-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Optimisation of Generalised Policies via Evolutionary
Computation

Citation for published version:

Galea, M, Levine, J, Westerberg, H & Humphreys, D 2007, Optimisation of Generalised Policies via
Evolutionary Computation. in 26th Workshop of the UK PLANNING AND SCHEDULING Special Interest
Group PLANSIG 2007. pp. 36, PlanSIG 2007, Prague, Czech Republic, 17/12/07.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
26th Workshop of the UK PLANNING AND SCHEDULING Special Interest Group PLANSIG 2007

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/43719599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/optimisation-of-generalised-policies-via-evolutionary-computation(2162c4b5-0d0b-4cc7-9801-ccedca598c6f).html

Optimisation of Generalised Policies via Evolutionary Computation

Michelle Galea and John Levine and Henrik Wester berg*
Department of Computer & Information Sciences

University of Strathclyde
Glasgow G1 1XH, UK

Abstract

This paper investigates the application of Evolutionaryrco
putation to the induction of generalised policies. A polisy
here defined as a list of rules that specify which actions to
be performed under which conditions. A policy is domain-
specific and is used in conjunction with an inference mech-
anism (to decide which rule to apply) to formulate plans
for problems within that domain. Evolutionary Computation
is concerned with the design and application of stochastic
population-based iterative methods inspired by naturaluev
tion. This work illustrates how it may be applied to the in-
duction of policies, compares the results on one domain with
those obtained by a state-of-the-art approximate polesait
tion approach, and highlights both the current limitatigsh

as a simplistic knowledge representation) and the advastag
(including optimisation of rule order within a policy) of pu
system.

I ntroduction

We present an evolution-inspired system that induces gener
alised policies from available solutions to planning peshs.
The term generalised policy was coined by Martin & Geffner
(2004) for a function that maps pairs of initial and goalesat

to actions. The actions outputted should, when performed,
achieve the specified goal state from the specified initaést

Figure 1 presents a simplified view of a planner based on
generalised policies. A distinction is made here between a
policy — the knowledge used to solve a problem, and the in-
ference mechanism that utilises the policy — the decision pr
cedure that dictates when and how the knowledge is applied.
A domain model defines a specific domain in terms of rele-
vant objects, actions and their effects.

A policy in this work is a list of domain-specifie-THEN
rules. If the conditions stated in the- part of a rule match
the current state, then the action in theeN partmaybe ap-
plied. The currently implemented inference mechanism is a
common and simple one — rules within a policy are ordered
and the action of the first rule that may be applied is per-
formed. If more than one valid combination of variable bind-
ings exists then orderings on the variables and their vates
adopted and the first valid combination is effected.

«Currently at Systems Biology Unit, Centre for Genomic Ragjah, C/Dr Aiguader
88, Barcelona 08003, Spain
tCurrently at Mobile Detect Inc., Ottawa, Ontario, Canada 6P5

Dave Humphreys'
CISA, School of Informatics
University of Edinburgh
Edinburgh EH8 9LE, UK

Planner
Domain C Domain C
Domain B Domain BW
Domain A Domain A
model policy
Problem Inference Plan
method

Figure 1: Planning using generalised policies and infezenc
mechanisms

It should be noted that these policies contain a particular
type of control knowledge. Control knowledge is domain-
specific knowledge often used by some planners to prune
search during the construction or identification of a plan.
Control knowledge is often expressedBsTHEN type rules,
but the conditions and actions relate to goal, domain opera-
tor and/or variable binding decisions to be taken during the
search process. Examples of work that induce such knowl-
edge include (Leckie & Zukerman 1998) and (Aler, Borrajo,
& Isasi 2002).

In this work a policy determines domain operator selec-
tion and each rule describes the conditions necessary for a
particular operator to be applied. The inference mechanism
is responsible for deciding all other decisions (which tale
apply, and which variable bindings to implemewijhoutre-
course to any search, leading to highly efficient planners.

The induction of policies is carried out using Evolution-
ary Computation (EC) in a supervised learning context. EC
is the application of methods inspired by Darwinian princi-
ples of evolution to computationally difficult problemscbu
as search and combinatorial optimisation. Its populasty i
due in great part to its parallel development and modificatio
of multiple solutions in diverse areas of the solution space
discouraging convergence to a suboptimal solution.

We compare the performance of one evolved policy with
that obtained using a state-of-the-art Approximate Pdlicy
eration (API) (Bertsekas & Tsitsiklis 1996) approach. We

focus on the knowledge representation language (KR) and from that on which it was trained, even a simplified one such

learning mechanism highlighting both the current limdag

and strengths of our system. The rest of this paper reviews

the literature on generalised policy induction, describes

as (ON B A).
Another experiment seeks a program capable of achiev-
ing 4 different goals states (maximum 3 blocks), from differ

implemented system, and discusses experiment results ancent initial states. This evolved program is capable of attai

future research directions.

