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Abstract

Segmentation of perivascular spaces (PVS) from brain magnetic resonance images (MRI) is important for understanding the brain’s
lymphatic system and its relationship with neurological diseases. The Frangi filter might be a valuable tool for this purpose.
However, its parameters need to be adjusted in response to the variability in scanner’s parameters and study protocols. Knowing
the neuroradiological ratings of the PVS, we used the ordered logit model to optimise Frangi filter parameters. The PVS volume
obtained significantly and strongly correlated with neuroradiological assessments (Spearman’s ρ=0.75, p < 0.001), suggesting that
the ordered logit model could be a good alternative to conventional optimisation frameworks for segmenting PVS on MRI.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Organizing Committee of MIUA 2016.
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1. Introduction

Perivascular spaces (PVS), also known as Virchow-Robin spaces, are small tubular structures that look round or
linear depending on the viewing plane (see Fig. 1 (a)), on brain magnetic resonance imaging (MRI) with intensities
close to those of the cerebrospinal fluid1,2. When associated with ageing, cerebral small vessel disease (SVD), cogni-
tive impairment, and inflammation3, they are mainly found in four brain regions: midbrain and pons, corpus striatum,
hippocampi and centrum semiovale1. Most studies use visual rating scales to assess PVS, but these have limitations
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and are prone to observer variation, specially in the centrum semiovale (CS), due to the coexistence of PVS with other
neuroradiological features of SVD that confound their identification in this region.

Efforts have been made to computationally assess PVS4,5. Recent semi-automatic methods are based on threshold-
ing and requires user intervention either for the choice of parameters or for manual editing of the resulting masks6,7.
One of the most promising approaches proposed for PVS automatic segmentation uses the Frangi filter8 parameterised
through a random forest scheme that learns discriminative PVS characteristics from manually segmented ground truth
on MR images acquired at 7T9,10. However, in reality, MRI in clinical research and practice is mostly done in scanners
with field strengths of 1.5T or 3T, and the reference standard available are visual ratings done by neuroradiologists,
all that makes the learning-based approach proposed by Park et al.10 unsuitable for being widely applicable.

We propose a novel application of the ordered logit model, usually used in statistics as a regression model for
ordinal dependent variables, as this model provides a good estimate for capturing the sources of influence that explain
the ordinal dependent variables (i.e. in this case the PVS visual rating scores) considering the uncertainty (i.e. subjec-
tivity, inter-observer variability) in the measurement of such data11. We use this model to estimate the parameters of
the Frangi filter8 to obtain the maximum likelihood of a vessel-like structure to be a PVS in the CS by also estimating
the count of PVS that most probably fall in the class correspondent to the category given by the neuroradiologist in
this brain region.

2. Methods

2.1. Visual Ratings of PVS

PVS were assessed by an experienced neuroradiologist using the visual rating scale developed by Potter et al.12,
which rates the PVS burden separately on T2-weighted MRI in three major anatomical brain regions (i.e. midbrain,
basal ganglia and centrum semiovale) as 0 (no PVS), 1 (mild; 1-10 PVS), 2 (moderate; 11-20 PVS), 3 (frequent; 21-40
PVS) or 4 (severe; >40 PVS). Examples of each rating category for the centrum semiovale are shown in Fig. 1 (b).

(a) (b)

Fig. 1. (a) Enlarged area of an axial slice with PVS. (b) Examples of the PVS rating categories (0 to 4) in the centrum semiovale

2.2. Selection of the Region of Interest

Automatic brain, cerebrospinal fluid (CSF) and normal-appearing white matter extraction were performed on T1-
weighted MRI using optiBET13 and FSL-FAST14 respectively. All subcortical structures were segmented, also auto-
matically, using other tools from the FMRIB Software Library (FSL) and an age-relevant template as per the pipeline
described elsewhere15. After identifying the lateral ventricles as the CSF-filled structures with boundaries with the
subcortical structures, the CS was identified as the region of normal-appearing white matter, superior to the lateral
ventricles, present in each of the cerebral hemispheres under the cerebral cortex. T1-weighted sequence and CS region
were linearly registered to the T2-weighted16 as the latter is the sequence where PVS are assessed5.

