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Abstract We present a novel algorithm for image-based
surface reconstruction from a set of calibrated images. The
problem is formulated in Bayesian framework, where esti-
mates of depth and visibility in a set of selected cameras are
iteratively improved. The core of the algorithm is the min-
imisation of overall geometric L2 error between measured
3D points and the depth estimates.
In the visibility estimation task, the algorithm aims at out-
lier detection and noise suppression, as both types of errors
are often present in the stereo output. The geometrical for-
mulation allows for simultaneous refinement of the external
camera parameters, which is an essential step for obtaining
accurate results even when the calibration is not precisely
known. We show that the results obtained with our method
are comparable to other state-of-the-art techniques.

1 Introduction
Reconstruction of a 3D model from multiple views has been
an active research field in the past years. A wide range of
methods with excellent results exist, but there is still a lot
of space where the results can be improved, specifically in
terms of accuracy and completeness on large and complex
scenes. A suitably chosen representation, also depending on
the application, is in the core of every reconstruction algo-
rithm. Following the taxonomy of [14], we can divide the
representations in four major groups.

Voxel-based or volumetric representations work with a
3D grid, where scene objects are indicated by an occupancy
function defined on every grid cell. A successful recent rep-
resentative is [20], however this representation is in practice
limited to smaller closed objects, due to a low scalability of
memory requirements, which can be improved by use of an
octree only when an initial solution is known. Interesting
GPU implementation of volumetric range image fusion [21]
shows the speed is important for some applications.

Similarly, the level-set representations define a scalar
function on the 3D grid, where its zero-crossing indicates
the object surface. Again, such representations suit well for
closed objects only [7].

The last 3D representation is a polygonal mesh, usually
in the form of connected triangular facets. This represen-
tation is commonly used in computer graphics as it allows
efficient rendering, therefore other representations are usu-

ally converted to a mesh at a particular stage of the recon-
struction process. Alternatively, rectangular patches can be
used instead of triangles, but in this case the connectivity
is not implicitly defined. Currently best performing method
in this area is [8], where initial matched features are grown
in space. After the transformation of patches into triangle
mesh with [12], its vertices are photometrically refined.

Finally, representation with depth maps is a different ap-
proach, where depth values are assigned to all pixels of a
set of images, which allows seamless handling of the input
data from both passive and active sensors. It leads to inte-
gration of the data in the image space, and such process can
be described as depth map fusion. The drawback of depth
map representation lies in the fact it is not intrinsic, as it
works only with a projection of the 3D surface. Also the
final step of creating a 3D mesh requires more effort when
compared to a direct 3D representation. This representation
was first used by [18] for global estimation of depth maps,
later Strecha used it in his two algorithms: In [16] he first
uses the probabilistic EM [5] algorithm to jointly estimate
depths and visibility, which is supplied with hidden Markov
Random Field in [17] to model inlier and outlier processes
generating the images. However, the methods do not scale
well and the accuracy of the second algorithm is lower due
to the discretisation of depths.

We have chosen this representation, because it is sim-
ple and can easily exploit information available in images
during the process of depth map fusion. It also suits well
in large outdoor scenes, where 3D methods are difficult to
apply. Goesele [10] and Bradley [4] recently proved that
this concept works, however the results of [10] are not com-
plete. In [4] they use the visual hull and ordering constraints,
which limits the application to indoor objects. In contrast,
our interest is also in outdoor scenes, where the background
segmentation is not available. A recent method focusing on
large-scale scenes was presented by [13] and uses a different
representation. It builds an adaptive tetrahedral decomposi-
tion of matched keypoints using 3D Delaunay triangulation.
Occupancy function on this graph is computed as optimal
labelling by solving a minimum cut problem.

The current challenge of obtaining more complete and
accurate results has reached the level where the accurate
camera calibration is essential for further improvement. Fu-
rukawa [9] has recently taken this into account, when he iter-
atively switches between the camera calibration with a stan-
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dard bundle adjustment and recovering of the scene with re-
fined camera parameters. Our incorporation of this problem
is different: geometric constraints allow us to solve jointly
for both depths and camera centres.

