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ABSTRACT 

Objective: Damage to the cerebral tissue structural connectivity associated with amyotrophic 

lateral sclerosis (ALS), which extends beyond the motor pathways, can be visualized by diffusion 

tensor imaging (DTI). The effective translation of DTI metrics as biomarker requires its application 

across multiple magnetic resonance imaging scanners and patient cohorts. A multi-centre study was 

undertaken to assess structural connectivity in ALS at a large sample size. 

Methods: Four-hundred-and-forty-two DTI data sets from patients with ALS (N=253) and controls 

(N=189) were collected for this retrospective study from eight international ALS-specialist 

international clinic sites. Equipment and DTI protocols varied across the centres. Fractional 

anisotropy (FA) maps of the control subjects were used to establish correction matrices to pool data, 

and correction algorithms were applied to the FA maps of the control and ALS patient groups.  

Results: Analysis of data pooled from all centres using whole-brain-based statistical analysis of FA 

maps confirmed the most significant alterations in the corticospinal tracts, and captured additional 

significant white matter tract changes in the frontal lobe, brainstem and hippocampal regions of the 

ALS group that coincided with post mortem neuropathological stages. Stratification of the ALS 

group for disease severity (ALS functional rating scale) confirmed these findings.  

Interpretation: This large-scale study overcomes the challenges associated with processing and 

analysis of multi-platform, multi-centre DTI data, and effectively demonstrates the anatomical 

fingerprint patterns of changes in a DTI metric that reflect distinct ALS disease stages. This success 

paves the way for the use of DTI-based metrics as read-out in natural history, prognostic 

stratification and multi-site disease-modifying studies in ALS. 



INTRODUCTION 

The use of advanced magnetic resonance imaging (MRI) techniques, in particular diffusion tensor 

imaging (DTI) of white matter tracts, has greatly improved the understanding of the in vivo cerebral 

and spinal neuropathology of the adult neurodegenerative disorder amyotrophic lateral sclerosis 

(ALS).[1-5] DTI can quantify the integrity of large white matter tracts in vivo using metrics such as 

fractional anisotropy (FA).[6] A DTI-based in vivo imaging concept has also been applied to the 

recently introduced neuropathological staging system, indicating that ALS may disseminate in 

regional patterns.[7,8] ALS overlaps with frontotemporal dementia both clinically and 

pathologically. While the majority of ALS patients do not develop a frank dementia, a large 

proportion show cognitive impairments on the same spectrum, and DTI has demonstrated extension 

of white matter changes into frontal and temporal lobes accordingly.[9,10] 

Imaging biomarkers are urgently required for future pharmaceutical trials to be used as objective 

study end-points. The development of robust prognostic and diagnostic markers has become a major 

research priority in this notoriously heterogeneous disorder.[11,12] Effective biomarkers, 

particularly those integrated in therapeutic studies, need to be applicable across multiple 

international centres that, in case of MRI, may vary in their scanner hardware and sequence 

acquisition parameters. 

The Neuroimaging Society in ALS (www.nisals.org) was established in 2010 and developed a 

roadmap for the standardisation and harmonisation of advanced MRI data in ALS.[13] The most 

sensitive cerebral pathology found in cross-sectional MRI studies in ALS patients has been in the 

white matter tracts,[14] in contrast to the characteristic hippocampal atrophy that largely defines 

Alzheimer’s Disease. To date, there have been few large-scale multi-site DTI studies, and none in 

ALS. Data analysis of such studies may be hampered by differences in scanning protocols,[15,16] 

thus an approach to pool DTI data acquired with different protocols was sought. The objective was 

to identify ALS induced alterations in the white matter structural connectivity in a large scale 

patient cohort from multiple sites spread across the world.  



To this end, a new strategy has been developed that paves the way to use the large numbers of DTI 

data sets from local data bases of different study sites for comprehensive large-scale multicentre 

imaging studies. 

