
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimisation of Generalised Policies via Evolutionary
Computation

Citation for published version:
Galea, M, Levine, J, Westerberg, H & Humphreys, D 2007, Optimisation of Generalised Policies via
Evolutionary Computation. in 26th Workshop of the UK PLANNING AND SCHEDULING Special Interest
Group PLANSIG 2007. pp. 36, PlanSIG 2007, Prague, Czech Republic, 17/12/07.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
26th Workshop of the UK PLANNING AND SCHEDULING Special Interest Group PLANSIG 2007

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/optimisation-of-generalised-policies-via-evolutionary-computation(2162c4b5-0d0b-4cc7-9801-ccedca598c6f).html


Optimisation of Generalised Policies via Evolutionary Computation

Michelle Galea and John Levine and Henrik Westerberg∗

Department of Computer & Information Sciences
University of Strathclyde
Glasgow G1 1XH, UK

Dave Humphreys†
CISA, School of Informatics

University of Edinburgh
Edinburgh EH8 9LE, UK

Abstract

This paper investigates the application of Evolutionary Com-
putation to the induction of generalised policies. A policyis
here defined as a list of rules that specify which actions to
be performed under which conditions. A policy is domain-
specific and is used in conjunction with an inference mech-
anism (to decide which rule to apply) to formulate plans
for problems within that domain. Evolutionary Computation
is concerned with the design and application of stochastic
population-based iterative methods inspired by natural evolu-
tion. This work illustrates how it may be applied to the in-
duction of policies, compares the results on one domain with
those obtained by a state-of-the-art approximate policy itera-
tion approach, and highlights both the current limitations(such
as a simplistic knowledge representation) and the advantages
(including optimisation of rule order within a policy) of our
system.

Introduction
We present an evolution-inspired system that induces gener-
alised policies from available solutions to planning problems.
The term generalised policy was coined by Martin & Geffner
(2004) for a function that maps pairs of initial and goal states
to actions. The actions outputted should, when performed,
achieve the specified goal state from the specified initial state.

Figure 1 presents a simplified view of a planner based on
generalised policies. A distinction is made here between a
policy – the knowledge used to solve a problem, and the in-
ference mechanism that utilises the policy – the decision pro-
cedure that dictates when and how the knowledge is applied.
A domain model defines a specific domain in terms of rele-
vant objects, actions and their effects.

A policy in this work is a list of domain-specificIF-THEN
rules. If the conditions stated in theIF- part of a rule match
the current state, then the action in theTHEN partmaybe ap-
plied. The currently implemented inference mechanism is a
common and simple one – rules within a policy are ordered
and the action of the first rule that may be applied is per-
formed. If more than one valid combination of variable bind-
ings exists then orderings on the variables and their valuesare
adopted and the first valid combination is effected.

∗Currently at Systems Biology Unit, Centre for Genomic Regulation, C/Dr Aiguader

88, Barcelona 08003, Spain

†Currently at Mobile Detect Inc., Ottawa, Ontario, Canada K1L 6P5

Domain C

Domain B

Domain C

Domain B

Domain A
model

Domain A
policy

Planner

Inference
method

Problem Plan

Figure 1: Planning using generalised policies and inference
mechanisms

It should be noted that these policies contain a particular
type of control knowledge. Control knowledge is domain-
specific knowledge often used by some planners to prune
search during the construction or identification of a plan.
Control knowledge is often expressed asIF-THEN type rules,
but the conditions and actions relate to goal, domain opera-
tor and/or variable binding decisions to be taken during the
search process. Examples of work that induce such knowl-
edge include (Leckie & Zukerman 1998) and (Aler, Borrajo,
& Isasi 2002).

In this work a policy determines domain operator selec-
tion and each rule describes the conditions necessary for a
particular operator to be applied. The inference mechanism
is responsible for deciding all other decisions (which ruleto
apply, and which variable bindings to implement)withoutre-
course to any search, leading to highly efficient planners.

The induction of policies is carried out using Evolution-
ary Computation (EC) in a supervised learning context. EC
is the application of methods inspired by Darwinian princi-
ples of evolution to computationally difficult problems, such
as search and combinatorial optimisation. Its popularity is
due in great part to its parallel development and modification
of multiple solutions in diverse areas of the solution space,
discouraging convergence to a suboptimal solution.

We compare the performance of one evolved policy with
that obtained using a state-of-the-art Approximate PolicyIt-
eration (API) (Bertsekas & Tsitsiklis 1996) approach. We



focus on the knowledge representation language (KR) and
learning mechanism highlighting both the current limitations
and strengths of our system. The rest of this paper reviews
the literature on generalised policy induction, describesour
implemented system, and discusses experiment results and
future research directions.

Related Work
Early work on inducing generalised policies utilises ge-
netic programming (GP) (Koza 1992), a particular branch of
EC. Evolutionary algorithms in general re-iteratively apply
genetic-inspired operators to a population of solutions, with
fitter individuals of a generation (according to some prede-
fined fitness criteria) more likely to be selected for modifi-
cation and insertion into successive generations than weaker
members. On average, therefore, each new generation tends
to be fitter than the previous one. GP is distinguished by a tree
representation of individuals that makes it a natural candidate
for the representation of functional programs.

