
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Making Sense of Variations: Introducing Alternatives in Speech
Synthesis

Citation for published version:
Veaux, C, Obin, N & Lanchantin, P 2012, Making Sense of Variations: Introducing Alternatives in Speech
Synthesis. in Proceedings of the 6th International Conference on Speech Prosody 2012. Tongji University
Press, Speech Prosody, 6th International Conference, Shanghai, China, 22/05/12.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the 6th International Conference on Speech Prosody 2012

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/making-sense-of-variations-introducing-alternatives-in-speech-synthesis(a6a5fdf4-5ecf-4e4b-bc81-b9fbc3895744).html


Making Sense of Variations:
Introducing Alternatives in Speech Synthesis

Nicolas Obin1, Christophe Veaux2,†, Pierre Lanchantin3,†

1 IRCAM-CNRS-9912-STMS, Paris, France
2 Centre for Speech Technology Research, Edinburgh, UK

3 Cambridge University Engineering Department, Cambridge, UK
nobin@ircam.fr

Abstract
This paper addresses the use of speech alternatives to en-

rich speech synthesis systems. Speech alternatives denote the
variety of strategies that a speaker can use to pronounce a sen-
tence - depending on pragmatic constraints, speaking style, and
specific strategies of the speaker. During the training, symbolic
and acoustic characteristics of a unit-selection speech synthesis
system are statistically modelled with context-dependent para-
metric models (GMMs/HMMs). During the synthesis, symbo-
lic and acoustic alternatives are exploited using a GENERALI-
ZED VITERBI ALGORITHM (GVA) to determine the sequence
of speech units used for the synthesis. Objective and subjective
evaluations supports evidence that the use of speech alterna-
tives significantly improves speech synthesis over conventional
speech synthesis systems.
Index Terms : speech synthesis, speech prosody, speech alter-
natives.

1. Introduction
A speaker has a variety of alternatives that may be likely

used to pronounce a sentence. These alternatives depend on
the speaking style, specific strategies of the speaker, pragmatic
constraints, and eventually arbitrary choice of the speaker. This
variability can be observed either in terms of symbolic (proso-
dic prominence, prosodic break) or acoustic (prosodic contour)
speech characteristics. Current speech synthesis systems [1, 2]
do not exploit this variety during statistical modelling or syn-
thesis. During the training, the symbolic and acoustic speech
characteristics are usually estimated with a single normal dis-
tribution which is assumed to correspond with a single strategy
of the speaker. During the synthesis, the sequence of symbo-
lic and acoustic speech characteristics are entirely determined
by the sequence of linguistic characteristics associated with the
sentence - the most-likely sequence.
In real-world speech synthesis applications (e.g., announce-
ment, story-telling, or interactive speech systems), expressive
speech is required. However, current speech synthesis systems
are often perceived as poorly natural due to the presence of
speech artefacts and the absence of variety in the synthesized
speech. The use of speech alternatives in speech synthesis may
significantly improve both the variety and the quality of the syn-
thesized speech. Firstly, alternatives can be used to provide a
variety of speech candidates that may be exploited to vary the
speech synthesized for a given sentence. Secondly, alternatives

†. The present study has been conducted during the stay of authors
in the sound analysis and synthesis department at IRCAM.

can also be advantageously used as a relaxed-constraint for the
determination of the sequence of speech units to improve the
quality of the synthesized speech. For instance, the use of a
symbolic alternative (e.g., insertion/deletion of a pause) may
conduct to a significantly improved sequence of speech units.

SPEAKER

HEY PATRICK! 
HEY PA-

TRICK!
HEY ##

PA- 

TRICK!

FIGURE 1 – Illustration of alternatives in speech prosody.

This paper addresses the use of speech alternatives to im-
prove the quality and the variety of speech synthesis. The
proposed speech synthesis system (IRCAMTTS) is based on
unit-selection, and uses various context-dependent parametric
models to represent the symbolic/acoustic characteristics
of speech prosody (GMMs/HMMs). During the synthesis,
symbolic and acoustic alternatives are exploited using a
GENERALIZED VITERBI ALGORITHM (GVA) ([3]). First,
a GVA is used to determine a set of symbolic candidates -
corresponding to the K most-likely sequences of symbolic
characteristics, in order to enrich the further selection of speech
units. For each symbolic candidate, a GVA is then used to
determine the optimal sequence of speech units under the joint
constraint of segmental and speech prosody characteristics.
Finally, the optimal sequence of speech units is determined so
as to maximize the cumulated symbolic/acoustic likelihood.