2 Algorithm overview
The input to the proposed algorithm is a set of images
I =

{
Ii
p | i = 1, . . . , c; p = 1, . . . , ni

}
, where c is the

number of cameras and ni is the number of pixels in
image i. The possibly inaccurate camera calibration
P =

{
Pi | i = 1, . . . , c

}
is obtained from a reconstruction

pipeline [6]. Disparities are then computed on rectified
image pairs with a publicly available dense matching
stereo algorithm GCS [3]. With triangulation we obtain
a point cloud X in the form of pair-wise disparity maps
back-projected to space.

The goal is to get Bayesian estimate of depth maps Λ ={
λi

p | i = 1, . . . , c; p = 1, . . . , ni
}

, where λi
p ∈ R is a re-

constructed depth in pixel p of image i, and visibility V ={
vi

p | i = 1, . . . , c; p = 1, . . . , ni
}

, where vi
p ∈ {0, 1, 2} is

the visibility of pixel p of image i in all cameras i = 1, . . . , c
such that vi

p = 0 marks invisible and vi
p > 0 visible pixels;

exact meaning will be described later. The task leads to the
maximisation of the posterior probability, which can be for-
mally written as

(X ∗, Λ∗, V ∗, C∗) = arg max
X ,Λ,V,C

P (X ,Λ, V, C | I). (1)

The intended output is (Λ∗, V ∗) while the estimation of
(C∗,X ∗), where C is a set of camera centres, should be in-
terpreted as an effort to repair the input data. Because of
the presence of joint probabilities it is necessary to decom-
pose the problem. The solution algorithm alternates between
two sub-problems conditioned on each other: estimation of
(Λ, C,X ) and V . The output of the first subproblem is used
as the input to the second, and vice versa. Internally, the sub-
problem of estimation of (Λ, C,X ) is also divided, so that
the result of the optimisation task of (Λ, C) is used to repair
the corresponding points X . This proposal is a modification
of EM algorithm [5], inspired by [16], where visibility V
corresponds to the hidden variables.

With k as the number of iteration, the overall iterative
procedure can be described as

1. Input corresponding points X and cameras P are given.
A subset of cameras, where the depth and visibility maps
will be estimated, is manually chosen.

2. In all cameras i = 1, 2, . . . , c, initialise visibility maps
V (0) and depths maps Λ(0) from input data X .

3. Solve the visibility estimation task (18) and get estimate
of visibility V ∗. Update the current value of visibility
maps V (k) to V (k + 1) := V ∗.

4. Solve the depth estimation task (4) and get estimate of
depths (Λ∗, C∗). Update the value of depths Λ(k) to
Λ(k + 1) := Λ∗. Update the value of camera centres
C(k) to the new position C(k + 1) := C∗.
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3D neighbourhoodN3(x
i
p, Ci)

image plane in image i

camera center Ci

pixel area

X

x2

xi
p

x1

Figure 1: 3D neighbourhood. Red dots represent matching corre-
spondences Xij

pq .

5. Correct the positions of X based on updated cameras C
and depth estimates Λ.

6. Repeat Steps 3–5 for a given number of iterations.

7. Project depth maps to 3D space to obtain cloud of points
with normals estimated from points neighbouring in the
image.

8. Merge the points into continuous surface with PSR [12]
and filter the result to remove introduced big triangles
based on average edge size.

The individual tasks of depth and visibility estimation
will be now discussed in more detail. A full description of
the algorithm is given in [19].

3 Depth estimation
In this section, the highly redundant input point cloud will
be integrated in the image space. The idea allowing it is
represented by a 3D neighbourhoodN3, see Figure 1. Given
image i and pixel p, we define N3(xi

p,C
i) as a pyramidal

region in the vicinity of an image ray defined by pixel area
with centre xi

p and camera centre Ci. The set of points lying
in this region will be denoted as

χi
p =

{
Xij

pq | Xij
pq ∈ N3(xi

p,C
i)

}
, (2)

where j ∈ {1, . . . , c}; q ∈ {1, . . . , nj} and Xij
pq ∈ R3 is a

point in space computed from correspondence between pixel
p in camera i and pixel q in camera j. The set of all cor-
responding points X (measurement) coming from disparity
maps can be then parametrised as

X =
{
χi

p | i = 1, . . . , c; p = 1, . . . , ni
}

, (3)

where χi
p is a set of correspondences of pixel p in image

i from all disparity map pairs ij. Note that by this choice
our discretisation of the image space is given: we work with
natural pixel resolution.
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Now we can formulate the depth estimation task: given
measurementsX and visibility V , we search for the estimate

(Λ∗, C∗) = arg max
Λ,C

P (X | Λ, C, V )P (Λ, C, V ). (4)

The solution of the problem does not depend on P (X , V ).