Koza (1992) describes a GP algorithm for solving a
blocksworld problem variant – the goal is a program capa-
ble of producing a tower of blocks that spells “UNIVER-
SAL”, starting from a range of different initial tower con-
figurations. The tree-like individuals in a generation are
constructed from sets offunctions(such asmove to stack
and move to table) and terminals that act as argu-
ments to the functions (such astop block of stack and
next needed block).

Each individual in the population is assessed by its perfor-
mance on a set of 166 initial configurations. Generation 10
produces a program that correctly stacks the tower for each
of the given configurations, though it uses unnecessary block
movements and contains unnecessary functions. When el-
ements are included in the fitness assessment that penalise
against these inefficiencies, the algorithm outputs a parsimo-
nious program that produces solutions that are both correct
and optimal (in terms of plan length).

Spector (1994) uses Koza’s algorithm with different func-
tion and terminal sets to induce solutions to the Sussman
Anomaly – the initial state is block C on block A, with blocks
A and B on the table; the goal state is block A on B, which
is on C, which is on the table. In a first experiment the au-
thor uses functions such asnewtower (move X to table if X
is clear) andputon (put X on Y if both are clear), and the
terminals are the names of the blocks A, B and C. The goal is
a program that can attain the goal state from the initial state,
and individuals are assessed on this one problem. The fitness
function includes elements that reward parsimony and effi-
ciency as well as correctness, and the goal is achieved well
before the final generation.

In further experiments the author introduces new functions
and replaces the block-specific terminals with ones that refer
to blocks by their positions in goals. The number of problems
on which individuals are assessed is also increased. One ex-
periment is designed to produce a program that achieves the
Sussman goal state from a range of different initial states.
The resulting program achieves this particular goal state even
from initial configurations that are not used during learning.
However, it is incapable of achieving a different goal state

from that on which it was trained, even a simplified one such
as (ON B A).

Another experiment seeks a program capable of achiev-
ing 4 different goals states (maximum 3 blocks), from differ-
ent initial states. This evolved program is capable of attain-
ing any of the 4 specified goal states from initial states not
observed during the evolutionary process. The author indi-
cates that it is also capable of solving some 4-block problems,
though its generalisation power for this and larger problems
has not been fully analysed.

The work of Khardon (1999) for inducing policies has in-
spired and/or often been cited by later work. It uses a deter-
ministic learning method to induce decision lists ofIF-THEN
rules from examples of solved problems, with the first rule
in the list that matches the observed state being applied. The
learning strategy is one of iterative rule learning where the
following step is iterated until no examples are left in the
training set – a number of rules are generated, the best (ac-
cording to some criterion) is determined, examples that are
covered by this rule are removed from the training data, and
the rule is added to a growing rulebase. The number of rules
generated in each iteration must be finite and tractable and
this is controlled in part by setting limits to the number of
conditions and variables in theIF- part of a rule; all possi-
ble rules for each action are then generated in each iteration.
The training data is formulated by extracting examples from
planning problems and their solutions – each state and action
encountered in a plan constitutes one example.

In addition to the training examples and a standard STRIPS
domain description Khardon provides the learning algorithm
with background knowledge he callssupport predicates–
concepts such asabove andinplace for the blocksworld
domain. The resulting policy is an ordered list of existentially
quantified rules with predicates in the condition part that may
or may not be negated, and may or may not refer to a sub-
goal. For instance,holding(x1) ¬clear(x2) G(on(x1, x2)) →

PUTDOWN(x1), represents a rule that says ifx1 is currently
held,x2 is not clear, and in the goal statex1 should be onx2,
put downx1.

Blocksworld policies are generated using different train-
ing sets containing examples drawn from solutions to 8-block
problems, and are tested on new problems of sizes ranging 7–
20 blocks. Their performance varies from a high of 83% of
7-block problems solved, down to 56% of 20-block problems.
Similar experiments are carried out for the logistics domain
with training of policies on examples obtained from solutions
to problems with 2 packages, 3 cities, 3 trucks, 2 locations
per city, and 2 airplanes. Polices are tested on problems with
similar dimensions to the testing problems, and the number
of packages is varied from 2, solving 80% of problems, to
30, solving 68% of problems.

Martin & Geffner (2004) suggest that the generalisation
power of Khardon’s policies over large problems is weak, and
that obtaining domain-dependent background knowledge is
not always a trivial task. They use the same learning method
as Khardon but propose to overcome both weaknesses by us-
ing description logics (Baaderet al. 2003) as the KR. This
enables the representation of concepts that describeclasses
of objects, such as the concept of a well-placed block.