The speech synthesis system used for the study is presented in
section 2. The use of speech alternatives during the synthesis,
and the GENERALIZED VITERBI ALGORITHM are introduced
in section 3. The proposed method is compared to various confi-
gurations of the speech synthesis system (modelling of speech
prosody, use of speech alternatives), and validated with objec-
tive and subjective evaluations in section 4.

2. Speech Synthesis System
Unit selection speech synthesis is based on the optimal se-

lection of a sequence of speech units that corresponds to the



sequence of linguistics characteristics derived from the text to
synthesize. The optimal sequence of speech units is generally
determined so as to minimize an objective function usually de-
fined in terms of concatenation and target acoustic costs. Ad-
ditional linguistic information (e.g., prosodic events -TOBI la-
bels) can also be derived from the text to enrich the linguistic
description used for unit selection.

Idealistically, the optimal sequence of speech units u can
be determined by jointly maximizing the symbolic/acoustic li-
kelihood of the sequence of speech units u = [u1, . . . , uN ]
conditionally to the sequence of linguistic characteristics c =
[c1, . . . , cN ] :

u = argmax
u

p(O(u)|c) (1)

where : O(u) = [Osymb.(u), Oacou.(u)] denotes the symbo-
lic and acoustic characteristics associated with the sequence of
speech units u.

A sub-optimal solution to this equation is usually obtained
by factorizing the symbolic/acoustic characteristics :

usymb. = argmax
usymb.

p(Osymb.(usymb.)|c) (2)

uacou. = argmax
u

p(Oacou.(uacou.)|c,usymb.) (3)

In other words, the symbolic sequence of speech units (e.g.,
prosodic events) is first determined, and then used for the selec-
tion of acoustic speech units.

This conventional approach presents two main inconsisten-
cies :

1. symbolic and acoustic modelling are processed separately
during training and synthesis, which remain sub-optimal
and may degrade the quality of the speech synthesized.

2. a single sequence of speech characteristics is determined
for unit selection, while the use of symbolic/acoustic al-
ternatives may improve the quality and the variety of the
speech synthesized.

The optimal solution would consists of a joint symbo-
lic/acoustic unit selection system combined with the integration
of speech alternatives. For clarity, the present study will
focus only on the use of symbolic/acoustic alternatives in
unit selection speech synthesis. In the present study, symbolic
alternatives are used to determine a set of symbolic candidates
usymb. so as to enrich the further selection of speech units (eq.
(2)). For each symbolic candidate, the sequence of acoustic
speech units uacou. is determined based on a relaxed-constraint
search using acoustic alternatives (eq. (3)). Finally, the optimal
sequence of speech units u is determined so as to maximize the
cumulated symbolic/acoustic likelihood.

The use of symbolic/acoustic alternatives requires adequate
statistical models that explicitly describe alternatives, and a dy-
namic selection algorithm that can manage these alternatives
during speech synthesis. Symbolic and acoustic models used for
this study are briefly introduced in section 2.1 and 2.2. Then, the
dynamic selection algorithm used for unit selection is described
in section 3.

2.1. Symbolic Modelling

The symbolic modelling of prosodic events is a statistical
model in which linguistic and metric constraints are combi-
ned - based on HMMs [4] and explicit modelling of the me-
tric constraint (length of a prosodic unit) (cf. [5] for a detailed

description). Additionally, information fusion is used for the
optimal combination of linguistic and metric constraints. The
prosodic events used cover accent and boundaries, associated
with intermediate prosodic phrase and prosodic phrase. Proso-
dic phrases refer to speech segments that end with a prosodic
prominence followed by a long pause ; intermediate prosodic
phrases refer to syntactic chunks that end with a prosodic pro-
minence.

