those is explained by the above.
The equivalent obligation for the inlined version is impossible to satisfy (see Table V), therefore,
no test exists in the suite produced for the inlined version that covers the equivalent condition in the
non-inlined implementation. That expression is, in fact, dead code.

The second can be explained as a result of the inlining process. Latctl Batch runs in a dual-
redundant configuration. There is an input that turns this model into a passive controller that just
feeds through the outputs from the other side. If you allow this input to be true, you cannot prove
anything about the model—the inputs from the other side are arbitrary. Therefore, this input was
set to a constant value of false. The non-inlined system contains an expression used to set the
system to the passive mode. However, as this expression, an and statement, would always evaluate
to false given the environmental settings, the automated inlining process removed the expression
completely. In practice, where code transformations would likely be done by hand, that expression
would have remained in the system and an equivalent test for the inlined system would have been
produced.

Regarding H6 and H8—in both cases, we can reject the null hypothesis for three of the four
systems for all oracles, but we fail to reject the null hypothesis for Vertmax Batch when paired
with the maximum oracle. For the former systems, tests generated over the non-inlined system
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and executed on the inlined system fail to outperform tests generated and executed on the non-
inlined system and tests generated and executed on the inlined system. For the latter case, the tests
generated on the non-inlined version of Vertmax Batch find all non-equivalent mutants in the inlined
system when the expensive maximum oracle is used. In that case, the oracle provides the necessary
observability to identify those faults. When the more common output-only oracle is used, we can
reject the null hypotheses for Vertmax Batch.

We can reject H09 for three of the four systems for all oracles, but we fail to reject the null hy-
pothesis for DWM 2 when paired with the maximum oracle. For the former systems, tests generated
over the non-inlined system and executed on the non-inlined system fail to outperform tests gener-
ated on the inlined system and executed on the non-inlined system. In the latter case, tests generated
on the inlined system and executed on the non-inlined system perform slightly worse (-1.80%) on
average than those generated and executed on the non-inlined system, when the maximum oracle is
used. Again, when the more common output-only or the largest common oracle oracle is used, we
can reject the null hypotheses for DWM 2.

Based on these results, we conclude that a clear, statistically significant pattern exists in the four
case examples used in our study: by varying implementation structure, we can impact both the
number of test inputs required to satisfy MC/DC as well as the fault finding effectiveness of test
suites achieving 100% achievable MC/DC.

5. DISCUSSION
For each research question in our study, we have found that the structure of the implementation has
a strong, consistent impact on the testing process when using the MC/DC criterion.

Our results for Q1 indicate that, by varying the structure of the implementation, we can
influence—positively or negatively—the cost of generating test inputs to satisfy MC/DC. This ob-
servation is potentially useful in the context of MC/DC’s role in the certification process for critical
avionics systems, as satisfying MC/DC during testing can be extremely expensive. By applying
syntactic transformations to avionics systems, developers can generate systems for which MC/DC
is significantly easier and cheaper to achieve. For our examples, inlined implementations required
test suites as least twice as large as the size of the test suites generated over the semantically equiva-
lent non-inlined systems—meaning that there is a potentially dramatic savings in testing costs when
using a non-inlined system.

Unfortunately, our results for Q2 indicate that test suites generated to satisfy structural coverage
criteria over the inlined implementation generally outperformed those test suites generated to satisfy
structural coverage criteria over the non-inlined implementation, with relative improvements of up
to 4,542.47% when using the fixed-sized test oracles. Thus, we see a potential tradeoff—we can
restructure our implementation to reduce the cost of satisfying coverage criteria, but we incur the
risk of reducing the effectiveness of the testing process.

Both of these implications point at a deeper issue: the sensitivity of the MC/DC criterion to the
structure of the implementation. Our results for Q3 indicate that while implementation structure
impacts the cost and effectiveness of the MC/DC criterion, it also impacts the measurement of the
criterion. Tests generated using a simpler implementation cannot be expected to attain high coverage
of the structurally complex implementation, while tests generated over the structurally complex im-
plementation can be expected to cover the test obligations of the structurally simple implementation.
Similarly, the results of Q4 indicate a similar idea. Tests generated using the complex implemen-
tation are not only effective at finding faults in the same implementation, but are effective when
that implementation is varied. Tests generated using the simple implementation are less effective
regardless of the implementation used during test execution.