2.3. Segmentation of PVS

The MRI volumes (voxel dimensions 1mm×1mm×2mm) were resliced to make 1mm isotropic voxels using linear
interpolation. As per Frangi et. al8, the ”vesselness” F(v) of a voxel v at scale s was calculated as:
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Fs(v) =


0 if λ2 ≥ 0 or λ3 ≥ 0,

(1 − e−
R2

A
2α2 ) · e−

R2
B

2β2 · (1 − e−
S 2

2c2 ) otherwise,
(1)

where λ1, λ2 and λ3 are eigenvalues of the Hessian matrix, RA = |λ2|/|λ3|, RB = |λ1|/(|λ2λ3|)1/2, S = (λ2
1 + λ2

2 + λ2
3)1/2,

and α, β, c are used defined parameters. Given a set of scales s ∈ [smin, smax], the responses were combined as

F(v) = max
s

Fs(v) (2)

The voxels having F(v) larger than a threshold t were kept. PVS were identified using 3D connected component
analysis as the tubular structures with lengths between 3 and 50mm5,7. The Frangi filter parameters α, β, c, the scales
smin, smax and the threshold t were the parameters needed to be optimized.

2.4. Ordered Logit Model

An ordered logit model has been used to simulate the relationship between the number of PVS and the rating
categories taking into account the uncertainty in the measurements. This modelling approach provides a relevant
methodology for capturing the sources of influence (independent variables) that explain an ordinal variable (depen-
dent variable) taking into account the measurement uncertainty of such data11. The ordered logit model defines the
relationship between the rating class (y) and the PVS number (x) by using a latent continuous variable (y?) defined in
an one-dimensional space characterized by threshold points (µ0, . . . , µ4) as described in equation:

y? = βx + ε, ε ∼ L(µ|σ), µ = 0, σ = π/
√

3
y = 0 if −∞ < y? ≤ µ0
y = 1 if µ0 < y? ≤ µ1
y = 2 if µ1 < y? ≤ µ2
y = 3 if µ2 < y? ≤ µ3
y = 4 if µ3 < y? ≤ ∞

(3)

where β and µi are parameters to be estimated, ε is the error component which has a logistic random distribution with
expected value equal to 0 and variance equal to π/

√
3, that accounts for the measurement error.

Since y? is not a deterministic quantity, it is only possible to define the probability to belong to each class:

P(y = j|x̄) = P(µ j−1 < ȳ? ≤ µ j) = L(µ j − βx̄) − L(µ j−1 − βx̄), j = 0, . . . , 4 (4)

where L is the logistic cumulative distribution function.
This model has been calibrated maximizing a likelihood function based on a synthetic dataset generated in 2 steps.

In the first step 1000 numbers of PVS count have been generated using a log-normal distribution (median:15, SD:1)
to represent the PVS population. In the second step a rating class from 0 to 4 (0 = none, 1 = 1 − 10, 2 = 11 − 20,
3 = 21 − 40, 4 = > 40 PVS) has been assigned to each generated number. The estimated parameters are β = 0.514,
µ0 = −2.840, µ1 = 5.708, µ2 = 10.497, µ3 = 20.040, and the model is illustrated in Fig. 2

2.5. Parameter Optimization

To optimize the segmentation parameters, a log-likelihood function has been defined as the function to maximize.
This function can be calculated for each set of parameters (α, β, c, smin, smax and t). With the procedure described in
Sec. 2.3, using these parameters, we obtained a PVS binary mask. For each slice we calculated the PVS density as
the area of the PVS mask divided by the area of the CS mask (obtained as described in Sec. 2.2). We automatically
selected in the CS the slice with higher density of PVS. This slice corresponds to the representative slice having the
highest number of PVS chosen by the radiologist for assessing the visual ratings12. The count of PVS in this slice has
been derived automatically with 2D connected component labelling. From the count of PVS (xi(α, β, c, smin, smax, t))
for each i case we obtained the probabilities of each i case to belong to the five rating classes (P(y = j|xi), j = 0, . . . , 4)
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Fig. 2. Estimated ordered logit model

using the ordered logit model. The PVS visual rating category provided by an expert radiologist is then used to select a
probability for each i case (P̄i). The sum of the logarithms of these selected probabilities is the log-likelihood function
to maximize:

LogL(α, β, c, smin, smax, t) =

N∑
i=1

log(P̄i) (5)

where N is the number of cases. The optimization process is illustrated in Fig. 3. The ranges of the parameters that
undergo the optimization process has been defined as in Table 1.