3.1 Projection constraints
Probability P (X | Λ, C, V ) from (4) can be expressed as

P (X | Λ, C, V ) =
c∏

i=1

n∏
p=1

p(χi
p | λi

p, C, V ), (5)

where χi
p is the set of correspondences projecting to pixel p

in image i and λi
p is estimated depth at this point. We choose

p(χi
p | λi

p, C, V ) =





1
Tλ

e
− (λ̄i

p−λi
p)2

2 σ2
λ if vi

p = 2,

1 otherwise,
(6)

where Tλ = σλ

√
2π and λ̄i

p = λ̄(χi
p, C) is a depth estimat-

ing function from the set of all correspondences χi
p. It is

computed as a result of the least squares minimisation sub-
task

λ̄(Xi
p, C) = arg min

λ̄i
p

∑

(j,q)∈χi
p; vj

q≥1

‖X̄i
p −Xij

pq‖2, (7)

where j, q are all correspondences visible also in the cor-
responding cameras j and X̄i

p = φ(xi
p, λ̄

i
p,C

i) is a back-
projection, assigning a point in space X̄i

p to the depth λ̄i
p

and image point xi
p in the projective camera with centre Ci:

X̄i
p = Ci + λ̄i

p (Ri)>(Ki)−1xi
p, (8)

where Ri is rotation of the camera and Ki are internal cam-
era parameters. Similarly Xij

pq = φ(xj
q, λ

j
q,C

j).
Let us build a system of projective equations for all such

correspondences in (χi
p | V ). The part ‖ · ‖2 in (7) min-

imises the L2 distance between back-projected points and
the estimate.

The equation for one correspondence pair (j, q) accord-
ing to Figure 2 comes from the necessary condition for the
minimum of (7), which is the equality of points X̄i

p = Xij
pq .

With decomposition of the camera matrices1, the resulting
constraint becomes

Rj(3)
Ci−Rj(3)

Cj+λ̄i
p Rj(3)

(Ri)>(Ki)−1xi
p = λj

q (9)

where ·(3) denotes a third row of a matrix, and λ̄i
p,C

i,Cj

are considered unknowns. Note that the use of geometric
constraints allows us to include re-estimation of camera cen-
tres C in the task. This gives us one of equation from the set
of linear equations of geometric constraints to λ̄i

p, forming
an over-defined system.2

1See [19] for details.
2Only if there are more correspondences for the given pixel.
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Figure 2: 2D view of a situation with two correspondences. Dotted
lines are borders of 3D neighbourhood of pixel p in image i (red).
X̄i

p and λ̄i
p are two representations of the same point (blue).

3.2 Surface model

The surface model performs regularisation to smooth out the
noisy data. Probability P (Λ, V, C) from (4) can be written
under the assumption of the Markov property as

P (Λ, V, C) =
c∏

i=1

∏

(p,p̄)∈N2(i)

p(λi
p, λ

i
p̄ | vi

p, v
i
p̄) p(vi

p, v
i
p̄),

(10)
where N2(i) is the set of all neighbouring pixel pairs (p, p̄)
in the image i (2D neighbourhood). The pairs are defined
for all edges of the image grid, as can be seen in Figure 3.

The solution of task (4) does not depend on p(vi
p, v

i
p̄), as

it is fixed.
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qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
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Figure 3: 2D neighbourhood N2 | V on the image grid, pixels
are at the intersection of grid lines, vi

p ≥ 1 where a dot is present.
Blue: horizontal pairs in one column. Red: vertical pairs in one
row.
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The choice of p(λi
p, λ

i
p̄ | vi

p, v
i
p̄) depends on the used

model of surface, and the probability distribution of a gen-
eral surface model can be described as

p(λi
p, λ

i
p̄ | vi

p, v
i
p̄) =





1
Tλ

e
− (εi

p)2

2 (σ i
c,p̄)2 if vi

p ≥ 1, vi
p̄ ≥ 1,

1 otherwise,
(11)

where Tλ = σ i
c,p̄

√
2π and the value of σ i

c,p̄ is proportional
to size of gradient of image function ‖OI ‖2 at pixel p in
image i, based on color difference of neighbouring pixels of
Ii
p. This comes from the assumption that image regions with

higher variance contain more information and the belief in
the results of the stereo algorithm is higher, therefore we can
penalise differences in λ less allowing the solution to follow
data more closely. The difference ε2 will be defined as

(εi
p)

2 = (Φi
p − Φi

p̄)
2 (12)

where Φ is a surface property, such as depth, normal or cur-
vature, and Φi

p is the value of the property at given point p
in image i.