In the avionics domain, the role of the MC/DC criterion is to determine if our test inputs are ade-
quate, as implied in the synonymous term test adequacy metric. It is therefore worth questioning if
this metric is itself adequate. Given that the effectiveness of MC/DC can vary considerably depend-
ing on the structure, ranging from very high to—in the case of the DWM 1 system—very low, when
asking the question: is this set of test inputs adequate? it is difficult to fully trust the results of the
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criterion. Therefore, we believe that either care must be taken when using MC/DC as an adequacy
metric, or that another method of measuring test adequacy be constructed. By specifying a specific
implementation structure for measuring and producing MC/DC-satisfying test suites, we can ensure
that the potential benefits of using MC/DC as an adequacy criterion are more likely to be gained
through its use. In the remainder of this section, we discuss observations and concerns raised from
these results.

5.1. Cost and Effectiveness Increase with Complexity
Citing Tables VII and VIII, we again note that both size and fault finding effectiveness increase
when using a more complex implementation structure, sometimes dramatically. An extreme exam-
ple of this is the DWM 1 system: on average, 1,566.66% more tests are required on average when
satisfying MC/DC on the inlined system versus the non-inlined system, resulting in 4,542.47% more
faults detected on average.

This increase in tests can be attributed to the increased complexity of the coverage obligations
generated when using the inlined implementation as opposed to the non-inlined implementation.
Recall that when transforming the non-inlined implementation into the inlined implementation, the
complexity of conditional expressions increases, as intermediate variables formerly used as atomic
Boolean conditions are instead replaced with more complex subexpressions. We illustrate an exam-
ple of this in Figure 5.

Table XIII. Impact of implementation structure on coverage obli-
gations

Non-inlined MC/DC Obligations Inlined MC/DC Obligations
(1) (x ∧ y) (1) (x ∧ y) ∧ ¬(z ∧ w)
(2) (¬x ∧ y) (2) ¬(x ∧ y) ∧ (z ∧ w)
(3) (x ∧ ¬y) (3) (¬x ∧ y) ∧ ¬(z ∧ w)
(4) (z ∧ w) (4) (x ∧ ¬y) ∧ ¬(z ∧ w)
(5) (¬z ∧ w) (5) ¬(x ∧ y) ∧ (¬z ∧ w)
(6) (z ∧ ¬w) (6) ¬(x ∧ y) ∧ (z ∧ ¬w)
(7) (x ∧ y) ∧ ¬(z ∧ w)
(8) ¬(x ∧ y) ∧ (z ∧ w)
(9) ¬(x ∧ y) ∧ ¬(z ∧ w)

In the case of MC/DC the complexity of the obligations we must meet to satisfy MC/DC is related
to the complexity of the expressions. To understand why, consider Figure 5. Here we see the number
of atomic conditions on line 4 grows from two to four when line 1 and 2 are inlined. Consider the
obligations we must satisfy to achieve MC/DC over these expressions: we must demonstrate each
condition can positively and negatively affect the outcome of the expression. In other words, we must
show each condition can cause the expression to be true and false. Consequently, as the number of
conditions grows, the number of MC/DC obligations for the expression also grows, and with it the
number of test inputs we must generate also generally grows.

[1] internal42 = x AND y
[2] internal13 = z AND w
[3]
[4] output1 = (internal42 OR internal13)

Non-inlined Implementation

[1] output1 = (x AND y) OR (z AND w)

Inlined Implementation

Fig. 5. Increasing complexity of boolean decisions during inlining transformation
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The MC/DC obligations to satisfy can be schematically derived, resulting in the obligations in
Table XIII [Whalen et al. 2006]. We can see that, while the non-inlined implementation actually
has more obligations (nine rather than six)—due to the larger number of expressions (three small
expressions rather than one large one)—the inlined implementation’s obligations are generally more
complex and require more specific inputs. As a result, opportunities to generate test inputs satisfying
multiple obligations—allowing a reduction in the total number of inputs required—are more limited
for the obligations generated from the inlined implementation.

For example, consider the obligations 7-9 for the non-inlined system. These obligations are log-
ically disjoint, and thus require three test cases. However, by carefully selecting the test cases, we
can also satisfy all the obligations for lines 1-6, as shown in Table XIV.

Table XIV. Impact of implementation structure on coverage obligations

Inputs Non-inlined Obligations Inlined Obligations
x y z w 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
T F T T F F T T F F F T F F T F F F F
T T T F T F F F F T T F F T F F F F F
F T F T F T F F T F F F T F F T F T F

We have less freedom in selecting test inputs for the inlined implementation’s more complex obli-
gations, and thus, this scenario is not possible. The test inputs above only satisfy inlined obligations
1, 2, 3, and 5, leaving the remaining obligations to be covered by other test inputs. Therefore, while
fewer obligations are generated, more test inputs are required.