A blocksworld policy induced from 5-block problem ex-
amples solves 99% of the 25-block test problems. With the
addition of an incremental refinement procedure a policy is
eventually induced that solves 100% of test problems: a pol-
icy is induced and tested on 5-block problems; optimal so-
lutions are found for the problems it fails on, and examples
are extracted from these and added to the training set; then,a
new policy is induced from the larger dataset. The authors re-
peat this procedure several times until a policy solves all the
25-block test problems presented (test problems are new each
time the policy is tested). It should be noted however that as
well as the KR and the refinement extension to the learning
algorithm, the way training examples are extracted from so-
lutions is different from that in Khardon’s work – Martin &
Geffner use as examplesall actions for each state that lead to
an optimal plan; this may have some impact on the quality of
the induced policies.

Fern, Yoon, & Givan (2006) learn policies for a long ran-
dom walk (LRW) problem distribution using a form of API.
A policy is a list of action-selection rules where the action
of the first rule that matches the current and goal states is
applied. An LRW distribution randomly generates an initial
state for a problem, executes a long sequence of random ac-
tions, and sets the goal as a subset of properties of the final
resulting state. For a given domain API iteratively improves
a policy until no further improvement is observed or some
other stopping criterion is used. The expectation is that if
a learned policyπn performs well on problems drawn from
random walks of lengthn, then it will provide reasonable per-
formance or guidance on problems drawn from random walks
of lengthm, wherem is only moderately larger thann. πn is
therefore used to bootstrap API iterations to findπm, i.e. to
find a policy that handles problems drawn from increasingly
longer random walks.

Within each iteration, trajectories (sequences of alternat-
ing states and actions) for an improved policy are generated
using policy rollout (Tesauro & Galperin 1996), and then an
improved policy is learned using the trajectories as training
data. The policy learning component follows an iterative rule
learning strategy. The difference between this learning strat-
egy and that of Khardon and Martin & Geffner lies in the
rule generation procedure where a greedy heuristic search is
used instead of exhaustively enumerating all rules. The KR
(based on taxonomic syntax) is also different, and is expres-
sive enough so that no support predicates need be supplied to
the learning process.

This work is currently state-of-the-art in this particular
research area, i.e. where policies that are learned are used
with a simple and efficient decision procedure to solve plan-
ning problems. It presents policies for several domains and
tests them rigorously on deterministic and stochastic prob-
lems from an LRW distribution and from the 2000 planning
competition; the results compare favourably with those ob-
tained by theFF planning system (Hoffmann & Nebel 2001).

In this paper we explore the Briefcase domain API-
generated policy and compare its performance with one
evolved by our system, focusing on the limitations of our KR
and the strength of our policy optimisation mechanism.

(1) Create initial population
(2) WHILE termination criterion false
(3) Evaluate current generation
(4) WHILE new generation not full
(5) Perform reproduction
(6) Perform recombination
(7) Perform mutation
(8) Perform local search
(9) ENDWHILE
(10) ENDWHILE
(11) Output fittest individual

Figure 2: Pseudocode outline ofL2Plan

Learning Policies using L2Plan
L2Plan (Learn to Plan) induces policies of rules similar to
Khardon’s, but the learning mechanism used is a population-
based iterative approach inspired by natural evolution.

Input to L2Plan consists of an untyped STRIPS domain
description, additional domain knowledge if available (e.g.
concept of a well-placed block), and domain examples on
which to evaluate the policies being learned. The output is
a domain-specific policy that is used in conjunction with an
inference mechanism to solve problems within that domain.

A policy consists of a list of rules with each rule being a
specialisedIF-THEN rule (also known as a production rule).
The IF- part is composed of two condition statements where
each is a conjunction of ungrounded predicates which may be
negated:
IF condition AND goalCondition THEN action

condition relates to the current state andgoal-
Condition to the goal state. If variable bindings exist such
that predicates incondition match with the current state,
and predicates ingoalCondition match with the goal state,
then the action may be performed. Note though that the ac-
tion’s precondition must also be satisfied in the current state.
The list of rules is ordered and the first applicable rule is used.
Variable and domain orderings are followed if more than one
combination of bindings is possible.

Figure 2 presents an outline of the system. Each itera-
tion starts with a population of policies (line(2)). The per-
formance of these policies is evaluated on training data gen-
erated from planning problems from the domain under con-
sideration (line (3)). The resulting measure of fitness for a
policy is used to determine whether it is replicated in the next
iteration (line (5)), or whether it may be used in combination
with another policy to reproduce ‘offspring’ that may be in-
serted into the next iteration (also called crossover, line(6)).
All policies to be inserted in the next iteration may undergo
some form of random mutation (i.e. small change, line (7)),
and a local search procedure that attempts to increase the fit-
ness of the policy (line (8)).

The system terminates if a predefined maximum number
of generations have been created, or a policy attains maxi-
mum fitness by correctly solving all examples, or, the aver-
age difference in policy fitness in an iteration falls below a
predefined user-set threshold (indicating convergence of all
individuals to similar policies).