Related Wor k

Early work on inducing generalised policies utilises ge-
netic programming (GP) (Koza 1992), a particular branch of
EC. Evolutionary algorithms in general re-iteratively gpp
genetic-inspired operators to a population of solutionigh w
fitter individuals of a generation (according to some prede-
fined fitness criteria) more likely to be selected for modifi-

ing any of the 4 specified goal states from initial states not
observed during the evolutionary process. The author indi-
cates that it is also capable of solving some 4-block problem
though its generalisation power for this and larger prolslem
has not been fully analysed.

The work of Khardon (1999) for inducing policies has in-
spired and/or often been cited by later work. It uses a deter-
ministic learning method to induce decision listsBfTHEN
rules from examples of solved problems, with the first rule

cation and insertion into successive generations thaneveak [N the list that matches the observed state being applied. Th

members. On average, therefore, each new generation tend4€@rning strategy is one of iterative rule learning where th
to be fitter than the previous one. GP is distinguished byea tre following step is iterated until no examples are left in the

representation of individuals that makes it a natural cdeei
for the representation of functional programs.

Koza (1992) describes a GP algorithm for solving a
blocksworld problem variant — the goal is a program capa-
ble of producing a tower of blocks that spells “UNIVER-
SAL", starting from a range of different initial tower con-
figurations. The tree-like individuals in a generation are
constructed from sets dfinctions(such asmve_t o_st ack
and nove_to_table) and terminals that act as argu-
ments to the functions (such asp_bl ock_of _st ack and
next _needed_bl ock).

Each individual in the population is assessed by its perfor-
mance on a set of 166 initial configurations. Generation 10

training set — a number of rules are generated, the best (ac-
cording to some criterion) is determined, examples that are
covered by this rule are removed from the training data, and
the rule is added to a growing rulebase. The number of rules
generated in each iteration must be finite and tractable and
this is controlled in part by setting limits to the number of
conditions and variables in the- part of a rule; all possi-

ble rules for each action are then generated in each itaratio
The training data is formulated by extracting examples from
planning problems and their solutions — each state andmactio
encountered in a plan constitutes one example.

In addition to the training examples and a standard STRIPS
domain description Khardon provides the learning algarith

produces a program that correctly stacks the tower for each With background knowledge he calisipport predicates-

of the given configurations, though it uses unnecessarkbloc

movements and contains unnecessary functions. When el-

concepts such asbove andi npl ace for the blocksworld
domain. The resulting policy is an ordered list of existaihyi

ements are included in the fitness assessment that penaliséluantified rules with predicates in the condition part thaym

against these inefficiencies, the algorithm outputs a parsi

or may not be negated, and may or may not refer to a sub-

nious program that produces solutions that are both correct90al. For instanceholding(xz1) —clear(w2) G(on(z1,22)) —

and optimal (in terms of plan length).
Spector (1994) uses Koza’s algorithm with different func-

PUTDOWN(z1), represents a rule that saysaif is currently
held, - is not clear, and in the goal statg should be o,

tion and terminal sets to induce solutions to the Sussman Put downz;.

Anomaly — the initial state is block C on block A, with blocks
A and B on the table; the goal state is block A on B, which
is on C, which is on the table. In a first experiment the au-
thor uses functions such aswt ower (move X to table if X

is clear) andpbut on (put X on Y if both are clear), and the

Blocksworld policies are generated using different train-
ing sets containing examples drawn from solutions to 84bloc
problems, and are tested on new problems of sizes ranging 7—
20 blocks. Their performance varies from a high of 83% of
7-block problems solved, down to 56% of 20-block problems.

terminals are the names of the blocks A, B and C. The goal is Similar experiments are carried out for the logistics domai

a program that can attain the goal state from the initiabstat

with training of policies on examples obtained from solnso

and individuals are assessed on this one problem. The fitnesgo problems with 2 packages, 3 cities, 3 trucks, 2 locations
function includes elements that reward parsimony and effi- per city, and 2 airplanes. Polices are tested on problenfs wit
ciency as well as correctness, and the goal is achieved well similar dimensions to the testing problems, and the number
before the final generation. of packages is varied from 2, solving 80% of problems, to
In further experiments the author introduces new functions 30, solving 68% of problems.
and replaces the block-specific terminals with ones that ref Martin & Geffner (2004) suggest that the generalisation
to blocks by their positions in goals. The number of problems power of Khardon’s policies over large problems is weak, and
on which individuals are assessed is also increased. One exthat obtaining domain-dependent background knowledge is
periment is designed to produce a program that achieves thenot always a trivial task. They use the same learning method
Sussman goal state from a range of different initial states. as Khardon but propose to overcome both weaknesses by us-
The resulting program achieves this particular goal stedé@e ing description logics (Baadet al. 2003) as the KR. This
from initial configurations that are not used during leagnin enables the representation of concepts that desclisses
However, it is incapable of achieving a different goal state of objects, such as the concept of a well-placed block.