 

METHODS 

S ubject populations and scanning protocols 

Four-hundred-and-forty-two DTI data sets from patients with ALS (N=253) and control subjects 

(N=189) from eight ALS-specialist clinic sites (tertiary referral centres) were selected ex post facto 

for this retrospective study (Dublin, Ireland; Edinburgh, UK; Jena, Germany; Miami, USA; Milano, 

Italy; Oxford, UK; Rostock, Germany; Ulm, Germany). Centre specific details, including number of 

subjects and DTI scanning protocols, are given in Table 1. Patients' data were randomly selected for 

inclusion as they were available in the respective data bases of each site. All patients were 

diagnosed with ALS according to the revised El Escorial criteria [17,18] according to standard 

clinical criteria by experienced ALS neurologists. Upper motor neuron signs were present in all 

patients. No patient had frank dementia. Severity of disease-related physical symptoms was 

measured using the revised ALS functional rating scale (ALS-FRS-R) [179], and it ranged from 14 

to 48 with a mean of 37  7 (96% ascertainment). 

 

Table 1. Number and demographics of subjects and DTI scanning protocols of the multi-

centre setting. Age and voxelsize influence directly FA. Indirect influence on FA maps (via signal-

to-noise ratio of recorded DTI data sets) results from the number of gradient directions (GD), the 

field strength (B0) and echo time (TE). *Data using two different protocols from the same centre 

were treated separately. 



 

centre 
ALS  

(m/f) 

mean age / 

years 

controls 

(m/f) 

mean age 

/ years 

TR / 

s 

TE / 

ms 

vsize (x /y/z) 

/ mm 

vsize / 

mm
3
 

no. 

GD 

b / 

s/mm
2
 

B0 / T 

01 27 (18/9) 61 
17   

(8/9) 
58 7.8 97 1.3/1.3/2.5 3.9 33 1000 1.5 

02 
50 

(29/21) 
60 

26 

(11/15) 
49 10.0 94 2.0/2.0/2.0 8.0 31 1000 3.0 

03a* 28 (17/11) 57 
14   

(8/6) 
57 8.0 93 1.5/1.5/2.2 5.0 13 800 1.5 

03b* 22 (8/14) 64 
17   

(9/8) 
62 8.0 95 2.0/2.0/2.8 11.2 52 1000 1.5 

04 18 (10/8) 65 
20 

(9/11) 
64 5.1 85 2.0/2.0/2.0 8.2 92 1000 3.0 

05 
48 

(27/21) 
61 

49 

(27/22) 
59 7.6 59 2.2/2.2/2.5 12.0 34 1100 3.0 

06 21 (14/7) 54 
20 

(9/10) 
51 11.8 80 1.1/1.1/2.2 2.7 52 1000 3.0 

07 18 (6/12) 61 
16   

(9/7) 
60 9.0 80 0.9/0.9/2.5 2.2 33 1100 3.0 

08 21 (11/10) 59 
10   

(6/4) 
66 16.5 98 2.0/2.0/2.0 8.0 71 1000 1.5 

total or 

mean 

253 

(140/113) 
60 

189 

(96/93) 
58 n.a. n.a. n.a. n.a. n.a n.a. n.a. 

 

 

Ethics statements 

Following the NiSALS governance guidelines, all data uploaded to the NiSALS repository were 

fully deidentified. As a safety measure against accidental disclosure of personal information, the 

data were run through a deidentification routine again after upload to the repository which followed 

the recommendations of the NEMA organization (http://medical.nema.org) in DICOM PS 3.15 2011 

– Security and Systems Management 

(ftp://medical.nema.org/medical/dicom/2011/09v11dif/09v11_15.doc)  

which lists the DICOM header fields which contain personal and protected information, including 

http://medical.nema.org/
ftp://medical.nema.org/medical/dicom/2011/09v11dif/09v11_15.doc


centre and scanner identifying information. These items were removed from the headers and new 

global unique identifiers were generated for each image slice. Data were then pooled and released to 

the analysis group. Therefore, the data analyzed in this study contained no identifiable or protected 

information accessible to the investigators.  