These increases in test suite size result in generally improved fault finding, for two apparent rea-
sons. First, and perhaps most obvious, is the increase in test suite size. Recent work on modeling the
effectiveness of testing has indicated that effectiveness is highly dependent on test suite size [Namin
and Andrews 2009; Gligoric et al. 2013; Inozemtseva and Holmes 2014]. By simply increasing the
number of test inputs used, we can improve the effectiveness of our testing process.

Second, by changing the implementation structure, we have strengthened the constraints on our
coverage obligations, resulting in not only more test inputs, but test inputs that are differentiated—
exploring combinations of conditions that would not otherwise be explored. For example, consider a
situation where the implementations in Figure 5 are incorrect—where the final implementation line
should be ((x AND NOT y) OR (z AND NOT w)). The test suite depicted in Table XIV,
while sufficient to satisfy MC/DC over the non-inlined implementation, would not pick up on this
fault. However, if we created a test suite to satisfy MC/DC over the inlined implementation, any test
sufficient to satisfy inlined obligation 4 would detect this particular fault.

5.2. Coverage Measurements Vary with Complexity
In the previous section, we discussed the factors contributing to the results observed for Q1 and Q2,
demonstrating how changing implementation structure increases the number of test inputs required
and the effectiveness of said test inputs. The same factors contribute to the results observed for Q3,
in which we found that test inputs generated to satisfy 100% achievable MC/DC over a non-inlined
implementation result in less than 100% achievable coverage over an inlined implementation.

The low average levels of MC/DC–as low as 13.08%—achieved over the inlined implementation
by the non-inlined test suites were somewhat surprising. One reason for the reduction in coverage
is likely to be the reduction in the number of test inputs. As seen in Table VII, the average size of a
test suite generated over the non-inlined system is—at largest—less than half of the average size of
the test suite for the inlined version of the same system.

However, we believe that the dramatic drop in achieved coverage is not only a result of test suite
size, but also of the test generation method. By using counterexample-based test generation, we
ensure that each coverage obligation is satisfied. However, each generated test input is specifically
targeted at satisfying a single coverage obligation. Thus, each input tends to perform the minimum
number of actions needed to cover that obligation. This is because, in the context of model checking,
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generated counterexamples are ideally short and simple, so as to be better understood by the user. In
particular, default input values (e.g., 0 or false) are used whenever possible, and generally only the
variables that must be manipulated to satisfy the coverage obligation are changed. Thus, when gen-
erating test inputs to satisfy MC/DC over the non-inlined implementation, the resulting test inputs
may not be sufficiently complex to satisfy coverage obligations over the inlined implementation; the
quantity of inputs is not only low, but each individual test input is also less complex.

To demonstrate this, for each case example, we used the inlined test suites to generate reduced
test suites of size equal to the reduced test suites from the non-inlined implementation. In other
words, for each reduced test suite generated using the non-inlined implementation, we generated a
reduced test suite of equal size using the inlined implementation2. We then computed the average
coverage achieved over the inlined implementation.

We present the results in Table XV, along with the sizes and original average coverages for the
non-inlined test suites (also found previously in Table VII). As shown, we see that reduced test
suites of size equal to those drawn from the non-inlined implementation can provide much higher
coverage levels, provided sufficiently effective test inputs are used to construct the test suites. In our
case examples, increases in coverage of 41.24% to 643.27% are observed.

Table XV. Average coverage of reduced suites. NI = Non-inlined, I = Inlined

DWM 1 DWM 2 Latctl Batch Vertmax Batch
Median Size 27.00 69.00 28.00 68.00

NI Suite Coverage Over I 13.08% 53.25% 67.67% 31.95%
Paired I Suite Coverage Over I 97.22% 90.60% 95.58% 84.04%

% Increase 643.27% 70.14% 41.24% 163.04%

One key observation that can be seen in Table XV is that a small number of tests, created for
the inlined implementation, are often sufficient to cover a large number of test obligations. When
formulating test obligations, some will be simple and some will require complex combinations of
input to satisfy. When working with an inlined implementation—by the nature of inlining—more
obligations will be of the latter format. Thus, when designing tests to satisfy those obligations, the
tests will cover a large variety of the possible input combinations. Some of those inputs will be so
specific that they only satisfy a small number of obligations, but a more common result is that a
number of tests will be required to execute the system for enough execution cycles or method calls
to trigger the exact required combination of conditions. These tests are highly likely to cover several
additional obligations in the process of covering the one specific obligation they were designed to
cover.

This is another piece of evidence in favor of designing tests over the inlined implementation—
tests are likely to exercise the system more thoroughly. Tests may cover a larger portion of the state
space or execute the system for a longer period of time, exploring a wider variety of combinations of
input as they execute, and satisfying a large number of obligations in the process. As a result, even
a small number of tests, created for the inlined version of the system, may achieve higher coverage
and fault detection capability than tests created for the non-inlined implementation.