A blocksworld policy induced from 5-block problem ex-

amples solves 99% of the 25-block test problems. With the
addition of an incremental refinement procedure a policy is
eventually induced that solves 100% of test problems: a pol-
icy is induced and tested on 5-block problems; optimal so-
lutions are found for the problems it fails on, and examples
are extracted from these and added to the training set; ¢ghen,
new policy is induced from the larger dataset. The authers re

peat this procedure several times until a policy solveshall t

25-block test problems presented (test problems are ndw eac
time the policy is tested). It should be noted however that as
well as the KR and the refinement extension to the learning
algorithm, the way training examples are extracted from so-

lutions is different from that in Khardon’s work — Martin &
Geffner use as examplef actions for each state that lead to

an optimal plan; this may have some impact on the quality of

the induced policies.

Fern, Yoon, & Givan (2006) learn policies for a long ran-
dom walk (LRW) problem distribution using a form of API.

(1) Create initial population

(2) WHILE termination criterion false
(3) Eval uate current generation
(4) VWHI LE new generation not full
(5) Per form reproduction

(6) Per f orm r econbi nati on

(7) Perform nutation

(8) Perform | ocal search

(9) ENDWHI LE

(10) ENDWHI LE

(11) CQutput fittest individual

Figure 2: Pseudocode outlinelo?Plan

L earning Policies using L2Plan

L2Plan (Learn to Plan) induces policies of rules similar to
Khardon’s, but the learning mechanism used is a population-
based iterative approach inspired by natural evolution.

Input to L2Plan consists of an untyped STRIPS domain
description, additional domain knowledge if availabley(e.
concept of a well-placed block), and domain examples on

A policy is a list of action-selection rules where the action which to evaluate the policies being learned. The output is
of the first rule that matches the current and goal states is a domain-specific policy that is used in conjunction with an
applied. An LRW distribution randomly generates an initial inference mechanism to solve problems within that domain.
state for a problem, executes a long sequence of random ac- A policy consists of a list of rules with each rule being a
tions, and sets the goal as a subset of properties of the finalSPecialisedr-THEN rule (also known as a production rule).

resulting state. For a given domain API iteratively impreve

a policy until no further improvement is observed or some
other stopping criterion is used. The expectation is that if

a learned policyr,, performs well on problems drawn from
random walks of length, then it will provide reasonable per-

formance or guidance on problems drawn from random walks

of lengthm, wherem is only moderately larger than ,, is
therefore used to bootstrap API iterations to fing, i.e. to

find a policy that handles problems drawn from increasingly

longer random walks.
Within each iteration, trajectories (sequences of alterna

The IF- part is composed of two condition statements where
each is a conjunction of ungrounded predicates which may be
negated:

I'F condition AND goal Conditi on THEN acti on

condi tion relates to the current state amngbal -
Condi ti on to the goal state. If variable bindings exist such
that predicates irtondi ti on match with the current state,
and predicates igoal Condi t i on match with the goal state,
then the action may be performed. Note though that the ac-
tion’s precondition must also be satisfied in the curreriesta
The list of rules is ordered and the first applicable rule edus
Variable and domain orderings are followed if more than one

ing states and actions) for an improved policy are generated combination of bindings is possible.

using policy rollout (Tesauro & Galperin 1996), and then an
improved policy is learned using the trajectories as trajni
data. The policy learning component follows an iterativie ru
learning strategy. The difference between this learnireg-st
egy and that of Khardon and Martin & Geffner lies in the

Figure 2 presents an outline of the system. Each itera-
tion starts with a population of policies (line(2)). The per
formance of these policies is evaluated on training data gen
erated from planning problems from the domain under con-
sideration (line (3)). The resulting measure of fitness for a

rule generation procedure where a greedy heuristic search i policy is used to determine whether it is replicated in thetne
used instead of exhaustively enumerating all rules. The KR iteration (line (5)), or whether it may be used in combinatio
(based on taxonomic syntax) is also different, and is expres with another policy to reproduce ‘offspring’ that may be in-
sive enough so that no support predicates need be supplied tcserted into the next iteration (also called crossover, (&)

the learning process.
This work is currently state-of-the-art in this particular

research area, i.e. where policies that are learned are use
with a simple and efficient decision procedure to solve plan-
ning problems. It presents policies for several domains and
tests them rigorously on deterministic and stochastic prob

lems from an LRW distribution and from the 2000 planning

competition; the results compare favourably with those ob-

tained by thé=F planning system (Hoffmann & Nebel 2001).
In this paper we explore the Briefcase domain API-

All policies to be inserted in the next iteration may undergo

some form of random mutation (i.e. small change, line (7)),
nd a local search procedure that attempts to increase-the fit
ess of the policy (line (8)).

The system terminates if a predefined maximum number
of generations have been created, or a policy attains maxi-
mum fitness by correctly solving all examples, or, the aver-
age difference in policy fitness in an iteration falls below a
predefined user-set threshold (indicating convergencdl of a
individuals to similar policies).