The local Ethics committees (EC) and specific EC reference numbers of all centres contributing 

data to this study, which allow for the sharing of fully deidentified data with scientific collaborators 

such as the exemption 4 of the 45 CFR 46 for the University of Miami site, were as follows; 

1) Department of Neurology, University of Ulm, Ulm, Germany: The Ethics Committee of the 

University of Ulm: reference 19/12  

2) Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, 

Oxford, United Kingdom: South Central Oxford Ethics Committee: reference 08/H0605/85 

3) Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany: The ethics 

committee of the Friedrich-Schiller-University Jena: reference 3633-11/12 

4) Human Cognitive Neuroscience, Psychology–PPLS & Euan MacDonald Centre for MND 

Research & Centre for Cognitive Aging and Epidemiology, University of Edinburgh, Edinburgh, 

United Kingdom: NHS Scotland A Research Ethics Committee: REC reference 08/MRE00/50  

5) Quantitative Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, 

Ireland: Ethics (Medical Research) Committee - Beaumont Hospital, Dublin, Ireland: reference 

08/90  

6) Department of Radiology, University of Miami School of Medicine, Miami, Florida, United 

States of America: The University of Miami Institutional Review Board (IRB) approved the NIH-

funded study: Brain MR Imaging and Spectroscopy of Amyotrophic Lateral Sclerosis, reference 

eProst ID: 20043623 

7) Department of Neurology, University of Rostock and DZNE, Rostock, Germany: Medical Ethics 

Committee of Rostock University Medical: Centre: reference A 2011 56  

8) Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, 



San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy: Ethical 

Committee of the Ospedale San Raffaele, Milano: reference RF-2010-2313220. 

 

 

Preprocessing and whole-brain-based voxelwise comparison 

Data from each centre were assessed for completeness and, according to an established analysis 

quality control,[18] corrupted gradient directions in single DTI data sets were excluded from further 

analysis.[2019] The correction of eddy current-induced geometric distortions of the echo-planar 

imaging-based DTI data sets was performed prior to further analysis.[21] Control for motion 

artefacts werewas also performed by use of the quality control algorithm. [20]. That way, specific 

image artefacts such as susceptibility-induced geometric warping, physiological and bulk patient 

motion, and chemical shift artefacts could be removed from the single data sets from further 

processing. The application of this quality control and repair algorithm allowed that DTI data sets 

that contained some corrupted gradient directions did not have to be excluded from the study. Out 

of the 442 data sets in total, 27 had to undergo the quality repair function.  

Following a standardized iterative stereotaxic normalization process, using study specific DTI 

template sets,[1822] FA maps of all participating subjects were derived centrewise in Montreal 

Neurological Institute (MNI) stereotaxic standard space.  

Cross-sectional group comparison analysis followed the procedure described in detail 

previously.[2218] Maps of FA were calculated from MNI-normalized DTI data, and a Gaussian 

smoothing filter of 8 mm FWHM was applied to the normalized individual FA maps. The filter size 

of 8 mm (which is about 2-3 times the recording voxel size, depending on the protocol) provides a 

good balance between sensitivity and specificity.[23,2419-21] Then, voxelwise statistical 

comparison (whole-brain-based spatial statistics, WBSS) was performed between the ALS patient 

group and the corresponding control group (refer to subsection “statistics”).by Student's t-test with 

correction for multiple comparisons using the false-discovery-rate (FDR) algorithm [22] at p < 0.05 



and a clustering procedure at a threshold cluster size of 512 voxels to reduce type I and type II 

errors.[21] Voxels with FA values below 0.2 were not considered for statistical analyses since 

cortical gray matter shows FA values up to 0.2.[23]  Centerwise cross-sectional results are provided 

in Supplementary Figure 1. Single-centre cross-sectional comparisons have already been reported in 

various studies.[245,256] 

For the comparison of centres, a study-specific template set (b0 and FA) was created with equal 

weighting of centres, ALS-patients, and controls; then stereotaxic normalization was performed 

repeatedly with these equally weighted templates.  

 

Influencing factors of FA maps 

Different factors may contribute to the variability of DTI data of control subjects and ALS patients. 