5.3. Effectiveness Varies With Complexity At Both Generation and Execution Time
Given the ease of satisfying MC/DC over a non-inlined implementation, one could imagine a sce-
nario where test generation is performed on a structurally simple implementation such as a Simulink
model or an uninlined version of the source code, then such tests are later executed against a differ-
ent implementation (such as the real code, if the Simulink model was used during generation).

The results of Q3 indicate that this would not be advisable, as tests generated over a simple imple-
mentation cannot be expected to attain coverage over a complex implementation. The results of Q4

2The randomized greedy algorithm was again used, but the stopping point was no longer 100% coverage, but instead a test
suite size.
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Table XVI. Median (µ) Fault finding measurements when tests are generated using
the inlined implementation, the suites are reduced to match the size of suites gen-
erated using the non-inlined implementation, and then the suites are executed on
the non-inlined implementation. FF = fault finding, OO = output-only oracle, MX =
maximum oracle, LCO = largest common oracle.

Reduced I-on-NI µ FF(OO) % FF Increase Over NI-on-NI
DWM 1 25.02% 1,613.70%
DWM 2 88.32% 3.86%

Vertmax Batch 74.38% 45.22%
Latctl Batch 72.15% 18.24%

Reduced I-on-NI µ FF(MX) % FF Increase Over NI-on-NI
DWM 1 83.68% 15.77%
DWM 2 91.05% -3.69%

Vertmax Batch 86.17% -6.66%
Latctl Batch 95.29% 3.21%

Reduced I-on-NI µ FF(LCO) % FF Increase Over NI-on-NI
DWM 1 27.10% 414.23%
DWM 2 88.43% 3.48%

Vertmax Batch 75.09% 40.41%
Latctl Batch 76.75% 14.55%

further make this point—tests generated over the non-inlined implementation were less effective
at finding faults in the inlined implementation than tests generated and executed over the inlined
implementation. In the reverse case, tests generated over the inlined implementation are more effec-
tive at finding faults in the non-inlined implementation than tests generated and executed over the
non-inlined implementation.

As the results of Q2 indicated, the size of the test suite is a factor in the effectiveness of that suite.
Thus, these results are not entirely surprising—by generating on the non-inlined system, we end up
with a smaller number of tests to execute on the inlined system than when we generated using the
inlined system. By generating on the inlined system, we end up with substantially more tests that
can be executed on the non-inlined system than when we generated using the non-inlined system.
To better understand the effect of test suite size on these results, we took test suites generated on the
inlined system and reduced them to the size of suites generated using the non-inlined system (the
same suites used in Section 5.2. We then computed the median fault finding of these reduced test
suites when executed against the non-inlined implementation.

The results of this experiment can be seen in Table XVI. We can see that, while there was a drop
in fault finding effectiveness when the suite size was reduced, the tests generated using the inlined
implementation were still more effective at fault finding in nearly all situations. When using the
output-only or largest common oracle, the suites generated using the inlined implementation found
3.48-1,613.70% more faults in the non-inlined implementation than the tests generated using that
implementation. This suggests that the larger number of tests required to satisfy MC/DC over the
inlined implementation are not the sole source of the improved effectiveness of those suites. Indeed,
just as with the coverage analysis in Section 5.2, it seems that the complex combinations of input
required to satisfy MC/DC over complex implementations are also likely to reveal faults. It is not
enough to simply satisfy the letter of the law—to attain MC/DC in any manner possible. Whether a
test obligation is covered is less important than how it was covered.

Regardless of the structure used during test execution, these results provide more evidence in
favor of using the structurally complex implementation to generate test cases. Although the cost of
producing the tests will be higher than when a simple structure is used, the resulting tests will be
effective at attaining coverage and finding faults. By more thoroughly exercising the system under
test, even a small number of tests created using the inlined implementation may be effective at
finding faults in the source code.

The results of Q4 in Table XI offered one additional observation of interest. Test suites generated
using the inlined implementation were not only more effective at finding faults in the non-inlined
implementation than tests generated on that implementation, but they attained higher fault finding
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on the non-inlined implementation than on the inlined implementation. This hints that there may, in
fact, be a use for a simple implementation—as a version of the system to execute tests on. If a tool
can be used to automatically inline or uninline code, then the code could be maximally inlined for
test generation purposes—offering the benefits of MC/DC satisfaction on a complex implementa-
tion. The code could then be maximally uninlined during test execution, potentially making it easier
to observe the effect of program faults triggered by those test cases.