Since the results of the evaluation process influence the

generated policy and compare its performance with one creation of the next generation, the average fitness of &l po
evolved by our system, focusing on the limitations of our KR cies is expected to improve from one generation to the next.
and the strength of our policy optimisation mechanism. The fact that several policies are in each iteration alldves t

(:rule positionbriefcase_to_pickup.n spl aced_obj ect define (exanple bl ocksl.l)
:condition (and (at ?obj ?to)) - donai n bl ockswor | d)
: goal Condition (and (not(at ?o0bj ?to))) :objects 54 3 2 1)
:action novebriefcase ?bc ?from ?to) : 'gg'a}' al ...o)

;actions

Figure 3: Example of a briefcase rule with a variable in E%xg: b-

condi ti on that is not a parameter of the action { move-
im)ve—

PRRP

nove-
nove-
possibility of exploring different regions of the solutispace (m::
at once. This, coupled with an element of randomness that is
used in the selection of policies crossover and mutatioly, ma Figure 4: A training example generated from a blocksworld
help to prevent all policies from converging to a local opti- Problem
mum solution.
The following paragraphs describe the creation of the ini-
tial population, policy evaluation, and the genetic oparsat

used to create new policies from old.

TITeeTY
SRR
eeeeeeee
co~~ocooo
-
I RN N NEIN
PRERNWNN W

of a rule is liable to change with the application of genetic
operators.

Evaluating a Palicy

Generating the I nitial Population - _ o .

. . i) The training data on which a policy is evaluated is composed
L2Planfirst generates an initial - the first generation — popu- of 3 number of examples that are generated from a number
lation of policies, Fig. 2 line (1). The number of individsal of planning problems. Each example consists of a state en-
in a population is predefined by the user (generally 100), and countered on an optimal plan for the problem from which it is
stays fixed until the system terminates. The number of rules extracted, and a number of actions which may be taken from
in a policy at this stage is randomly set between user-defined that state, each with an associated cost.
minimum and maximum values (4 and 8 respectively). Consider a planning problem that includes an initial state

Thecondi ti on andgoal Condi ti on statements of_a rule §; and a goal staté;. Each possible action that may be
are also generated randomly, within certain constraint® T taken fromS; is performed, leading to new states. For each
action, i.e. therHEN part of thelF-THEN rule, is first selected npew state a solution that attai; is found using an avail-
randomly from all domain actions. able planner. The length of each solution is determined, and

The size ofgoal Condi tion in the IF- part of the rule the smallest-size solution is deemed the optimal plan. A cos
is determined by drawing a random integer between user- js now attached to each action performed frém the ac-
defined minimum and maximum values (set to 1 and 3 re- tion that leads to the optimal plan is given a cost of zero, and
spectively), which determines the number of predicates. A all other actions are given a cost that is the difference be-
predicate is first selected, and then the appropriate nuofber tween the length of the solution that they form a part of, and
variables are randomly selected from all possible var&@ble the length of the optimal plan. This now forms one training
Predicates are randomly negated. example on which an evolving policy may be evaluated. Fig-

The size ofcondi ti on in theF- part of the rule is cur- ure 4 shows the representation used for a training example,
rently determined by the number of parameters of the selecte which is consistent, as far as possible, with STRIPS syntax.
action, and a random selection of predicates. A predicate is For each state on the optimal plan just determineds the
selected randomly, and then variables for the predicate aresame procedure is followed as f6f, i.e. all possible ac-
randomly selected from the action’s parameters. Predicate tions from the next state on the optimal plan, $ay are per-

are selected, and variables assigned, until all of an dstan formed, solutions for each of the resulting states are found
rameters are pr_esent in at least one predicat@ndi t i on. and costs for each possible action taken frém are de-
Each predicate is randomly negated. termined from the solutions’ length. Each training problem

However, early experiments highlighted that restrictilgt therefore yields as many examples as there are states encoun
parameters irtondi ti on strictly to those in the set of pa- tered on the optimal plan. Duplicate training examples are
rameters for an action, severly limits the knowledge that ca removed so as not to bia2Plantowards any particular sce-
be expressed by a rule. For example, the system is unablenario(s).
to learn the rule in Fig. 3 due to this constraint. This rule The planner used to generate training examples, i.e. when
specifies that if an object is misplaced (i.e. its currentdoc determining plans t&¢ from any stateS,,, is a simple one
tion is not the location specified for it in the goal stategrth using breadth-first search. This ensures that an optimal pla
a briefcase is moved to the current location of the object. A is obtained and that actions in examples designated as opti-
temporary quickfix has been implemented that inserts an ex- mal are in fact actions for states encountered on some plan
tra unary predicate in the domain description. With thiglpre of minimal length. For some domains (e.g. blocksworld and
icate added to the precondition of each action/operatal; it briefcase), in order to speed up the generation of examples
lows L2Planthe possibility of creating rules such as the one hand-coded control rules to prune branches from the search

in Fig. 3. are used; these control rules are designed to ensure that an
Note, that a policy need not contain a rule to describe each optimal plan is still determined.
action in the domain, and that the initially set number oésul The fitness of a policy is determined by averaging its per-

for a policy, and the number of predicates in the conditions formance over all examples, where for each example pre-

sented it is scored based on whether the selected actios form Rule Deletion Mutation A randomly selected rule is re-
part of an optimal plan or not. Formula (1) below describes moved from the policy (if the policy contains more than one
the fitness function whene is the number of training exam- rule).