2.2. Acoustic Modelling

In order to capture the natural speech prosody of a spea-
ker, the acoustic and prosodic models are based on context-
dependent GMMs (cf. [6] for a detailed description). Three dif-
ferent observation units (phone, syllable and phrase) are consi-
dered, and separate GMMs are trained for each of these units.
The model associated with the phone unit is merely a reformu-
lation of the target and concatenation costs traditionally used in
unit-selection speech synthesis [2]. The other models are used
to represent the local variation of prosodic contours (F0 and
durations) over the syllables and the major prosodic phrases,
respectively. The use of GMMs allows to capture prosodic al-
ternatives associated with each of the considered units.

3. Exploiting Alternatives

3.2. Syllable level 

Assuming that the observations over a given syllable depend 
on the two preceding syllables ! "#! , the equation (4) can 
be reduced to, 

$ "
$

! ! ## ! ! #% ! #& ! ##
"#$%

"#$ "#$ "#$ "#$"#$ & "#$ & "#$ &
&

' ( ) ' ( ) ( ) ( ) (7) 

where the sequence of units ! #"#$ &)  corresponds to the syllable 
of index i and the dependency on the context " is omitted for 
clarity. In the following we refer to "#$* as the conditional 
observation over the syllable, i.e. 

$ "! # ! #% ! #& ! #"#$ "#$ "#$ "#$"#$ & "#$ & "#$ &* & ( ) ( ) ( )  (8) 

The observation features "#$* consist of: 
 {delta and delta-delta syllable duration}  
 {delta and delta-delta log ! #

'
"#$$+ } 

where the delta and delta-delta are estimated with respect to 
the preceding syllables and log ! #

'
"#$$+ is the average of log '+  

over the vocalic part of syllable.  
 We do not incorporate the absolute duration and absolute 
log ! #

'
"#$$+ in the syllable model since these features will be part 

of the phrase model. Consequently, the syllable level describes 
mainly the local prosodic prominence. The conditional 
probability in equation (7) is represented by a gaussian model 

! &! % # #( "#$"#$ "#
"
"$ "
#$' * " * with mean vector "#$

" and 
covariance matrix ."#$

"  

3.3. Phrase level 

We assume temporal independency between phrases, i.e.  

 
$

! ! #% # ! ! #% #
,-.%

,-. ,-. ,-. &
&

' ( ) " ' ( ) "  (9) 

One motivation behind this choice is to limit the long-term 
dependencies between units in equation (2) and consequently 
in the search for the optimal unit sequence. Nevertheless, it  
seems also a reasonable assumption since the dynamic features 
used at the syllable level can bring to a certain extent some 
phrase-level information (e.g. '+ resetting between phrases). 
In our current implementation, the feature vector ,-.( consists 
of: 
 {3 DCT coefficients of log ! #

'
"#$$+ } 

 {3 DCT coefficients of syllable duration} 
A similar parameterization has already been proposed in [10]. 
It represents only the smooth variations of the prosodic curves, 
which is adequate in our framework since the local 
prominences are represented at the syllable level.  
 The observation probability is represented by a gaussian 
model ! &! % # #( ,-.

,-. ,-
,
". "
-.' ( " ( with mean vector

,-.
" and covariance matrix .,-.

"  

3.4. Learning of the models 

In order to handle unseen context, the context-dependent 
parameters of the model densities are estimated by decision-
tree clustering. In the current stage of our implementation, we 
assume that all the model densities have diagonal covariance 
matrices. With this simplification, we can use a variance 
criterion for the decision-tree growing and the learning of the 
contextual models can be split in two separate steps. In the 
first step, the feature vectors for each level are mean and 

variance normalized and the Euclidian distances between each 
pair of vectors are calculated over the training set. Theses pair-
wise distances are then used as an impurity measure for the 
decision-tree growing in a similar fashion as in [9]. In a 
second step, the gaussian models are estimated within each 
cluster (i.e. either a leaf or a node of the tree) by calculating 
the mean and the variance of the feature vectors in that cluster.  
 After the learning process, the statistical model for each 
level consists in a tree of context-dependent gaussian models. 
At synthesis time, given an input specification ," the gaussian 
models that best match the local context at each instant1

4. Generalized Viterbi Search 

 i are 
searched through each tree. These ‘predicted’ models are 
finally combined according to equation (2) in the dynamic 
search for the optimal unit sequence that we present in the 
following section. 