More research is needed to confirm this hypothesis, but these results make it clear that implemen-
tation structure is important not only during test generation, but when those tests are executed as
well. If tests are generated using a simple implementation, they cannot be expected to be effective
when executed on a complex implementation. If tests are generated using a complex implementa-
tion, they are more likely to be effective no matter what implementation is used at execution time.
Further, additional improvement in effectiveness may be possible by generating over a complex
implementation, then executing over a simple implementation.

5.4. Less Than 100% Fault Finding
Fault finding was often significantly lower than 100% over the case examples—regardless of the
test oracle employed, and particularly for non-inlined test suites. Although it is well known that
testing is an incomplete form of verification, we were initially surprised by the poor fault finding of
test suites that meet the rigorous MC/DC criterion. As we studied the models closely, we identified
several possible reasons for the poor absolute fault finding, including:

Faults in uncovered portions of the model: As seen from our results in Table V, in several
instances, the achievable MC/DC over the implementation is less than 100%. This implies that there
are portions of the implementation for which there exists no test case that can provide MC/DC. We
term these as the “uncovered” portion in the implementation. Note here that the test suites we use in
our experiment provide maximum achievable MC/DC over their respective implementation. When
seeding faults in an implementation, we may seed faults in the uncovered portion. Since no MC/DC
test case could be constructed to cover this portion, the test suite will likely (though not necessarily)
miss such faults. In our experiment, we did not attempt to identify the faults that are seeded in the
uncovered portion of the implementation. Such a task would be time consuming and difficult since
it would require manually examining the implementation, test suites, and mutations.

Delay expressions: All of the studied case examples execute on some form of execution cycle;
they sample the environment, execute to completion, and then wait until it is time for a new execu-
tion cycle. A delay expression is one that uses the value of an expression from a previous execution
cycle. This delay expression is explicit in modeling languages such as SCADE and Simulink; in
programming languages like C the same effect is achieved using state variables that are assigned
during one cycle and used by statements earlier in the loop during the next cycle. Delay faults
are not a classic mutation to perform; however, this kind of fault occurs with regularity in control
software, which runs as a periodic polling loop. Errors occur when the “previous” value is used
when the “current” value is expected or vice-versa; these kind of errors affect edge-detection, input
smoothing, integration, and other state-requiring operations.

The key here is that delay expressions (or state variables) are assigned one or more cycles before
use. Thus, it is possible—especially when using a model checker that intentionally generates short
tests—that a test can terminate too early (i.e., after covering the structure that is assigned to a state
variable, but before the variable can propagate to an output)3.

To illustrate this problem in a C-like implementation language, consider the program fragment
in Figure 6. In this code, execution steps are represented as loop iterations. Variables used in future
execution steps are stored away as intermediate variables for use in later loop iterations. Because
of this delayed usage mechanism, these intermediate variables cannot be inlined. TestSet1 with
one step test cases will provide MC/DC of this program fragment, since we only need to exercise

3Note that this problem is different from semantically equivalent mutants since it is possible to reveal the mutation, but only
with a test case longer than what is necessary to achieve MC/DC.
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void Delay_Expr()
{

bool pre_var;
bool var_a = false;

while(1)
{

in1 = sample(in1); // Update value
in2 = sample(in2); // Update value
pre_var = var_a; // Store previous value
var_a = in1 or in2; // Calculate new value
print pre_var; // Display new output

}
}

MC/DC Test Set for (in1, in2):
TestSet1 = {(TF),(FT),(FF)}

Fig. 6. Sample program fragment that uses variable values from previous step

bool Compute(bool in1,in2,in3)
{

bool no_alarm;

if (in1 or in2)
no_alarm = true

else
no_alarm = false;

return (in3 and no_alarm);
}

MC/DC Test Set for (in1, in2, in3):
TestSet1 = {(TFF),(FTF),(FFT),(TTT)}

Fig. 7. Sample C like inlined program fragment

the or Boolean expression up to MC/DC. If we were to erroneously replace the or operator with
and, or any other Boolean operator, TestSet1 providing MC/DC would not be able to reveal
the fault, since the test cases are too short to affect the output—the test cases only consist of one
input step, they would need to be at least 2 steps long for failures to propagate to the output. Many
systems in the domains of vehicle or plant control (such as the avionics domain) are designed to
use variable values from previous steps. Thus, test cases generated to provide MC/DC over such
systems will often be shorter than needed to allow erroneous state information to propagate to the
outputs. Based on this observation and our results in Table VIII, we believe that delay expressions
represent a serious concern related to the effectiveness of MC/DC test suites.