Although the precise influence of each source of variation could not be delineated, investigating 

group FA differences between patients and controls on systematic between-centre differences was 

used to decide whether pooling across centres was feasible.[241] Potential sources of variability 

directly or indirectly influence DTI metrics. Data from the eight centres differed especially in mean 

age of the subjects and in recorded voxel size. These two parameters directly influence FA, which is 

known to be decreased in elderly subjects [267,278] and, especially in complex fibre-tracking 

structures with different axonal directionalities, FA is decreased with larger voxel size.[289] Further 

parameters like field strength (B0), echo time (TE), and number of gradient directions (GD) 

influence the signal-to-noise-ratio and thus indirectly influence FA-values. Furthermore, centre-

specific sources of variability on DTI metrics, e.g. scanner specific variability, environmental noise, 

specific factors such as scanning time might be present in single centre studies but will only slightly 

influence comparisons at the group level.[240] Therefore, a strategy to regress out confounders in a 

two-step procedure was applied to controls' data.  

First, the covariates age, voxel size, TE, number of GD, and B0 were regressed out in  FA maps of 

controls, and a corrected FA-map set consisting of FA maps of all controls was derived (Figure 1). 



Corrections for asymmetrical voxel size were not performed as the orientation of the scans in 

different sites was not identical. In a second step, comparison of FA maps of controls was 

performed centrewise and, if the number of significant voxels in the group comparison of controls 

was below a threshold of 10,000 voxels, centres were merged into centre-clusters. Finally, residual 

centre-specific influences (physiological and susceptibility artefacts, timing of scan, phenotype 

variations within the diagnosis of ALS, centre-specific environmental noise, etc.) were defined 

together as inter-centre effects. In a final step, 3-D linear correction matrices were calculated by 

computing the voxelwise differences of averaged FA values for the different centres.[30] Due to the 

limited number of control data sets of some centres, a voxelwise linear regression calculation [30] 

with the respective 3-D regression correction matrices was not possible. The linear 3-D corrections 

were thenand applied to the FA maps ofdata sets from each centre (Figure 1).[29] 

 

Centrewise pooling of ALS  patients' FA maps 

For ALS patients' FA maps, the covariates voxel size, age, number of GD, B0field strength, and TE 

were regressed out with the 3D covariate regression matrices that were derived from the controls' 

FA maps and centre clusters were set up according to the classification derived for controls' FA 

maps. Afterwards, 3D linear correction matrices for centre clusters were applied (Figure 1). A split-

half stability test (splitting the eight centres to reach almost a split-half for ALS patients and 

controls) was performed, comparing the results clusters of centres 03, 04, 06, 07, 08 (128 ALS 

patients vs. 98 controls) and the results clusters of centres 01, 02, 05 (125 ALS-patients vs. 91 

controls). 

 

Statistics 

WBSS was performed voxelwise by Student's t-test with correction for multiple comparisons using 

the false-discovery-rate (FDR) algorithm [31] at p < 0.05 and a clustering procedure at a threshold 

cluster size of 512 voxels to reduce type I and type II errors.[24] Voxels with FA values below 0.2 



were not considered for statistical analyses since cortical gray matter shows FA values up to 

0.2.[32] Voxelwise correlations between FA values and clinical scores (ALS-FRS-R) were 

calculated using Pearson correlation; corrections for multiple comparisons were performed using 

the FDR algorithm at p < 0.05 followed by a clustering procedure at a threshold cluster size of 512 

voxels. FA-based regions-of-interest (ROI) analysis was performed by arithmetically averaging FA 

values of individual data sets within a spherical ROI of radius 10 mm. Voxels with FA values below 

0.2 were not considered for statistical analyses. Comparisons between FA values of ALS patients 

and controls were performed by Student's t-test. 

 

RESULTS 

S ingle-centre voxelwise comparison of FA maps (WBS S ) 

The whole-brain-based voxelwise analysis of single centres' FA maps without correction of 

confounding multicentric factors showed FA decreases mainly localized along the CST. From these 

single-centre analyses, no substantial alterations beyond the CST were detected. Centrewise cross-

sectional results are provided in Figure 2.  