ples andactionCost; is the cost of the action taken by the Rule Swap Mutation Two randomly selected rules have
policy for training examplé: their position swapped in the policy (if the policy has more
m than one rule).
Fitness = 1 Z 1 (1) _ Rule Condition Mutation A randomly selected rule has
m 4= 1 + actionCost; its condi t i on and/orgoal Condi ti on statement mutated,
=t by replacing the condition statement with a newly generated
Creating a New Generation of Policies one, or by removing a predicate from the statement, or by

. o . adding a new predicate.
CurrentL2Plansettings are such that the individuals compris- The |ocal search procedure currently used is aimed at in-

ing the fittes6% of a generation are reproduced, improved by ¢reasing the fitness of a policy as quickly as possible. K per
alocal search mechanism, and then inserted into the next gen foyms rule condition mutations a predefined number of times
eration. The remainder of the next generation is populafed b (¢a|led the local search branching factor). The fittest miuta
|nd|_V|duaIs sel.ected fro.m the current generation apd oymbn{h! replaces the original policy, and again, rule condition anut
various genetic operations are performed. The fitter igdivi {jons are performed on the new policy the same predefined
uals in the current population have a greater chance of being ,ymper of times. This process is repeated until either no
selected for recombination and mutation, in the expectatio improvement in fitness is exhibited by any mutant over their

that their offspring and/or mutations result in even fittetit originator policy, or for a preset maximum number of times
viduals. However, randomness plays a part in their selectio (called the local search depth factor).

and in the application of genetic operators in an attempt to
search different areas of the solution space and to avodd loc A Comparison of Two Policies
minima.

Selection of two individuals is performed using tourna-
ment selection with a size of 2 (Miller & Goldberg 1995).
Crossover or mutation is then applied with some predefined
probability (0.9 for crossover, 0.1 for mutation). The autp %' niohjights a current limitation of 2Plan, which is the
of these operators is a single policy — for crossover thesfitte limited expressiveness of the KR: and
of parents and offspring, and for mutation the fittest of the o demonstrates the advantage offered by its policy discovery
orlgmal pollcy or mutants. _Local search is perf(_)rmed os thi mechanism, which optimises the rule order in a policy.
policy before it is inserted into the new generation. This-pr The Briefcase domain is chosen partly because it is as yet

cedure is repeated until the new generation is full. t the fow d ins f hich h NEZP|
There are three types of crossover that may be performed©"¢ 0! th€ Tew domains for which we have evo an
policies, and partly because the knowledge expressed in the

on the 2 selected policies, and 4 types of mutation that may : .7
be performed on the first selected policy: ﬁjl?éénduced policy is such that can be expressegtasHEN

Single Point Rule Level Crossover A crossover point is
randomly chosen in each of the 2 policies, with valid points The AP Policy
being before any of the rules (points need not be the same
in the 2 policies). Two offspring policies are then creatgd b
merging part of the policy of one parent (as delineated by the
crossover point), with a part of the other parent (the first pa
of parent A with the second part of parent B, and the second
part of parent A with the first part of parent B).

Single Rule Swap Crossover A randomly selected rule
from policy A is swapped with a randomly selected rule from
policy B, resulting in two new policies. The replacing rule
is inserted in the same position in the policy as the one it is
replacing.

Similar Action Rule Crossover Two rules with the same
action are randomly selected from the parent policies, one
from each. Two new rules are created from the selected rules,
one by usingcondi ti on from the first selected rule and
goal Condi ti on from the second, and the other new rule is be possible

created by usingoal Condi t i on from the first selected rule Below is a simpler example policy for illustrating the main
andcondi ti on from the second. Each of the two newly cre- faatyres of the KR used. It is a policy for a blocksworld do-
ated rules replaces the original rule in each of the two garen main where the goal in all problems is to make all red blocks
policies, resulting in 4 new policies. clear is:

Rule Addition Mutation A new rule is generated and in- 1. putdowng.) : z1 € holding
serted at a random position in the policy. 2. pickup@1) : z1 € clear, 1 € (on*(on red))

This study focusses on comparing two policies for the brief-
case domain, one generatedl®Planand the other by the
API approach introduced in theelated Worlsection (Fern,
Yoon, & Givan 2006). The comparison serves two purposes:

Figure 5 presents the briefcase domain policy induced
by the API algorithm. A policy provides a mapping
from states to actions for a specific domain and consists
of a decision list of ‘action-selection rules’ of the form
a(x1,...,xx) : L1, Lo, ...L,, wherea is ak-argument action
type, z; an action argument variable add is a literal. An

API policy is utilised in the same way as &2Plan policy.
Each rule describes the action to be taken if a variable bindi
exists for the rule that matches both the current state and th
goal. The current state must also satisfy the preconditiéns
the action specified by the rule. The rules in a policy are or-
dered and the rule that is applied in a state is the first rule fo
which a valid variable binding exists. A lexicographic orde
ing is imposed on objects in a problem to deal with situations
where more than one variable binding for the same rule may