Intermediate variable masking: As mentioned previously, generated test suites do not ensure
that intermediate variables affect the output. While we expect such masking to occur with non-
inlined implementations, masking is also possible with inlined versions of implementations as they
are not completely inlined (this is discussed in Section 3.4 and is also seen in the delay expression
discussion). We may, therefore, still have some intermediate variables in the inlined implementations
that present opportunities for masking. Figure 7 shows a sample C like program with an intermediate
variable no alarm that cannot be inlined and can, therefore, potentially be masked out in a test case.
TestSet1 in Figure 7 provides MC/DC over the compute function; the test cases with in3 =

false (bold faced) contribute towards MC/DC of the in1 or in2 condition in the if-then-else
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statement. However, these test cases mask out the effect of the intermediate variable no alarm
in the and expression since in3 = false. Suppose the code fragment in Figure 7 was faulty,
the correct expression should have been in1 and in2 (which was erroneously coded as in1
or in2). TestSet1 providing MC/DC would be incapable of revealing this fault, since there
would be no change in the observable output. Thus, seeded faults like the one mentioned here
cannot be revealed by a test suite achieving MC/DC because of intermediate variable masking. This
observation serves as a reminder that masking is a crucial consideration for generating test suites
that are effective in fault finding.

One potential solution for this is to use stronger test oracles which consider the value of internal
state. Such test oracles, when used in conjunction with test inputs satisfying MC/DC, have been
empirically and theoretically shown to provide increased fault finding capability in this domain
and others [Gay et al. 2015a; Staats et al. 2012a; Staats et al. 2011b]. Additionally, Whalen et al.
have proposed a stronger variant of MC/DC (dubbed Observable MC/DC) that addresses mask-
ing by requiring a propagation path from a decision statement to a variable observed by the test
oracle [Whalen et al. 2013]. Observable MC/DC demonstrates higher fault finding effectiveness
than masking MC/DC—particularly for non-inlined systems. Our experimental results highlight the
importance of such work.

6. THREATS TO VALIDITY
External Validity: We have conducted our study on four synchronous reactive critical systems. We
believe these systems are representative of the class of systems in which we are interested, and our
results are thus generalizable to other systems in the domain.

We have used implementations expressed in Lustre rather than a more common language such
as C or C++. Nevertheless, systems written in the Lustre language are similar in style to traditional
imperative code produced by code generators used in embedded systems development. We therefore
believe that testing Lustre code is sufficiently similar to testing reactive systems written in traditional
imperative languages.

We have generated our test inputs using a model checker. Other possible options would be to use
tests manually created by testers, tests generated through other automated processes, or randomly
generated tests. It is possible these other options would yield results that are significantly different.
However, in our experience, tests generated using a model checker are relatively less effective than
other options; we, therefore, are effectively studying worst-case (or at least not exceptionally posi-
tive) behavior of the MC/DC criterion. One reason for this, as discussed in Section 5.2, is that the
tests produced lack diversity—the model checker prefers to leave inputs at default values when not
required to satisfy a particular property. Another reason, as discussed in Section 5.4, is that the tests
are often not long enough to ensure fault propagation to output (however, this is more of a problem
with the coverage criterion than the generation tool—the tool does exactly what it is asked to do and
no more). Given that we are evaluating the impact of implementation structure on the effectiveness
of this criterion, both of these traits allow us to clearly explain the risks involved in changing the
implementation structure.

We have examined 100 test suites reduced using a simple greedy algorithm. It is possible that
larger sample sizes may yield different results. However, in previous studies, smaller numbers of
reduced test suites have been seen to produce consistent results [Rajan et al. 2008; Staats et al.
2010].

We have varied implementation structure using an in-house tool for transforming implementa-
tions. It is possible that one or both structures used do not correspond to an implementation structure
we are likely to see in actual implementations. Nevertheless, the non-inlined implementation struc-
ture is very similar to the original structure of the system before it is translated from Simulink, and
we thus believe it is representative of systems likely to be considered. The inlined implementation
structure is similar to the code generated from tools such as Real-Time Workbench.

Internal Validity: Our study makes extensive use of automation. It is possible that some effects
observed are due to errors in the automation of the experiment. However, much of this automation is
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part of an industrial framework (courtesy of Rockwell-Collins), particularly the more complex au-
tomation for implementation transformation, and has been extensively verified [Miller et al. 2010].
Other automation for running tests, producing oracles, etc., developed at the University of Min-
nesota has also undergone verification, and is relatively simple. We therefore believe it is highly
unlikely that errors that could lead to erroneous conclusions exist in the automation.