Since the results of the evaluation process influence the
creation of the next generation, the average fitness of all poli-
cies is expected to improve from one generation to the next.
The fact that several policies are in each iteration allows the



(:rule position briefcase to pickup misplaced object
:condition (and (at ?obj ?to))
:goalCondition (and (not(at ?obj ?to)))
:action movebriefcase ?bc ?from ?to)

Figure 3: Example of a briefcase rule with a variable in
condition that is not a parameter of the action

possibility of exploring different regions of the solutionspace
at once. This, coupled with an element of randomness that is
used in the selection of policies crossover and mutation, may
help to prevent all policies from converging to a local opti-
mum solution.

The following paragraphs describe the creation of the ini-
tial population, policy evaluation, and the genetic operators
used to create new policies from old.

Generating the Initial Population
L2Planfirst generates an initial – the first generation – popu-
lation of policies, Fig. 2 line (1). The number of individuals
in a population is predefined by the user (generally 100), and
stays fixed until the system terminates. The number of rules
in a policy at this stage is randomly set between user-defined
minimum and maximum values (4 and 8 respectively).

Thecondition andgoalCondition statements of a rule
are also generated randomly, within certain constraints. The
action, i.e. theTHEN part of theIF-THEN rule, is first selected
randomly from all domain actions.

The size ofgoalCondition in the IF- part of the rule
is determined by drawing a random integer between user-
defined minimum and maximum values (set to 1 and 3 re-
spectively), which determines the number of predicates. A
predicate is first selected, and then the appropriate numberof
variables are randomly selected from all possible variables.
Predicates are randomly negated.

The size ofcondition in the IF- part of the rule is cur-
rently determined by the number of parameters of the selected
action, and a random selection of predicates. A predicate is
selected randomly, and then variables for the predicate are
randomly selected from the action’s parameters. Predicates
are selected, and variables assigned, until all of an action’s pa-
rameters are present in at least one predicate ofcondition.
Each predicate is randomly negated.

However, early experiments highlighted that restricting the
parameters incondition strictly to those in the set of pa-
rameters for an action, severly limits the knowledge that can
be expressed by a rule. For example, the system is unable
to learn the rule in Fig. 3 due to this constraint. This rule
specifies that if an object is misplaced (i.e. its current loca-
tion is not the location specified for it in the goal state), then
a briefcase is moved to the current location of the object. A
temporary quickfix has been implemented that inserts an ex-
tra unary predicate in the domain description. With this pred-
icate added to the precondition of each action/operator, ital-
lows L2Plan the possibility of creating rules such as the one
in Fig. 3.

Note, that a policy need not contain a rule to describe each
action in the domain, and that the initially set number of rules
for a policy, and the number of predicates in the conditions

(define (example blocks1 1)
(:domain blocksworld)
(:objects 5 4 3 2 1)
(:initial ... )
(:goal ... )
(:actions
(move-b-to-b 1 3 4) 1
(move-b-to-b 1 3 5) 1
(move-b-to-b 4 2 1) 1
(move-b-to-b 4 2 5) 1
(move-b-to-t 1 3) 0
(move-b-to-t 4 2) 0
(move-t-to-b 5 1) 2
(move-t-to-b 5 1) 2) )

Figure 4: A training example generated from a blocksworld
problem

of a rule is liable to change with the application of genetic
operators.

Evaluating a Policy
The training data on which a policy is evaluated is composed
of a number of examples that are generated from a number
of planning problems. Each example consists of a state en-
countered on an optimal plan for the problem from which it is
extracted, and a number of actions which may be taken from
that state, each with an associated cost.

Consider a planning problem that includes an initial state
SI and a goal stateSG. Each possible action that may be
taken fromSI is performed, leading to new states. For each
new state a solution that attainsSG is found using an avail-
able planner. The length of each solution is determined, and
the smallest-size solution is deemed the optimal plan. A cost
is now attached to each action performed fromSI : the ac-
tion that leads to the optimal plan is given a cost of zero, and
all other actions are given a cost that is the difference be-
tween the length of the solution that they form a part of, and
the length of the optimal plan. This now forms one training
example on which an evolving policy may be evaluated. Fig-
ure 4 shows the representation used for a training example,
which is consistent, as far as possible, with STRIPS syntax.

For each state on the optimal plan just determineds the
same procedure is followed as forSI , i.e. all possible ac-
tions from the next state on the optimal plan, saySn, are per-
formed, solutions for each of the resulting states are found,
and costs for each possible action taken fromSn are de-
termined from the solutions’ length. Each training problem
therefore yields as many examples as there are states encoun-
tered on the optimal plan. Duplicate training examples are
removed so as not to biasL2Plantowards any particular sce-
nario(s).

The planner used to generate training examples, i.e. when
determining plans toSG from any stateSn, is a simple one
using breadth-first search. This ensures that an optimal plan
is obtained and that actions in examples designated as opti-
mal are in fact actions for states encountered on some plan
of minimal length. For some domains (e.g. blocksworld and
briefcase), in order to speed up the generation of examples
hand-coded control rules to prune branches from the search
are used; these control rules are designed to ensure that an
optimal plan is still determined.