In a traditional unit selection synthesizer, a subset of % units 
) */) is preselected for each symbolic input ./" A Viterbi 
algorithm is then used to find the optimal path within a trellis 
whose states at time k are the candidate units .) */)  
 Now, if we consider a minimization criterion deriving 
from equation (2) with only the phrase level for simplicity: 

  
$

! # +,- ! ! #% #
,-.%

,-. ,-. &
&

! ) ' ( ) "  (10) 

Using a Viterbi algorithm to minimize (10) supposes building 
a trellis of ! #, &% states at each phrase of index i with 

card ! #! # ! #,-. &, & )  which is impractical. This complexity 
comes from the fact that all the transitions between successive 
states are considered. However, within all the states at a given 
time only a few of them will belong to a probable path and it 
seems reasonable to omit the others. The generalized Viterbi 
algorithm (GVA) is one such modification of the Viterbi 
algorithm: at each time k, the % states are stored into 0 lists 
and the best 1 candidate paths are selected from each list. An 
illustration of this approach is given in Figure 1 with the 
settings  and .& " /0% 0 1  It shows that the GVA can 
retain survivor paths that would otherwise be merged by the 
classical Viterbi algorithm. In this way, the long-term 
dependencies between units can be considered without 
increasing the dimensionality of the search space. 

Figure 1: Principle of the GVA. The boxes represent 
the lists of states among which the best S paths are 
selected. Some survivor paths can share the same 
previous states whereas some states may have no 
survivors. 

                                                                    
 
1 The index i is relative to the level (phone, syllable or phrase). 

!"#$ "

!"#$ %

!"#$ &

!

!"#$ "

!"#$ %

!"#$ &

' !()*+, -.
/#"#+

k-2 k-1 k

!"#$%"!

FIGURE 2 – Illustration of the GENERALIZED VITERBI
SEARCH. The boxes represent the list of states among which the
best S path are selected. Some survivor path (alternative candi-
dates) can share the same previous states whereas some unlikely
states may be pruned in order to limit the overall complexity of
the search.

In a conventional synthesizer, the search for the optimal se-
quence of speech units (eq. (1)) is decomposed in two separate
optimisation problems (eq. (2) and (3)). These two equations
are generally solved using the Viterbi algorithm. This algorithm
defines a trellis whose states at each time t are the N candidate
units. At each time t, the Viterbi algorithm considers N lists
of competing paths, each list being associated to one of the N
states. Then, for each list, only one survivor path is selected for
further extension. Therefore the Viterbi algorithm can be descri-
bed as a N-list 1-survivor (N,1) algorithm. The GENERALIZED
VITERBI ALGORITHM [3] consists in a twofold relaxation of
the path selection.

◦ First, more than one survivor path can be retained for each
list.

◦ Second, a list of competing paths can encompass more than
one state.

An illustration of this approach is given in figure 2, which



shows that the GVA can retain survivor paths that would other-
wise be merged by the classical Viterbi algorithm. Thus, the
GVA can keep track of several symbolic/prosodic alternatives
until the final decision is made.

In this study, the GVA is first used to determine a set of
symbolic candidates - corresponding to the K most-likely se-
quences of symbolic characteristics, in order to enrich the fur-
ther selection of speech units. For each symbolic candidate, a
GVA is then used to determine the optimal sequence of speech
units under the joint constraint of segmental characteristics
(phone model) and prosody (syllable and phrase models). Fi-
nally, the optimal sequence of speech units is determined so as
to maximize the cumulated symbolic/acoustic likelihood.

4. Evaluation
Objective and subjective evaluations were conducted to ad-

dress the use of speech alternatives in speech synthesis, with
comparison to a BASELINE (no explicit modelling of speech
prosody, no use of speech alternatives) and a CONVENTIONAL
(explicit modelling of speech prosody, no use of speech alterna-
tives) speech synthesis systems (table 1).

symbolic acoustic

alternatives prosody alternatives

BASELINE (X) - -

CONVENTIONAL (X) syllable/phrase -
PROPOSED (X) syllable/phrase X

TABLE 1 – Description of TTS systems used for the evaluation.