For Φ ≡ λ, the equation (11) describes continuity of or-
der 0, this means all neighbouring depths are ideally equal,
favouring locally a fronto-parallel plane. The first order con-
tinuity Φ ≡ N forces the normals of surface in neighbouring
points to be equal, which locally leads to a plane with arbi-
trary normal. The computation of the normal is complex,
so we reduce problem to the constancy of the first derivative
of the depth function λ along the image axes. This choice
reduces the number and complexity of equations for the sur-
face model at the cost of the loss of the intrinsicity of the
normal constancy. After discretising partial derivatives we
obtain the simplest approximation of the first order:

ε2 = (λ−1,0 − 2λ0,0 + λ+1,0)
2+(λ0,−1 − 2λ0,0 + λ0,+1)

2
,

(13)
where we have used simplified notation λa,b = λ(x+a, y+
b). As a result, constancy of the depth is replaced by con-
stancy of the gradient.

The second order means the constancy of the mean cur-
vature along the surface, Φ ≡ H, and the difference (12)
becomes ε2 = (Hi

p − Hi
p̄)

2. Following the same simplifi-
cation scheme as for the first order, we obtain the following
approximation for the second order:

ε2 =
[
λ−1,0 − 3λ0,0 + 3λ+1,0 − λ+2,0

]2 +

+
[
λ0,−1 − 3λ0,0 + 3λ0,+1 − λ0,+2

]2
.

(14)

In our implementation, we use the model of the second
order on the majority of the visible surface, it improves the
results as it better preserves surface features such as edges.
However, the approximation requires certain visible area
around a given pixel, so in practice we use models of zero
and first orders near borders.

3.3 Energy minimisation
The problem of (4) can be factorised to individual camera
contributions. After application of negative logarithm we
get energy minimisation

(Λ∗, C∗) = arg min
Λ,C

c∑

i=1

E(Λi, C | X , V ). (15)

Figure 4: A visibility map. Red pixels vi
p = 2 indicate presence of

data points. Yellow pixels vi
p = 1 indicate depth interpolation from

neighbouring data. Blue pixels vi
p = 0 mark invisible regions,

which include dark blue pixels where discontinuity was detected.

Energy Ei
λ = (Λi, C | X , V ) of depths in camera i,

from (15) with use of the first-order surface model is then

Ei
λ =

1
2σ2

λ

n∑
p=1

(λ̄p − λp)2 +
∑

(p,p̄)∈N2(i|V )

1
2σ2

c,p

(λp − λp̄)2,

(16)
where the first part expresses the data energy, the second part
expresses the surface model energy and coefficients σ define
their mutual weights.

The necessary condition for an extremum gives

1
σ2

λ

(
λ̄p − λp

)
+

∑

(p,p̄)∈N2(i|V )

1
σ2

c,p

(λp − λp̄) = 0. (17)

The system of linear equations builds up from projective
equations (9) and energy minimisation equations (17) can be
represented as Ax = b, where A is a large sparse matrix, b
is a right side vector, which we solve for unknown depths
and camera centres x =

[
Λ C1 C2 . . . Cc

]
. We employ

quasi-minimal residual method to solve our over-determined
system with the initial or previous estimate as the starting
point close to the optimum. The number of iterations of the
solver is limited to a number proportional to the size of the
problem.

4 Visibility estimation
The visibility estimation task in the step 3 of the algorithm
overview in Section 2 will be now presented. It pursues sev-
eral principal goals: primarily, outliers in the point cloud
are detected, next the discontinuities are indicated to pre-
vent smoothing over them and finally the compactness of
the visible regions is enforced. According to Figure 4, vis-
ibility defines if a given pixel and its estimated depth will
be used for reconstruction of the surface (vi

p ≥ 1) or not
(vi

p = 0), and also if there is data support from projected
correspondences at this point (vi

p = 2). Then given depths
Λ, correspondences X and image values I, it is searched for

V ∗ = arg max
V

P (I | V, Λ,X )P (V, Λ,X ). (18)
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Figure 5: Overlapping borders. False overlapping surface is
marked blue. Green(bold) and red illustrate different colours of
the background projected to the different cameras.