Construct Validity: In our study, we measure fault finding over seeded faults, rather than real
faults encountered during development of the software. It is possible using real faults would lead to
different results. However, Andrews et al. have shown the use of seeded faults leads to conclusions
similar to those obtained using real faults in fault finding experiments [Andrews et al. 2006]. Ad-
ditionally, recent work from Just et al. suggests a significant correlation between mutant detection
and real fault detection [Just et al. 2014].

Conclusion Validity: When using statistical analyses, we have attempted to ensure the base as-
sumptions for these analyses are met, and thus have favored non-parametric methods. In cases where
the base assumptions are clearly not met, we have avoided using statistical methods. Notably, we
have avoided statistical inference across case examples, as we have not randomly sampled these
examples from the larger population.

7. RELATED WORK
Work related to this study can be divided into roughly two groups: work related to structural cover-
age criteria, and work related to the MC/DC criterion specifically.

7.1. Structural Coverage
The current favored proxy for measuring the adequacy of testing efforts is the coverage of structural
elements of the source code of the software, such as individual statements, branches of the softwares
control flow, and complex boolean conditional statements [Kit and Finzi 1995; Perry 2006; Pezzé
and Young 2006]. The idea is simple, but compelling—unless code is executed, faults will never be
found. Using coverage as a measure for the adequacy of testing gives developers a number that can
be quickly calculated and used as a target, as a measure of what has been accomplished, as the basis
for planning future efforts, and—importantly—as the means by which we can enable to automated
generation of test cases.

According to Chilenski and Miller [Chilenski and Miller 1994], structural coverage criteria are
divided into two types: data flow and control flow. Data flow criteria measure the flow of data be-
tween variable assignments and references to the variables. Data flow metrics, such as all-definitions
and all-uses [Beizer 1990], involve analysis of the paths (or subpaths) between the definition of a
variable and its subsequent use. The structural coverage criteria in many standards, including DO-
178B, are often control flow criteria. Control flow criteria measure the flow of control between
statements and sequences of statements. Pezze and Young [Pezzé and Young 2006] discuss most of
the well known control flow metrics used in structural testing, including, statement coverage, branch
coverage, condition coverage, MC/DC, path coverage, and call coverage.

Automated test generation methods can use coverage criteria as optimization targets, producing
test cases that cover a large portion of code with minimal human effort [McMinn 2004]. If coverage
is, in fact, correlated with fault finding effectiveness, then automated test generation represents a
powerful direction in lowering the cost and human effort associated with software testing.

That said, recent work has endeavored to revise and clarify the exact role of structural coverage in
testing, and to quantify the actual power of coverage to predict for faults [Groce et al. 2014]. Studies
on the effectiveness of test suites created with the goal of satisfying common coverage metrics
have yielded inconclusive results, some noting positive correlation between coverage level and fault
detection [Namin and Andrews 2009; Mockus et al. 2009], while more recent work paints a negative
portrait of the effect of coverage on improving the detection of real faults [Inozemtseva and Holmes
2014]—particularly when tests have been automatically generated [Fraser et al. 2013]. Previous
work from the authors of this publication echoes the latter results—tests generated with the goal
of maximizing coverage over the code, including MC/DC-satisfying tests, were often outperformed
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by test cases generated at random, and even for systems where the generated tests outperformed the
random tests, the generated tests often found fewer than 50% of the seeded faults [Gay et al. 2015b;
2014; Staats et al. 2012b]. These results match recent experiments performed using state-of-the-
art test generation techniques, where—despite noting positive correlation between fault finding and
coverage—the authors found that automated testing performed poorly overall (collectively detecting
only 55.7% of the faults) [Shamshiri et al. 2015].

In this work, we have focused on the idea that a major factor in determining the power of cover-
age as a proxy for adequate testing is the structure of the code and the sensitivity of the coverage
criterion to that structure. Another factor that has been explored is the size of the test suite, with the
majority of work confirming the intuitive idea that larger test suites are more effective at detecting
faults [Gligoric et al. 2013; Inozemtseva and Holmes 2014]. Our previous work, while noting the
same effect, has found that an even more important factor is the number and selection of variables
examined by the test oracle [Staats et al. 2011a; Staats et al. 2012a; Gay et al. 2015a]. Careful se-
lection of which variables to monitor and check for failing values is a major factor in improving the
fault finding effectiveness of tests created to satisfy structural coverage criteria.

7.2. MC/DC
Hayhurst et al. first observed the sensitivity of the MC/DC metric, stating that “ if a complex decision
statement is decomposed into a set of less complex (but logically equivalent) decision statements,
providing MC/DC for the parts is not always equivalent to providing MC/DC for the whole” [Hay-
hurst et al. 2001]. Our work attempts to quantify the difference, both in terms of coverage and fault
finding effectiveness, between measuring MC/DC on complex decisions versus simple decisions.