The fitness of a policy is determined by averaging its per-
formance over all examples, where for each example pre-



sented it is scored based on whether the selected action forms
part of an optimal plan or not. Formula (1) below describes
the fitness function wherem is the number of training exam-
ples andactionCosti is the cost of the action taken by the
policy for training examplei:

fitness =
1

m

m∑

i=1

1

1 + actionCosti
(1)

Creating a New Generation of Policies
CurrentL2Plansettings are such that the individuals compris-
ing the fittest5% of a generation are reproduced, improved by
a local search mechanism, and then inserted into the next gen-
eration. The remainder of the next generation is populated by
individuals selected from the current generation and on which
various genetic operations are performed. The fitter individ-
uals in the current population have a greater chance of being
selected for recombination and mutation, in the expectation
that their offspring and/or mutations result in even fitter indi-
viduals. However, randomness plays a part in their selection
and in the application of genetic operators in an attempt to
search different areas of the solution space and to avoid local
minima.

Selection of two individuals is performed using tourna-
ment selection with a size of 2 (Miller & Goldberg 1995).
Crossover or mutation is then applied with some predefined
probability (0.9 for crossover, 0.1 for mutation). The output
of these operators is a single policy – for crossover the fittest
of parents and offspring, and for mutation the fittest of the
original policy or mutants. Local search is performed on this
policy before it is inserted into the new generation. This pro-
cedure is repeated until the new generation is full.

There are three types of crossover that may be performed
on the 2 selected policies, and 4 types of mutation that may
be performed on the first selected policy:

Single Point Rule Level Crossover A crossover point is
randomly chosen in each of the 2 policies, with valid points
being before any of the rules (points need not be the same
in the 2 policies). Two offspring policies are then created by
merging part of the policy of one parent (as delineated by the
crossover point), with a part of the other parent (the first part
of parent A with the second part of parent B, and the second
part of parent A with the first part of parent B).

Single Rule Swap Crossover A randomly selected rule
from policy A is swapped with a randomly selected rule from
policy B, resulting in two new policies. The replacing rule
is inserted in the same position in the policy as the one it is
replacing.

Similar Action Rule Crossover Two rules with the same
action are randomly selected from the parent policies, one
from each. Two new rules are created from the selected rules,
one by usingcondition from the first selected rule and
goalCondition from the second, and the other new rule is
created by usinggoalCondition from the first selected rule
andcondition from the second. Each of the two newly cre-
ated rules replaces the original rule in each of the two parent
policies, resulting in 4 new policies.

Rule Addition Mutation A new rule is generated and in-
serted at a random position in the policy.

Rule Deletion Mutation A randomly selected rule is re-
moved from the policy (if the policy contains more than one
rule).

Rule Swap Mutation Two randomly selected rules have
their position swapped in the policy (if the policy has more
than one rule).

Rule Condition Mutation A randomly selected rule has
its condition and/orgoalCondition statement mutated,
by replacing the condition statement with a newly generated
one, or by removing a predicate from the statement, or by
adding a new predicate.

The local search procedure currently used is aimed at in-
creasing the fitness of a policy as quickly as possible. It per-
forms rule condition mutations a predefined number of times
(called the local search branching factor). The fittest mutant
replaces the original policy, and again, rule condition muta-
tions are performed on the new policy the same predefined
number of times. This process is repeated until either no
improvement in fitness is exhibited by any mutant over their
originator policy, or for a preset maximum number of times
(called the local search depth factor).

A Comparison of Two Policies
This study focusses on comparing two policies for the brief-
case domain, one generated byL2Planand the other by the
API approach introduced in theRelated Worksection (Fern,
Yoon, & Givan 2006). The comparison serves two purposes:
• it highlights a current limitation ofL2Plan, which is the

limited expressiveness of the KR; and,
• demonstrates the advantage offered by its policy discovery

mechanism, which optimises the rule order in a policy.

The Briefcase domain is chosen partly because it is as yet
one of the few domains for which we have evolvedL2Plan
policies, and partly because the knowledge expressed in the
API induced policy is such that can be expressed asIF-THEN
rules.

The API Policy
Figure 5 presents the briefcase domain policy induced
by the API algorithm. A policy provides a mapping
from states to actions for a specific domain and consists
of a decision list of ‘action-selection rules’ of the form
a(x1, ..., xk) : L1, L2, ...Lm wherea is ak-argument action
type,xi an action argument variable andLi is a literal. An
API policy is utilised in the same way as anL2Planpolicy.
Each rule describes the action to be taken if a variable binding
exists for the rule that matches both the current state and the
goal. The current state must also satisfy the preconditionsof
the action specified by the rule. The rules in a policy are or-
dered and the rule that is applied in a state is the first rule for
which a valid variable binding exists. A lexicographic order-
ing is imposed on objects in a problem to deal with situations
where more than one variable binding for the same rule may
be possible.