The conditional probability P (I | V, Λ,X ) can be ex-
pressed as

P (I | V, Λ,X ) =
c∏

i=1

n∏
p=1

∏

(q,j); vj
q≥1

p(Ij
q, I

i
p | vj

q , v
i
p),

(19)
where (q, j) is a list of visible corresponding pixels j in cam-
era q from χi

p. We choose

p(Ij
q , Ii

p | vj
q , v

i
p) =





1
TI

e
− (Ii

p−I
j
q)2

2σ2
I if vj

q = vi
p = 2,

h(Ii
p) otherwise,

(20)
where TI = σI

√
2π and where h(Ii

p) is probability of ob-
serving an ”invisible” colour (like colour of the sky), based
on regions invisible according to previous estimate of visi-
bility V. The image difference and invisible colour match-
ing mostly indicate errors on borders of surfaces, where the
results of stereo tend to overlap the real surface and continue
a few pixels “into the air”, as in Figure 5. These overlaps
then have the colour of the background (surface in higher
depth) and typically occur where the background is light and
the object is dark, because of the behaviour of the correla-
tion function in stereoscopic matching.

Probability P (V, Λ,X ) can be rewritten as

P (V, Λ,X ) = P (V,X ) · P (Λ | V,X ). (21)

It is assumed that the surface is locally flat, and big local
changes in depth are either discontinuities due to occlusion
or errors in stereo. The discontinuities should be represented
as an line of invisible pixels and erroneous data should be
hidden. This assumption can be expressed as

P (Λ | V,X ) =
c∏

i=1

∏

(p,p̄)∈N2(i|V )

1
Tλ

e
− (λi

p−λi
p̄)2

2(σ i
λ,p

)2 , (22)

where σ i
λ,p is estimated from residual of depth λi

p in the
depth optimisation task (4). The residual is higher at the
points where the surface model could not be fitted on the
data, indicating possible outliers. Expression (p, p̄) ∈

N2(i | V ) are visible neighbouring pixels, as defined in (10)
where additionally vi

p ≥ 1, vi
p̄ ≥ 1.

Compactness of visible and invisible regions is assumed:

P (V,X ) =
c∏

i=1

∏

(p,p̄)∈N2(i)

1
Tv

e
− (vi

p−vi
p̄)2

2σ2
v . (23)

The expression (vi
p− vi

p̄)
2 means that pixels neighbouring a

visible pixel with data support (v = 2) are more likely to be
visible (v = 1) rather than invisible (v = 0).

The value vi
p = 1 implies interpolation of depth λi

p and in
the terms of (23) should be done only in regions near visible
data (vi

p = 2). This corresponds to filling holes in the pro-
jected data, but also should not cause interpolation of depths
far from data, as the probability of guessing such depth cor-
rectly is low.

After applying negative logarithm on (18) and some ma-
nipulations we get

V ∗ = arg min
V

c∑

i=1

E(V i), (24)

E(V i) =
n∑

p=1

E(vi
p) +

1
2σ2

v

∑

(p,p̄)∈N2(i)

(vi
p − vi

p̄)
2, (25)

where

E(vi
p) =

∑

(q,j)∈χi
p; vj

q≥1

E(vi
p, v

j
q) +

∑

(p,p̄)∈N2(i|V )

(λi
p − λi

p̄)
2

2(σ i
λ,p)2

(26)

E(vi
p, v

j
q) =

{
(Ii

p−Ij
q)2

2σ2
I

if vi
p = vj

q = 2

− log h(Ii
p) otherwise.

(27)

In this task the data visibility vi
p = 2 cannot be assigned

without an existing support of at least one correspondence in
χi

p. We avoid here the occlusion problem and do not create
a new correspondence. As a result, only some data can be
hidden by this task (visibility set to v = 0), and otherwise
the data visibility is fixed.