Gargantini et al. have also observed the sensitivity of structural coverage metrics to modification
of the code structure and have proposed a method of automatically measuring the resilience of a
piece of code to modification [Gargantini et al. 2013]. The AURORA tool produces copies of a
piece of software where the code has been transformed through user-defined rules. This process—
similar to the practice of mutation testing [Andrews et al. 2006]—allows for the calculation of a
fragility index measuring the sensitivity of the coverage level to changes in code structure.

Chilenski made the observation that “ If the number of tests M is fixed at N + 1 (N being the
number of conditions), the probability of distinguishing between incorrect functions grows expo-
nentially with N, N > 3” [Chilenski 2001]. This observation is based only on the number of tests,
not on which tests were run. The results in our experiments support this observation. For our in-
dustrial examples, test suites that provide MC/DC over the non-inlined implementation provided
poor coverage over the inlined implementations. The results indicate that MC/DC, when measured,
should be on the inlined implementation with complex decisions where N is usually much larger
than on the non-inlined implementation with simple decisions (with smaller N). Using our results
along with Chilenski’s observation, we infer that a given test suite would be more effective in re-
vealing incorrect functions in the inlined implementation than in the non-inlined implementation.

Despite the importance of the MC/DC criterion [Chilenski and Miller 1994; RTCA 1992], stud-
ies of its effectiveness are few. Yu and Lau study several structural coverage criteria, including
MC/DC, and find MC/DC is cost effective relative to other criteria [Yu and Lau 2006]. Kandl and
Kirner evaluate MC/DC using an example from the automotive domain, and note less than perfect
fault finding [Kandl and Kirner 2011]. Dupuy and Leveson evaluate MC/DC as a complement to
functional testing, finding that the use of MC/DC improves the quality of tests [Dupuy and Leve-
son 2000]. Our previous work found that automatically generating tests with the goal of achieving
MC/DC led to poor results, but that the use of MC/DC as a stopping criterion for existing testing
efforts yielded some benefit [Staats et al. 2012b; Gay et al. 2015b]. None of these studies, however,
explore the impact of program structure on the criterion.

This report is an extended version of previous work, first published in [Rajan et al. 2008]. This
work differs in two ways. First, this work includes fault finding measurements, establishing that the
differences in coverage first reported in [Rajan et al. 2008] also impact fault finding effectiveness.
Second, this work is empirically more rigorous, with far more reduced test suites employed (50 vs
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three). Note that we have elected to drop the toy case examples used in [Rajan et al. 2008], as we feel
the results provided by industrial examples are more likely to accurately reflect behavior in the real
world. Additionally, in the time that has passed since the original study, we have completely rebuilt
our automation framework, developed improved test generation tools, and refined the definitions
that we use for certain MC/DC obligations.

8. CONCLUSION
In this work, we have explored the impact of implementation structure on the efficacy of test suites
satisfying the MC/DC criterion using four real world avionics systems. For each system, we auto-
matically constructed two semantically equivalent implementations: a non-inlined implementation
which uses only simple Boolean expressions, and an inlined implementation which uses more com-
plex Boolean expressions.

Our results demonstrate that test suites achieving maximum achievable MC/DC over inlined im-
plementations are generally larger than test suites achieving maximum achievable MC/DC over
non-inlined implementations, with increases in size of 125.00%-1,566.66% observed. This increase
in test suite size also generally corresponds with an increase in fault finding effectiveness, with
improvements up to 4,542.47% observed at fixed oracle sizes. We found that test suites generated
over non-inlined implementations achieve significantly less MC/DC when applied to inlined imple-
mentations, 13.08%-67.67% in our study. We also found that test suites generated over non-inlined
implementations cannot be expected to yield effective fault finding on inlined implementations,
finding 17.88-98.83% fewer faults than tests generated and executed on the inlined implementation.
Tests generated using the inlined implementation generally attained 100% MC/DC on the non-
inlined system, and found up to 5,068.49% more faults than tests generated and executed on the
non-inlined implementation.

We believe these results are concerning, particularly in the context of certification: we have
demonstrated that by measuring MC/DC over simple implementations, we can significantly reduce
the cost of testing, but in doing so we also reduce the effectiveness of testing. Thus developers have
an economic incentive to “cheat” the MC/DC criterion (and by building tools similar to those used
in our study, the means), but this cheating leads to negative consequences.

Accordingly, we recommend organizations adopt a canonical—at least moderately structurally
complex—implementation form for testing purposes to avoid these negative consequences.
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