 

Voxelwise correction of confounding factors 

FA maps of controls showed significant correlations (p < 0.05, corrected for multiple comparisons) 

to the covariates voxel size, age, number of GD, B0field strength, and TE (S upplementary Figure 

1A, upper panel). After regressing out these covariates, only small clusters of significancte 

correlation to the aforementioned covariates remained. The application of the correction matrices to 

FA maps of ALS patients also reduced the dependency on the covariates voxel size, age, number of 

GD, B0field strength, and TE (S upplementary Figure 1A, lower panel). Centres were merged into 

centre-clusters. That way centres 3b and 6 form a centre-cluster, and centres 3a, 5, and 7 form the 

reference centre cluster (S upplementary Figure 1B). Residual accompanying centre-specific 

influences in between centre clusters were corrected by 3D linear correction matrices using centre-



cluster C as a reference (S upplementary Figure 1C). WBSS of centre clusters are provided in 

Figure 2B. 

The whole-brain-based analysis was performed both for uncorrected and for corrected FA maps of 

253 ALS patients and 189 controls and demonstrated difference maps as displayed in Figure 3. 

Resulting alteration patterns were apparently very similar, but after correction a more symmetric 

pattern between hemispheres was revealed; furthermore, no FA increase clusters remained and the 

resulting cluster showed an increased interconnectivity. Group comparison of corrected FA maps 

showed in total a number of approximately 170,000 voxels significant whereas the group 

comparison of uncorrected FA maps revealed only approximately 140,000 voxels (Figure 3). 

 

Multi-site region-of-interest (ROI) analysis of FA maps 

FA map analysis was performed in several regions-of-interest (ROI)s that were located in white 

matter structures prone to be affected in the course of ALS.:[7] the CST, frontal white matter 

structures, brainstem, and hippocampal area. Effect size in terms of significance of differences 

increased according to the pathological spreading pattern predicted by post mortem pathology 

(S upplementary Figure 2)According to atlas-based MNI coordinates, ROI localizations were 

determined in the upper and central CST (MNI ±22/-23/42 and MNI ±23/-22/1, respectively), in the 

frontal white matter (MNI ±20/5/42 and MNI ±23/-26/7), in the brainstem (MNI ±12/-21/-15), and 

in the hippocampal area (MNI ±36/-19/-14). This analysis was performed in the centrewise 

corrected and harmonized FA maps of 253 ALS patients and 189 controls. The effect size in terms 

of significance of differences was the higher the earlier the respective anatomical ROI structure was 

expected to be involved in the degenerative process according to the pathological spreading pattern 

predicted by post mortem pathology (S upplementary Figure 2A).. In addition, effect sizes (p-

values) for the different ROIs weare illustrated in S upplementary Figure 2B, separately for the 

different centres. As for the whole data set, most significant results were observed along the CST 

for all single centres, followed by clusters in the frontal ROIs and the ROIs in the brainstem.and the 



hippocampal area. 

 

Multi-site voxelwise comparison of FA maps (WBS S ) 

The whole-brain-based analysis was performed for corrected FA maps of 253 ALS patients and 189 

controls demonstrated difference maps as displayed in Figure 34. Differences were connected 

within one large cluster covering an area of about 1570,000 mm3 in the white matter p < 0.05, 

corrected for multiple comparisons; this number of significant voxels was higher than computed by 

.  WBSS of “uncorrected” FA-maps (approx. 140,000 m3). AThe split-half stability test (splitting 

the eight centres to reach almost a split-half for ALS patients and controls) was performed, 

comparing the results clusters of centres 03, 04, 06, 07, 08 (128 ALS patients vs. 98 controls) and 

the results clusters of centres 01, 02, 05 (125 ALS-patients vs. 91 controls), revealinged a similar 

number of difference cluster voxels for both groups (Figure 2C). The split-half test as well as the 

whole group analysis showed basically the same brain regions to be affected (although with a 

different number of cluster voxels): Wwith respect to the tract specific analysis,[8] major 

significances were found along the corticospinal tracts (CST, corresponding to neuropathological 

stage 1 [7]), including the “horseshoe” configuration (in coronal slicing) reflecting superior CST 

and transcallosal interconnecting fibres,[303] frontal involvement including areas crossed by the 

corticopontine and corticorubral tracts (neuropathological stage 2), and the corticostriatal pathway 

(pathological stage 3), pathways to brainstem (pontine/rubral involvement, pathological stage 2), 

and hippocampal areas including the proximal portion of the perforant path (pathological stage 4) 

(Figure 43A). 