1. PUTIIN: X, € (GAT ™ (NOT IS — AT)))
2. MOVE: (X; € (AT (NOT (CAT~' LOCATION)))) A
(X2 € (NOT (AT (GAT™' CIS — AT))))
3. MOVE: (X2 € (GAT IN)) A (X1 € (NOT (CAT IN)))
4, TAKE-OUT: (X € (CAT ' IS — AT))
5. MOVE: (X2 € GIS — AT)
6. MOVE: (X5 € (AT (GAT™' CIS — AT)))
7. PUT-IN: (X1 € UNIVERSAL)
Figure 5: API briefcase policy in taxonomic syntax
1. PUT-IN misplaced package in briefcase
2. MOVE briefcase to pickup misplaced package, if briefcase is at

its goal location and package does not have same goal locio
briefcase

MOVE to goal location of package in briefcase, if there is no pack-
age in briefcase whose goal location is the same as the ¢urren
location of briefcase

TAKE-OUT package that has arrived at its goal location
MOVE briefcase to its goal location

MOVE to pickup misplaced package, if briefcase is at its goal lo-
cation and package has same goal location as briefcase

PUT-IN package in briefcase.

Figure 6: API briefcase policy in common language

The primitive classes (unary predicates) in this domain are
red, clear, andholding, while on is a primitive relation (bi-

TAKE-OUT package that has arrived at its goal location
PUT-IN misplaced package in briefcase

MOVE briefcase to pickup misplaced package

MOVE to goal location of package in briefcase

MOVE briefcase to its goal location

o s wbheE

Figure 7:L2planbriefcase policy in common language

Table 1:L2Planparameter settings

Parameter Setting
Range of initial policy size [4-8]
Population size 100
Maximum number of generations 100
Proportion of policies reproduced 5%
Crossover probability 0.9
Mutation probability 0.1
Local search branching 10
Local search depth 10
Tournament selection size 2

moved to a goal location of a package withinahly if there
are NO other packages in the briefcase whose goal locations
are the same as the current location of the briefcase. If this
is so, then rule 4 is fired instead of rule 3, i.e. packages at
their goal location are taken out of the briefcase before the
briefcase is moved, despite the order and actions suggested
by these two rules.

As yet we cannot write rule 3 ih2Planstyle rules. This
limitation is partly due to the fact that we can only specify

nary predicate). If a domain contains predicates of greater individual packages using this KR and not sets of packages.

arity, these are converted to equivalent multiple binasdpr
icates. A prefix ofg indicates a predicate in the goal state
(e.g.gclear), while a comparison predicateindicates that

However, if we simplify the API policy’s rule 3 and switch
the order of the simplified rule 3 with rule 4, then we obtain
an equivalent policy we can test and compare WwiPlan's

a predicate is true in both the current state and the goal (e.g Policy. The new rule 3 stateSAKE-OUT package that is at

cclear). A primitive class (relation) is a current-state predi-
cate, goal predicate or comparison predicate, and it is-inte
preted as the set of objects for which the class (relation) is
true in a states. Compound expressions are formed by the
‘nesting’ of classes/relations, and/or the applicatiomadi-
tional language features such RS indicating a chain of a
relation R. Expressions have a depth associated with them
so that, for intstance, the first expression in rule 2 aboge ha
depth 1 and the second expression has depth 3.

Figure 6 is a translation of the policy in Fig. 5 into common
language. Upon inspection it is clear that there is potkintia
this policy to perform unnecessary steps. For instance, rul
2 moves the briefcase away from its current location without

its goal location, and the new rule 4 igDVE to goal location
of package in briefcase.

The L2Plan Policy

Figure 7 presents the2Plan evolved policy against which
the API policy is compared. Note that the first four rules
are equivalent to the hand-coded control policy introduned
(Pednault 1987) and which is used to prune search for this
domain by theTLPlansystem (Bacchus & Kabanza 2000).

To produce this policy.2Planwas run 15 times with iden-
tical parameter settings (Table 1) though each time the-trai
ing examples were generated from 30 different randomly
generated problems and their solutions. The training prob-

first depositing any packages it contains that have as a goallem complexity is however the same: 5 cities, 2 objects and

location the current briefcase location. Furthermore, ofvo
the four MOVE rules have as a necessary condition that the

briefcase must be at its goal location — this can cause prob-

lems and is discussed later on.
This API policy is translated intk.2Planstyle IF-THEN

1 briefcase. Using different training data for differenpex-
ments gives some indication of the impact of different exam-
ples on the induced policies, though it should be noted that
the element of randomness used in solution constructidn wil
also have some influence.

rules and tested using our implemented inference mechanism Three of the 15 policies solve all test problems presented

on the same problems as our evolved policy. However, it is
important to note differences in the KR which highlight the
limited expressiveness of our current formulationrefTHEN
rules. Consider rule 3 in Fig. 6 — it states that the brieféaise

(i.e. problems different from the ones used for trainingy a

the policy in Fig. 7 was selected from one of these three.
Note that though additional domain knowledge other than the
standard STRIPS description may used for inducing a policy,