Fig. 3. Optimization approach

Table 1. Range of the segmentation parameters to optimize
α β c smin smax t

min value 0.3 0.3 300 0.1 0.1 0.2
max value 0.7 0.7 700 0.5 1.0 0.4
increment 0.1 0.1 100 0.1 0.1 0.05

The usual drawback of optimization processes is the computational time necessary to simultaneously optimize
multiple parameters. Indeed, each log-likelihood function evaluation implies filtering all the training samples using
eq. (1), which may become critical in this 3D case. To reduce the computational time, in this research contribution,
we performed a series of optimization steps, such that in each step the optimization is limited to subsets of parameters.
The optimal parameters obtained in the first step have been kept constant to optimize the remaining ones.
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3. Experiments and Results

For developing and optimizing the segmentation approach, the imaging datasets of 24 subjects were chosen from
a sample of the Lothian Birth Cohort 1936 Study (LBC1936) (http://www.lothianbirthcohort.ed.ac.uk/). The number
of training images for each rating score have been chosen to reflect the distribution in the full dataset. To evaluate the
new method, we applied the optimized segmentation procedure described in Sec. 2.3 to 60 patients of the same older
person study. Visual ratings of PVS was available for all these cases (Table 2).

Table 2. Distribution of the PVS visual ratings in the training and test dataset.
PVS rating 0 1 2 3 4 Total
Training images 1 5 8 6 4 24
Test images 0 11 22 18 9 60

Segmentation procedures are commonly evaluated assessing the voxel-wise spatial agreement between two binary
masks, one obtained by the automatic method and a manual one. In our case, the manual segmentation of PVS is
not available, as it will be a very tedious and time consuming task to manually annotate these tiny structures in a
reasonable size dataset. For this reason we could not report accuracy values. Quantitative comparison with other
methods4,6,7 is also unfeasible as they have been applied to MR images having different resolution, acquired using
different protocols in different cohorts. Volume rendering of the segmented PVS for the subjects of 4 rating categories
(1 to 4) of Fig. 1 is shown in Fig. 4 for visual qualitative evaluation.

Fig. 4. Volume rendering of segmented PVS for 4 subjects of Fig. 1 with rating categories 1 to 4

We tested associations between segmentation results of the 60 test cases and their rating scores using Spearman’s ρ
(statistical analysis were performed using MATLAB Robust correlation toolbox17). The PVS volume and count
strongly correlated with visual rating scores (Spearman’s ρ = 0.75 and 0.69, respectively, both p < 0.001). Scatter
plots of these associations are shown in Fig. 5.

Fig. 5. Associations between PVS computational total volume and count vs. PVS visual rating scores in centrum semiovale (CS) region.

4. Conclusions

We presented an automatic method for 3D segmentation of PVS in conventional MRI. Thanks to the 3D Frangi
filter that enhances and captures the 3D geometrical shape of PVS, this method shows promise for allowing identifying
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and quantifying PVS that run both longitudinally and transversally in the CS, avoiding the double-counting limitations
of slice-based methods. The novelty of this work is the fact that the ordered logit model allows to use the visual ratings
for segmentation optimization in absence of alternative computational ground truth. The ordered logit model could
deal with the measurement uncertainty and the unequal class intervals of the rating scores.

The automatically segmented PVS count and volume agree with visual ratings. The method is fully automatic
and therefore free from inter- and intra-rater variability. However, much more testing is required in a wider range
of subjects including those with high burden of other ageing and neuroinflammation features such as patients with
stroke or multiple sclerosis. The quantitative assessment of PVS volume and count is more suitable for longitudinal
studies than visual ratings, that tend to be susceptible to ceiling/flooring effects. The accurate segmentation of PVS
will allow the analysis of their spatial distribution, orientation and density. Moreover it will enable the study of the
spatial and volumetric relationships of PVS with other markers of SVD, e.g. acute lacunar infarcts, white matter
hyperintensities, lacunes, and microbleeds, including potentially in longitudinal studies and in relation to measures of
cerebral blood brain barrier permeability, perfusion and cerebrovascular reactivity. Quantitative measurements will
better characterize the severity of PVS in ageing people and their associations with dementia, stroke and vascular
diseases.

Acknowledgements: Thanks to funders MRC Disconnected Mind (MR/M013111/1), Age UK (DCM Phase 2),
Row Fogo Charitable Trust (R35865, R43412), and contributors to the LBC1936 study.
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