Following this analysis, we can transform our prob-
lem (26) of three labels vi

p ∈ {0, 1, 2} into a binary seg-
mentation problem, which allows us to use the minimum cut
solution [11]. Specifically, penalty function is E(vi

p) plus a
data visibility term, and the second term in (25) maps to the
interaction potential. We use the implementation from [2].
The output of the min-cut problem is a binary labelling as-
signing visibility to all pixels in the image. Its interpretation
for data visibility v = 2 is that it keeps vi

p = 2 where the
label 1 was assigned.

We observed during the development that the model
described above cannot itself handle discontinuities com-
pletely, because it has to take continuity into account. While
undetected discontinuities are critical in the depth model as-
suming continuity, we decided to focus on them in a subtask.

Let us introduce a new variable, discontinuity map Di ={
di

p | p = 1, . . . , ni
}

, where di
p ∈ {0, 1} is presence of dis-

continuity in pixel p in camera i. Set of all discontinuity
maps will be D =

{
Di | i = 1, . . . , c

}
. The subtask of dis-

continuity detection can be formally expressed as a search
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for estimate D∗:

D∗ = arg max
D

P (Λ | D, V )P (D, V ). (28)

In this task the solution does not depend on P (V, Λ). Prob-
ability (28) is difficult to calculate explicitly. The proposed
solution solves the task indirectly in every camera i. First,
gradient of depth δ i

p = ‖Oλ′ ip ‖2 is calculated on the visible
data. If the depth is unknown at the moment, it is interpo-
lated as the median of the closest known depths. Note this is
an edge-preserving operation. Afterwards the gradient size
is normalised to δ′ ip = δi

p

λi
p

, what is equivalent to gradient
size at depth λ = 1. A threshold on normalised gradient
is chosen and the initial discontinuity map Di0 is obtained.
Finally, Di0 is processed with binary morphological opera-
tions to reduce regions to lines to obtain Di∗ and estimated
discontinuities are propagated to the visibility maps, vi

p = 0
is set for each pixel where di∗

p = 1.

5 Update of correspondences
One of the possible solutions to the energy-minimisation
equations for visibility (25) and depths (15) is that nothing
is visible in all cameras and the energy reaches its minimum
E(V ) = E(Λ) = 0.

This could happen if the input does not match the as-
sumptions and parameters of the used model, i.e. the surface
is not locally simple or the exposure of input images is very
different. Up to a certain limit, this case is avoided by the
robust estimation of parameters σλ and σv .

The visibility according to the previous section builds on
the data visibility, so the data can be only hidden by the
visibility task (v < 2) and propagated to other cameras, the
iteration could gradually hide all data. This is avoided by the
repair of hidden correspondences, so that the data visibility
of previously hidden points v = 2 is restored.

The correspondences X are repaired in the step 5 of our
algorithm in the overview in Section 2, after depths are prop-
erly estimated in each iteration. A correspondence, Xij

pq, is
to be repaired when it is visible in at least one camera with-
out data support, that is either vi

p = 1 or vj
q = 1. If either

only vi
p = 1 or vj

q = 1, then correspondence is a back-
projection of the currently estimated depth, for vi

p = 1 it
is

Xij
pq = Ci + λi

p (Ri)>(Ki)−1xi
p, (29)

similarly for vj
q = 1. If both vi

p = 1 and vj
q = 1, then

correspondence Xij
pq is updated to the value back-projected

in camera i as in previous case, and a new correspondence
Xij

p′q′ is created according to the value back-projected in
camera j. The visibility of the repaired correspondence is
enforced by setting vi

p = vj
q = 2, where the indices p, q are

obtained after the new projection of Xij
pq .

Because the correspondence is restored at the point de-
termined by the model, it minimises the energy E(V ) and
E(Λ). Since the visibility task keeps data that match the
model, repaired correspondences will not be later hidden
again with high probability.

A different approach in the place of updating data points,
which we would like to consider in the future is to run stereo
matching again with refined camera positions.

Dataset #img #main complet. accuracy
fountain-P10 10 6 80.19 % 35.45 %
Herz-Jesu-P8 8 8 78.82 % 39.38 %
entry-P10 10 10 79.43 % 31.84 %
castle-P19 19 7 79.93 % 40.82 %

Table 1: Results on datasets with accurate calibration. The accu-
racy and completeness correspond to the percentage of pixels with
error < 2σ and 10σ respectively, where σ is the ground truth error
from [15]

6 Experimental results
We have tested the proposed algorithm on two groups of
datasets, first with available accurate calibration and second
with less accurate camera parameters. In all cases, experi-
ments were run in the Matlab environment on 2.4GHz PCs
with 16GB memory.