<—L2Plan —& -API ©—L2Plan —= -AP|

100 3.0 -
90 l o 25 .
c 2.
£ 80 g =T
3 701 . o = 201 —
T 60 s = -
1S & .= .-
g %0y g 15 - —-—-
2 40 T~ %
s} 7 T o > <
g 30 - T~ e a_ 2 1.0 <
~- - ~ Y
£ T~ o
3 20 < Z 05 A
10 - . ~a
0 T T . 0.0 T T .
[2-5] [2-10] [4-5] [4-1C [2-5] [2-10] [4-5] [4-1C
Problem size [objects-cities] Problem size [objects-cities]

Figure 8: Number of optimal plans produced by a policy ~ Figure 9: Average number of extra steps in suboptimal plans

d durina the induct ¢t brief licies. F Table 2: Performance of briefcase policies on problems-with
none was used during the induction of briefcase policies. FU o\t 3 goal location for the briefcase. (Number of optimal
thermore, little system parameter tuning has been donésat th plans found in brackets)

stage, and the settings in Table 1 appear to provide reaonab

Problem size [objects-cities]

policies for evolving both briefcase and blocksworld piglic))))

(to be discussed briefly later). [2-5] [2-10] [4-5] [4-10]
L2Plan 100 (93) 100 (94) 100 (72) 100 (74)
API 10 (10) 4 (4) 13 (11) 4 (4)

Results

Both the APl and_2Planpolicies are run on the same 400 test

problems with 1 briefcase: 100 problems each with 2 objects The| 2pjanpolicy again solves all 400 problems with a high
and 5 cities, 2 objects and 10 cities, 4 objects and 5 citi®$, & hroportion of them solved optimally.

4 objects and 10 Qities. These test problems all containk goa * e performance of the API policy on this suite of prob-
location for_the briefcase. . lems is however quite different — only a small number of
_Each policy solves all 400 problems. Figure 8 however de- ,ophiems are solved, though most of these are solved op-
picts the number of problems that a policy manages 1o solve imaly. This behaviour is a direct consequence of the re-
optimally, i.e. where the plan produced by the policy is N0 qirement placed on two of it8oVE rules that the briefcase
longer than a known optimal plan. Figure 9 shows the aver- ghqyd pe at its goal location before it may be moved. If the
age number of extra steps produced per plan by each policy priefcase is not at its goal location and no other action can
for the problems that were solved suboptimally (i.e. the t0- pe taken, then rule 5 in this policy moves the briefcase to its
tal of extra steps over all 400 solutions is divided by only 404 |ocation and other actions then become possible. The
the number of suboptimally solved solutins). Inboth respec 1y e of problems that this policy has a chance of solving are
the L2Plan policy considerably outperforms the API policy 656 where the briefcastarts outby being in the same lo-
— it finds more optimal solutions for problems and generates c4tion as one or more of the misplaced packages. The policy
shorter plans than the AP policy when a suboptimal solution giciates that the misplaced packages are put in the briefcas
is found. , (rule 1), the briefcase is moved to the goal location of one of
These results are a consequence of the rule order in theihe packages (rule 3), and the package deposited (rule 8). Th
respective policies. The API pohcy_moves th(_a briefcaseyawa policy again dictates that any misplaced packages are gicke
from its current location without first checking whether an , from this new location, and again the briefcase is moved to
object inside it might be deposited in the current location. e goal location of a package inside it. However, if theforie
L2Planuses several of the crossover and mutation operations 3se ends up at some location empty after having delivered a
to optimise rule order so that the policy is evolved such that spiaced package, and there are still misplaced packages i
it does the most it can do in the current briefcase location giner |ocations then no further action will be possible ¢sin

— pickups misplaced objects or deposits ones arrived at thei there is no goal location in the problem to which the brieécas
current location — before the briefcase is moved. can be taken by rule 5).

The API policy also exhibits an apparent dependency on
the goal location of the briefcase with several rules chegki ,oved to its goal location only when all objects have been

its location before an action may be taken. To confirm this yeposited at their own goal locations (rule 5), and no other
dependency both policies are run on a new suite of 400 test e is dependent on the location of the briefcase.

problems, with the same complexity as the previous suite but
without a goal location for the briefcase. Table 2 gives the :
results achieved by each policy — it shows the total number of Conclusions and Future Work

problems solved for each problem type, with the number of This work suggests that EC is a viable approach for learning
problems solved optimally (out of the total given) in bratske generalised policies, and highlights both the limitatiamsl

The L2Plan policy has evolved such that the briefcase is

strengths of the current implementation. by the early convergence, and therefore termination of the
IF-THEN rules are a highly comprehensible but also a sim- learning process, to policies that do not perform partityla
plistic KR. As discussed in a previous section currentlythe ~well ontest problems. If the system were allowed to explore a
cannot capture knowledge that concerns a group of objects, larger area for longer, then it may be possible to evolveesbett
though this may be resolved by the addition of existential policies.
and universal quantifiars. Even so, it is doubtful that using With regards to improving system efficiency an area of in-
this KR L2Plan could evolve policies that include recursive vestigation will be the impact of training examples on the
concepts. In experiments on the Blocksworld domain, for in- quality of the induced policies. A significant computatibna
stance, efficient and effective policies have been evolugd b expense is spent in the production of optimal plans from
only by adding similar support predicates to those used by Which to generate training examples. One approach, natu-

Khardon (1999) — the concept of a well-placed block is added
to the domain description.