With the application of more lenient thresholding, a pattern resembling the neuropathological 

spreading could be demonstrated, beginning with highest significances (corrected p < 0.00005, 

N=23500) in the upper CST, followed by clusters along the CST (corrected p < 0.00015, N=46000), 

then including frontal areas (corrected p < 0.0015, N=83500), and, at lowest significances level at 

(corrected p < 0.005 (N=162200) also including brain stem as well as hippocampal areas (Figure 



43B). This pattern could also be replicated by uncorrected data with a reduced number of significant 

results voxels, i.e. at corrected p < 0.00005: N=15300, at corrected p < 0.0005: N=34300, at 

corrected p < 0.005:  N=61600, and at corrected p < 0.05: N=134600 (S upplementary Figure 3).  

Following the theory of spreading patterns that could be expressed by ALS-stages [7,8], relations 

were investigated between the FA values and a clinical disability score, i.e. the ALS-FRS-R. For 

this task, tratificationthe samples of ALS patients were stratifiedas undertaken according to clinical 

disability at the time of scanning. Three age- and gender-matched groups which were 

homogeneously distributed over centres were selected, obtaining identical group size and gender 

ratio and no significant differences in age distribution: a: 38 patients with ALS-FRS-R ranging from 

44 to 48 (m/f 20/18, mean age 6258 years), 38 patients with ALS-FRS-R ranging from 31 to 43 (m/f 

20/18, mean age 5862 years), and 38 patients with ALS-FRS-R ranging from 14 to 30 (m/f 20/18, 

mean age 59 years) (Figure 5). The group with mild ALS-FRS-R decrease showed a summed-up 

cluster of 11366400 mm3 to be affected as significant FA decrease, the group with moderate ALS-

FRS-R decrease showed in sum 26575600 mm3 to be affected, and the group with moderate ALS-

FRS-R decrease showed in sum 617070 mm3 of regional FA decreases.  

After complete corrections for covariates and centre differences, a significant voxelwise correlation 

of FA values and ALS-FRS-R wereas observed along the CST (p < 0.05R > 0.4, corrected for 

multiple comparisons, S upplementary Figure 15B). No correlations were found for frontal areas 

as well as for brainstem and hippocampal regions. NB: correlation analysis for uncorrected FA 

maps did not show any significant clusters for correlations ofbetween FA and ALS-FRS-R 

(S upplementary Figure 1). 

  

DISCUSSION 

This pooled analysis of multi-site MRI data demonstrated extensive motor and extramotor white 

matter tract pathology in a large number of ALS patients compared to healthy controls. This is an 

important step in the development of DTI-derived biomarkers of neuropathology which are 



applicable across multiple sites. FA is a marker of cerebral tract damage, demonstrated in multiple 

studies across a range of disorders, and so a natural candidate biomarker for ALS. It is a long way 

from formal validation as such, but if it is to be feasible as an outcome measure in a multi-centre 

trial then it will be necessary to assess across a large number of individuals from different centres 

and scanners. This is the first time such an analysis has been undertaken. 

Previous imaging studies have investigated ALS-related alterations of white matter with group sizes 

of typically 15-30 patients and healthy controls.[2,5] These studies have consistently detected 

reduced FA (and concurrently increased radial diffusivity) within the rostral corticospinal tracts and 

commissural callosal fibres. The current study using an unprecedented number of subjects has 

revealed more widespread changes. By altering the significance threshold for group differences, a 

disease-specific pathological pattern of regional involvement was identified which is consistent 

with post mortem histopathology findings.[341] A deeper exploration of the data in relation to 

phenotype would be a logical next step but requires the provision of more detailed clinical 

information. The ALSFRS-R score is based upon physical (motor) activities of daily living and is 

not obviously sensitive to frontal or hippocampal (non-motor) involvement. Nonetheless, mild 

ALS-FRS-R compared to moderate and severe ALS-FRS-R demonstrated pathological extension 

from pure CST involvement to involve the wider white matter. 