Below is a simpler example policy for illustrating the main
features of the KR used. It is a policy for a blocksworld do-
main where the goal in all problems is to make all red blocks
clear is:
1. putdown(x1) : x1 ∈ holding

2. pickup(x1) : x1 ∈ clear, x1 ∈ (on∗(on red))



1. PUT-IN:X1 ∈ (GAT−1 (NOT IS − AT )))

2. MOVE: (X2 ∈ (AT (NOT (CAT−1 LOCATION)))) ∧

(X2 ∈ (NOT (AT (GAT−1 CIS − AT ))))

3. MOVE: (X2 ∈ (GAT IN)) ∧ (X1 ∈ (NOT (CAT IN)))

4. TAKE-OUT: (X1 ∈ (CAT−1 IS − AT ))

5. MOVE: (X2 ∈ GIS − AT )

6. MOVE: (X2 ∈ (AT (GAT−1 CIS − AT )))

7. PUT-IN:(X1 ∈ UNIV ERSAL)

Figure 5: API briefcase policy in taxonomic syntax

1. PUT-IN misplaced package in briefcase

2. MOVE briefcase to pickup misplaced package, if briefcase is at
its goal location and package does not have same goal location as
briefcase

3. MOVE to goal location of package in briefcase, if there is no pack-
age in briefcase whose goal location is the same as the current
location of briefcase

4. TAKE -OUT package that has arrived at its goal location

5. MOVE briefcase to its goal location

6. MOVE to pickup misplaced package, if briefcase is at its goal lo-
cation and package has same goal location as briefcase

7. PUT-IN package in briefcase.

Figure 6: API briefcase policy in common language

The primitive classes (unary predicates) in this domain are
red, clear, andholding, while on is a primitive relation (bi-
nary predicate). If a domain contains predicates of greater
arity, these are converted to equivalent multiple binary pred-
icates. A prefix ofg indicates a predicate in the goal state
(e.g.gclear), while a comparison predicatec indicates that
a predicate is true in both the current state and the goal (e.g.
cclear). A primitive class (relation) is a current-state predi-
cate, goal predicate or comparison predicate, and it is inter-
preted as the set of objects for which the class (relation) is
true in a states. Compound expressions are formed by the
‘nesting’ of classes/relations, and/or the application ofaddi-
tional language features such asR∗ indicating a chain of a
relationR. Expressions have a depth associated with them
so that, for intstance, the first expression in rule 2 above has
depth 1 and the second expression has depth 3.

Figure 6 is a translation of the policy in Fig. 5 into common
language. Upon inspection it is clear that there is potential in
this policy to perform unnecessary steps. For instance, rule
2 moves the briefcase away from its current location without
first depositing any packages it contains that have as a goal
location the current briefcase location. Furthermore, twoof
the four MOVE rules have as a necessary condition that the
briefcase must be at its goal location – this can cause prob-
lems and is discussed later on.

This API policy is translated intoL2Plan-style IF-THEN
rules and tested using our implemented inference mechanism
on the same problems as our evolved policy. However, it is
important to note differences in the KR which highlight the
limited expressiveness of our current formulation ofIF-THEN
rules. Consider rule 3 in Fig. 6 – it states that the briefcaseis

1. TAKE -OUT package that has arrived at its goal location

2. PUT-IN misplaced package in briefcase

3. MOVE briefcase to pickup misplaced package

4. MOVE to goal location of package in briefcase

5. MOVE briefcase to its goal location

Figure 7:L2planbriefcase policy in common language

Table 1:L2Planparameter settings
Parameter Setting

Range of initial policy size [4–8]
Population size 100
Maximum number of generations 100
Proportion of policies reproduced 5%
Crossover probability 0.9
Mutation probability 0.1
Local search branching 10
Local search depth 10
Tournament selection size 2

moved to a goal location of a package within it,only if there
are NO other packages in the briefcase whose goal locations
are the same as the current location of the briefcase. If this
is so, then rule 4 is fired instead of rule 3, i.e. packages at
their goal location are taken out of the briefcase before the
briefcase is moved, despite the order and actions suggested
by these two rules.

As yet we cannot write rule 3 inL2Plan-style rules. This
limitation is partly due to the fact that we can only specify
individual packages using this KR and not sets of packages.
However, if we simplify the API policy’s rule 3 and switch
the order of the simplified rule 3 with rule 4, then we obtain
an equivalent policy we can test and compare withL2Plan’s
policy. The new rule 3 states:TAKE-OUT package that is at
its goal location, and the new rule 4 is:MOVE to goal location
of package in briefcase.

The L2Plan Policy
Figure 7 presents theL2Plan evolved policy against which
the API policy is compared. Note that the first four rules
are equivalent to the hand-coded control policy introducedin
(Pednault 1987) and which is used to prune search for this
domain by theTLPlansystem (Bacchus & Kabanza 2000).

To produce this policyL2Planwas run 15 times with iden-
tical parameter settings (Table 1) though each time the train-
ing examples were generated from 30 different randomly
generated problems and their solutions. The training prob-
lem complexity is however the same: 5 cities, 2 objects and
1 briefcase. Using different training data for different experi-
ments gives some indication of the impact of different exam-
ples on the induced policies, though it should be noted that
the element of randomness used in solution construction will
also have some influence.