WhatL2Plan currently lacks in KR expressiveness, how-
ever, it compensates for by optimising rule order in poficie
An iterative rule learning strategy is highly dependentiua t
training data, which is often biased towards a few actioas th
occur frequently in plan solving. Since criteria for defigin
a ‘best’ rule often concern the number of training examples
covered, it is therefore quite likely that the first rules edd
to any policy dictate the most frequent action found in exam-
ples. However, the most frequent actions need not, indeed
should not, always be performed first if the aim is an efficient
solution. Several crossover and mutation operatok2Plan
essentially optimise this aspect of the policy.

This is early-stage work on utilising EC for generalised
policy induction and our experiments suggest several ag&nu
for investigation. As indicated the KR is a major theme, and
exploring how far we can push a comprehensible though sim-
plistic language, i.e. which domains and which specific fea-
tures of these domains require a more expressive language
will be highly informative. Description logics and taxon@m
syntax are certainly more expressive (at some cost to com-
prehensibility), and well-worth investigating. It is imésting
to note though, that Fern, Yoon, & Givan (2006) cite as a
possible reason for their weak policies for the Logisticd an
Freecell domains a limitation in their KR.

Not explored in this work i€ 2Plaris potential for also op-
timising individual rules within a policy. (Khardon 1999),
(Martin & Geffner 2004) and (Fern, Yoon, & Givan 2006)
all impose limits on the size of rules that may be constructed
(as otherwise the search would be prohibitive), thereby re-
stricting a search in the solution space of rules to prefipdci
regions. One crossover and mutation operatiorL@Rlan
rules enables their size to vary, thereby allowing a seareh i
much wider solution space.

A future improvement is expected from the implementa-
tion of typing. The current untyped system means that at leas
some rules in some policies will be invalid (since predisate
can be created that contain variables of the wrong type), pre
senting lost opportunities for acting on training examplied
learning from the evaluation. Typing is therefore expected
to reduce the number of iterations necessary to evolve good
policies, and/or to present increased opportunities famle
ing better ones.

Furthermore, analysis of some experiment results also sug-
gest that the current learning process is too highly setecti
For instance, only the very best individuals are insertéal in
the following generation, restricting exploration persapo

rally, is the use of non-optimal planners to generate smhgti
from which to extract examples. The impact of suboptimal
examples on induced policies will therefore also be explpre
as empirical studies suggest that a noisy training enviestm

is not necessarily detrimental to the learning process (Ram
sey, Schultz, & Grefenstette 1990).

References

Aler, R.; Borrajo, D.; and Isasi, P. 2002. Using genetic paog-
ming to learn and improve control knowledgértificial Intelli-
gencel41:29-56.

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; andlPa
Schneider, P. 2003The Description Logic Handbook: Theory,
Implementation, and Application€ambridge University Press.

Bacchus, F., and Kabanza, F. 2000. Using temporal logicg-to e
press search control knowledge for planniAgtificial Intelligence
116:123-191.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996euro-Dynamic Pro-
gramming Athena Scientific.

Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate poli@r-t
ation with a policy language bias: Solving relational markieci-

' sion processesJournal of Artificial Intelligence Resear@b:75—
118.

Hoffmann, J., and Nebel, B. 2001. The FF planning systemt Fas
plan generation through heuristic seardournal of Artificial In-
telligence Research4:263-302.

Khardon, R. 1999. Learning action strategies for planniog d
mains.Artificial Intelligence113:125-148.

Koza, J. R. 1992.Genetic Programming: On the Programming
of Computers by Means of Natural Selecti@radford Book, The
MIT Press.

Leckie, C., and Zukerman, I. 1998. Inductive learning ofrckea
control rules for planningAtrtificial Intelligence101:63-98.

Martin, M., and Geffner, H. 2004. Learning generalized gieb
from planning examples using concept languadggsplied Intelli-
gence20:9-19.

Miller, B. L., and Goldberg, D. E. 1995. Genetic algorithms,
tournament selection, and the effects of noise. TechniegloR
95006, Department of General Engineering, University lafdis

at Urbana-Champaign, Urbana, IL.

Pednault, E. 1987Toward a Mathematical Theory of Plan Syn-
thesis Phd, Stanford University, USA.

Ramsey, C. L.; Schultz, A. C.; and Grefenstette, J. J. 1990.
Simulation-assisted learning by competition: Effects oise dif-
ferences between training model and target environmerfrdo.

7th International Conference on Machine Learni2d 1-215.

Spector, L. 1994. Genetic programming and Al planning sgste
In Proc. 12th National Conference on Atrtificial Intelligen@eXAl-
94), 1329-1334.

Tesauro, G., and Galperin, G. 1996. On-line policy improgam

using Monte-Carlo search. lkdvances in Neural Information Pro-
cessing 9

soon in other regions of the search space. This is suggested