Factors known to directly influence the FA are the voxel size [289] and participant age.[267,278] 

Indirect influencing factors on FA (via the signal-to-noise-ratio) are the field strength, the number of 

gradients, the pulse sequence, and further centre specific factors. In DTI, multi-site studies appear to 

be the best solution in order to improve the statistical power in investigation. Recent DTI studies 

reported replicability, reliability, and stability of DTI-based FA measurements in multi-site 

environments with common acquisition protocols. These studies include a study with 26 patients 

with Alzheimer's Disease and 12 controls on 16 scanners,[16] a study with 9 controls on 2 

scanners,[15] and a study with 2 controls on 5 scanners.[352] Additional studies with harmonized 

DTI protocols have already been performed in Alzheimer's disease as well as in Huntington's 



disease.[336,347] A framework for the analysis of phantom data in multicentre DTI studies has been 

provided previously.[385] Reproducibility of DTI metrics has been recently tested in a sample of 

healthy controls at two identical scanners [396] reporting that the within and between session 

reproducibility was lower than the values for intersubject variability. The initial suggestions on how 

to correct for differences in FA maps with different protocols were recently published.[3029,4037] 

Common acquisition protocols but involving different subjects were investigated for groupwise FA 

differences between patients and controls on systematic between-centre differences.[374] During 

the pooling process, a number of well-defined parameters that confound the FA results could be 

regressed out. Nevertheless, to some extent, residual centre-specific FA-influencing factors might 

be identified. That way, matrices for regressing out FA-influencing factors could be applied in the 

identical manner to FA-maps of ALS-patients. The comparison between the analysis of corrected 

and the analysis of uncorrected data showed a difference of about 20% in the number of significant 

voxels. However, as in this study the ratio patients/controls was approximately equal between the 

centres, the correction effects were less prominent as it could be expected if the ratio 

patients/controls had differed more between the centres. Furthermore, this study shows that 

affectations could be observed at the multicentre level with high subject numbers that would not 

have been possible to show in single centre studies with low subject numbers.Furthermore, this 

study shows that at the multicentre level with high subject numbers affectations appeared that 

would not have been possible to show in single centre studies with low subject numbers. 

This methodological framework could easily be adapted to further DTI metrics, e.g. radial, axial, or 

mean diffusivity.  

In summary, this study has demonstrated that it is possible to meaningfully interpret combined DTI 

data from different MRI manufacturers and software platforms after application of appropriate 

compensations for centre-specific differences. This might pave the way to repurpose larger numbers 

of DTI data sets of ALS patients for more clinically comprehensive large-scale multicentric imaging 

studies.  



A limitation of this study compared to other multicentre studies of neurodegenerative diseases (e.g. 

the PADDINGTON study in Huntington´s Disease or the Alzheimer's Disease Neuroimaging 

Initiative (ADNI)[4138,4239]) is the heterogeneous nature of DTI data resource in terms of 

magnetic field strength and acquisition sequence parameters used across the centres. It would be 

advantageous in a future prospective multi-site study to try to harmonise as many data acquisition 

sequence parameters as possible. A further potential limitation of the current approach is the limited 

number of control data sets per centre which may be not homogeneous over centres, and might lead 

to false or over-correction. However, N=20 (which is the case in seven out of the eight centres) has 

been a standard control sample size in single-centre studies.[330,403,414] As the ratio 

patients/controls did not differ strongly between different centres, a systematic centre difference 

would be averaged out in the multi-site group comparison. 

By this multi-centre approach involving DTI datasets from more than 250 patients, it was possible 

to reveal the in vivo pathoanatomy of ALS non-invasively; the alteration pattern was found to be in 

agreement with post mortem neuroanatomical studies [3842,425] so that DTI seems to be prone to 

expand the potential of other neuroimaging markers like fluorodeoxyglucose-positron-emission 

tomography in ALS.[463,447] The post mortem cerebral white matter changes in ALS have been 

long recognised [45,48] but direct correlation with DTI is still in development.[49] This study 

represents a framework for mapping ALS-specific white matter tract alterations using DTI, and 

provides encouragement for its extension to other neurodegenerative diseases. In other diseases 

with emerging evidence of a consistent pathological pattern of spread,[4550] the white matter tract 

pathology will be closer to the underlying pathology than clusters of regional atrophy, and thus the 

DTI metrics have the potential to serve as read-outs and biomarkers of disease and its progression 

for future clinical trials. 
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