Three of the 15 policies solve all test problems presented
(i.e. problems different from the ones used for training), and
the policy in Fig. 7 was selected from one of these three.
Note that though additional domain knowledge other than the
standard STRIPS description may used for inducing a policy,



0

10

20

30

40

50

60

70

80

90

100

[2-5] [2-10] [4-5] [4-10]

Problem size [objects-cities]

N
u

m
b

e
r 

o
f 
o

p
ti
m

a
l 
s
o

lu
ti
o

n
s

L2Plan API

Figure 8: Number of optimal plans produced by a policy

none was used during the induction of briefcase policies. Fur-
thermore, little system parameter tuning has been done at this
stage, and the settings in Table 1 appear to provide reasonable
policies for evolving both briefcase and blocksworld policies
(to be discussed briefly later).

Results
Both the API andL2Planpolicies are run on the same 400 test
problems with 1 briefcase: 100 problems each with 2 objects
and 5 cities, 2 objects and 10 cities, 4 objects and 5 cities, and
4 objects and 10 cities. These test problems all contain a goal
location for the briefcase.

Each policy solves all 400 problems. Figure 8 however de-
picts the number of problems that a policy manages to solve
optimally, i.e. where the plan produced by the policy is no
longer than a known optimal plan. Figure 9 shows the aver-
age number of extra steps produced per plan by each policy
for the problems that were solved suboptimally (i.e. the to-
tal of extra steps over all 400 solutions is divided by only
the number of suboptimally solved solutins). In both respects
the L2Plan policy considerably outperforms the API policy
– it finds more optimal solutions for problems and generates
shorter plans than the API policy when a suboptimal solution
is found.

These results are a consequence of the rule order in the
respective policies. The API policy moves the briefcase away
from its current location without first checking whether an
object inside it might be deposited in the current location.
L2Planuses several of the crossover and mutation operations
to optimise rule order so that the policy is evolved such that
it does the most it can do in the current briefcase location
– pickups misplaced objects or deposits ones arrived at their
current location – before the briefcase is moved.

The API policy also exhibits an apparent dependency on
the goal location of the briefcase with several rules checking
its location before an action may be taken. To confirm this
dependency both policies are run on a new suite of 400 test
problems, with the same complexity as the previous suite but
without a goal location for the briefcase. Table 2 gives the
results achieved by each policy – it shows the total number of
problems solved for each problem type, with the number of
problems solved optimally (out of the total given) in brackets.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[2-5] [2-10] [4-5] [4-10]

Problem size [objects-cities]

A
v
e
ra

g
e
 e

x
tr

a
 s

te
p
s
 i
n
 p

la
n

L2Plan API

Figure 9: Average number of extra steps in suboptimal plans

Table 2: Performance of briefcase policies on problems with-
out a goal location for the briefcase. (Number of optimal
plans found in brackets)

Problem size [objects-cities]
[2-5] [2-10] [4-5] [4-10]

L2Plan 100 (93) 100 (94) 100 (72) 100 (74)
API 10 (10) 4 (4) 13 (11) 4 (4)

TheL2Planpolicy again solves all 400 problems with a high
proportion of them solved optimally.

The performance of the API policy on this suite of prob-
lems is however quite different – only a small number of
problems are solved, though most of these are solved op-
timally. This behaviour is a direct consequence of the re-
quirement placed on two of itsMOVE rules that the briefcase
should be at its goal location before it may be moved. If the
briefcase is not at its goal location and no other action can
be taken, then rule 5 in this policy moves the briefcase to its
goal location and other actions then become possible. The
type of problems that this policy has a chance of solving are
those where the briefcasestarts outby being in the same lo-
cation as one or more of the misplaced packages. The policy
dictates that the misplaced packages are put in the briefcase
(rule 1), the briefcase is moved to the goal location of one of
the packages (rule 3), and the package deposited (rule 4). The
policy again dictates that any misplaced packages are picked
up from this new location, and again the briefcase is moved to
the goal location of a package inside it. However, if the brief-
case ends up at some location empty after having delivered a
misplaced package, and there are still misplaced packages in
other locations then no further action will be possible (since
there is no goal location in the problem to which the briefcase
can be taken by rule 5).

The L2Plan policy has evolved such that the briefcase is
moved to its goal location only when all objects have been
deposited at their own goal locations (rule 5), and no other
rule is dependent on the location of the briefcase.

Conclusions and Future Work
This work suggests that EC is a viable approach for learning
generalised policies, and highlights both the limitationsand



strengths of the current implementation.
IF-THEN rules are a highly comprehensible but also a sim-

plistic KR. As discussed in a previous section currently they
cannot capture knowledge that concerns a group of objects,
though this may be resolved by the addition of existential
and universal quantifiars. Even so, it is doubtful that using
this KR L2Plancould evolve policies that include recursive
concepts. In experiments on the Blocksworld domain, for in-
stance, efficient and effective policies have been evolved but
only by adding similar support predicates to those used by
Khardon (1999) – the concept of a well-placed block is added
to the domain description.