The first group consists of datasets available for on-line
evaluation from [15]. We have chosen it because all datasets
present there are real outdoor-scenes captured in a high res-
olution. We have run our algorithm with same parameters3

on four datasets, which are included in Table 1, and the re-
sults are available on-line4. The number of main cameras
refers to the subset of cameras, in which the depths are esti-
mated, and it was adjusted according to the number of input
images. The number of iterations of the proposed algorithm
was fixed to 5 and all images were sampled down to half-
size resolution.

The automatic evaluation in [15] is performed against
ground truth acquired with time-of-flight laser measure-
ment. Evaluated scene is projected to the input cameras, and
obtained depths are compared with the ground truth depths
in the scale of its accuracy σ in Figure 6. The update of cam-
era centres was not performed in this group to keep the idea
of calibrated evaluation, however it was still variable in (9).

The accuracy of the results on the first two datasets can
be observed in Figure 6, where a comparison with a num-
ber of other methods can be performed. In both cases the
results are almost identical to the best performing methods
publicly presented at the time of submission. From rendered
results it shows that many methods, including our, fail to re-
construct the ground plane in the scenes. The reason for
this behaviour was found in the almost pure horizontal mo-
tion in the datasets. The specific behaviour of our method
can be demonstrated on the error distribution in the image.
We believe the camera calibration in this dataset is still not
fully accurate, which results in less errors (light) on the right
side and more errors (dark) on the left side in the all other
algorithms’ results, like in Figure 7 e). In contrast, our over-
all geometric L2 minimisation allowed a small shift of the
camera resulting in the error being distributed equally in the
image, see Figure 7 d).

In the second group, the input point cloud in correspon-
dences, camera pairs and camera parameters were obtained
from the reconstruction pipeline of [6]. We have selected a
scene that shows a part of paper model of the Prague cas-

3Their values and choice is given in [19, Chapter 3].
4http://cvlab.epfl.ch/ strecha/multiview/denseMVS.html



Radim Tyleček and Radim Šára
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Figure 6: Cumulative histograms from [15] represent percentage
of pixels with an error < nσ. The accuracy manifests at the value
of 2σ, completeness at 10σ. Proposed method is labelled ”TYL”.

tle with Daliborka tower [1]. In this case the input data
are noisy and the pair-wise reconstructions do not align
with each other well, because of inaccurate camera parame-
ters. Some surfaces have no texture, therefore they were not
matched by the stereo algorithm. Figure 8 shows that the
estimation of the camera positions converge to a stable posi-
tion after a significant update in the second iteration. How-
ever the number of iterations necessary to refine inaccurate
camera positions is higher than in the accurate case, in this
case the algorithm was run for 11 iterations.

Finally, Figure 10 shows the successful suppression of
the stereo overlap error, resulting in better accuracy near
edges.

7 Conclusion and future work

We have presented a novel multi-view stereo algorithm that
is suitable both for scenes with accurate and inaccurate cam-
era calibration. The suitably chosen techniques, such as in-
visible colour matching, edge and discontinuity preservation
help to produce very faithful results. The chosen depth map
representation has linear complexity in the number of im-
ages and allows application to large outdoor scenes. The ex-
periments show that the fused pair-wise stereo matching can
achieve same results as simultaneous multi-view matching.

Having an accurate global solution, we now see improve-
ment potential in the local mesh refinement.

Acknowledgement
The author was supported by Ministry of Education as a part of the
specific research at the CTU in Prague and by the Czech Academy
of Sciences under project No. 1ET101210406.

Figure 7: Fountain-P11 dataset [15]. From top: a) one of the 11 in-
put images, b) ground truth rendering, c) our method result, d) our
method error, accurate regions are white, missing reconstruction is
red, green area was not evaluated, e) error of [8]
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Figure 8: Relative translation in iterations, Daliborka dataset.
Scale is given so that the average distance between cameras is 1.
Each one of 23 cameras is represented by a different color, bold
black line is the average of all cameras.

Figure 9: Daliborka dataset. From top: a) some of 27 input im-
ages, b) textured result of our method, c) composition of surface
from different views, one color per camera.

Figure 10: Detail from Daliborka scene. Overlapping borders
(left) are successfully removed after one iteration of the proposed
algorithm (right).
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