What L2Plancurrently lacks in KR expressiveness, how-
ever, it compensates for by optimising rule order in policies.
An iterative rule learning strategy is highly dependent on the
training data, which is often biased towards a few actions that
occur frequently in plan solving. Since criteria for defining
a ‘best’ rule often concern the number of training examples
covered, it is therefore quite likely that the first rules added
to any policy dictate the most frequent action found in exam-
ples. However, the most frequent actions need not, indeed
should not, always be performed first if the aim is an efficient
solution. Several crossover and mutation operators inL2Plan
essentially optimise this aspect of the policy.

This is early-stage work on utilising EC for generalised
policy induction and our experiments suggest several avenues
for investigation. As indicated the KR is a major theme, and
exploring how far we can push a comprehensible though sim-
plistic language, i.e. which domains and which specific fea-
tures of these domains require a more expressive language,
will be highly informative. Description logics and taxonomic
syntax are certainly more expressive (at some cost to com-
prehensibility), and well-worth investigating. It is interesting
to note though, that Fern, Yoon, & Givan (2006) cite as a
possible reason for their weak policies for the Logistics and
Freecell domains a limitation in their KR.

Not explored in this work isL2Plan’s potential for also op-
timising individual rules within a policy. (Khardon 1999),
(Martin & Geffner 2004) and (Fern, Yoon, & Givan 2006)
all impose limits on the size of rules that may be constructed
(as otherwise the search would be prohibitive), thereby re-
stricting a search in the solution space of rules to prespecified
regions. One crossover and mutation operation onL2Plan
rules enables their size to vary, thereby allowing a search in a
much wider solution space.

A future improvement is expected from the implementa-
tion of typing. The current untyped system means that at least
some rules in some policies will be invalid (since predicates
can be created that contain variables of the wrong type), pre-
senting lost opportunities for acting on training examplesand
learning from the evaluation. Typing is therefore expected
to reduce the number of iterations necessary to evolve good
policies, and/or to present increased opportunities for learn-
ing better ones.

Furthermore, analysis of some experiment results also sug-
gest that the current learning process is too highly selective.
For instance, only the very best individuals are inserted into
the following generation, restricting exploration perhaps too
soon in other regions of the search space. This is suggested

by the early convergence, and therefore termination of the
learning process, to policies that do not perform particularly
well on test problems. If the system were allowed to explore a
larger area for longer, then it may be possible to evolve better
policies.

With regards to improving system efficiency an area of in-
vestigation will be the impact of training examples on the
quality of the induced policies. A significant computational
expense is spent in the production of optimal plans from
which to generate training examples. One approach, natu-
rally, is the use of non-optimal planners to generate solutions
from which to extract examples. The impact of suboptimal
examples on induced policies will therefore also be explored,
as empirical studies suggest that a noisy training environment
is not necessarily detrimental to the learning process (Ram-
sey, Schultz, & Grefenstette 1990).

References
Aler, R.; Borrajo, D.; and Isasi, P. 2002. Using genetic program-
ming to learn and improve control knowledge.Artificial Intelli-
gence141:29–56.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and Patel-
Schneider, P. 2003.The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to ex-
press search control knowledge for planning.Artificial Intelligence
116:123–191.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996.Neuro-Dynamic Pro-
gramming. Athena Scientific.
Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate policy iter-
ation with a policy language bias: Solving relational markov deci-
sion processes.Journal of Artificial Intelligence Research25:75–
118.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search.Journal of Artificial In-
telligence Research14:263–302.
Khardon, R. 1999. Learning action strategies for planning do-
mains.Artificial Intelligence113:125–148.
Koza, J. R. 1992.Genetic Programming: On the Programming
of Computers by Means of Natural Selection. Bradford Book, The
MIT Press.
Leckie, C., and Zukerman, I. 1998. Inductive learning of search
control rules for planning.Artificial Intelligence101:63–98.
Martin, M., and Geffner, H. 2004. Learning generalized policies
from planning examples using concept languages.Applied Intelli-
gence20:9–19.
Miller, B. L., and Goldberg, D. E. 1995. Genetic algorithms,
tournament selection, and the effects of noise. Technical Report
95006, Department of General Engineering, University of Illinois
at Urbana-Champaign, Urbana, IL.
Pednault, E. 1987.Toward a Mathematical Theory of Plan Syn-
thesis. Phd, Stanford University, USA.
Ramsey, C. L.; Schultz, A. C.; and Grefenstette, J. J. 1990.
Simulation-assisted learning by competition: Effects of noise dif-
ferences between training model and target environment. InProc.
7th International Conference on Machine Learning, 211–215.
Spector, L. 1994. Genetic programming and AI planning systems.
In Proc. 12th National Conference on Artificial Intelligence (AAAI-
94), 1329–1334.
Tesauro, G., and Galperin, G. 1996. On-line policy improvement
using Monte-Carlo search. InAdvances in Neural Information Pro-
cessing 9.