Additionally, symbolic alternatives have been optionally
used for each compared method to assess the relevancy of sym-
bolic and acoustic alternatives separately.

4.1. Speech Material

The speech material used for the evaluation is a 5 hours
French story-telling database interpreted by a professional ac-
tor, that was designed for expressive speech synthesis. The
speech database comes with the following linguistic proces-
sing : orthographical transcription ; surface syntactic parsing
(POS and word class) ; manual speech segmentation into pho-
nemes and syllables, and automatic labelling/segmentation of
prosodic events/units (cf. [4] for more details).

4.2. Objective evaluation

An objective evaluation has been conducted to assess the re-
lative contribution of speech prosody and symbolic/acoustic al-
ternatives to the overall quality of the TTS system. In particular,
a specific focus will be made on the use of symbolic/acoustic al-
ternatives.

4.2.1. Procedure

The objective evaluation has been conducted with the 173
sentences of the fairy tale “Le Petit Poucet” (“Tom Thumb”).

For this purpose, a cumulated log-likelihood has been defined as
a weighted integration of the partial log-likelihoods (symbolic,
acoustic). First, each partial log-likelihood have been averaged

over the utterance to be synthesized so as to normalize the va-
riable number of observations used for the computation (e.g.,
phonemes, syllable, prosodic phrase). Then, log-likehoods have
been normalized to ensure comparable contribution of each par-
tial log-likelihood during the speech synthesis. Finally, the cu-
mulated log-likelihood of a synthesized speech utterance has
been defined as follows :

LL = wsymbolicLLsymbolic + wacousticLLacoustic (4)

where LLsymbolic and LLacoustic denote the partial log-
likelihood associated with the sequence of symbolic and
acoustic characteristics ; and wsymbolic, wacoustic correspon-
ding weights.

Finally, the optimal sequence of speech units is determined so
as to maximize the cumulated log-likelihood of the symbo-
lic/acoustic characteristics. In this study, 10 alternatives have
been considered for the symbolic characteristics, and 50 alter-
natives for the selection of speech units, and weights have been
heuristically chosen as wsymb = 1, wphone = 1, wsyllab = 5,
and wphrase = 1.

4.2.2. Discussion

Cumulated likelihood obtained for the compared methods
is presented in figure 3, without and with the use of symbo-
lic alternatives. The PROPOSED method (modelling of prosody,
use of acoustic alternatives) moderately but significantly out-
performs the CONVENTIONAL method (modelling of prosody,
no use of acoustic alternatives) ; and dramatically outperforms
the BASELINE method. Additionally, the use of symbolic alter-
natives conducts to a significant improvement regardless to the
method considered. Finally, the optimal synthesis is obtained
for the combination of symbolic/acoustic alternatives with the
modelling of speech prosody.
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FIGURE 3 – Cumulated likelihood (mean and 95% confidence
interval) obtained for the compared TTS, without (left) and with
(right) use of symbolic alternatives.

For further investigation, partial likelihoods obtained for the
compared methods are presented in figure 4, without and with
the use of symbolic alternatives. Not surprisingly, the modelling
of speech prosody (syllable/phrase) successfully constraints the
selection of speech units with adequate prosody, while this
improvement comes with a slight degradation of the segmen-
tal characteristics (phone). The use of acoustic alternatives
conducts to an improved speech prosody (significant over the
syllable, not significant over the phrase) that comes with a slight



degradation of the segmental characteristics (non significant).
This suggests that the phrase modelling (as described in [6])
has partially failed to capture relevant variations, and that this
model remains to be improved. Finally, symbolic alternatives
are advantageously used to improve the prosody of the selec-
ted speech units, without a significant change in the segmental
characteristics.
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FIGURE 4 – Partial log-likelihoods (mean and 95% confidence
intervals) for the compared methods, without and with use of
symbolic alternatives.

4.3. Subjective evaluation

A subjective evaluation has been conducted to compare
the quality of the BASELINE, CONVENTIONAL, and PROPOSED
speech synthesis systems.

4.3.1. Procedure

For this purpose, 11 sentences have been randomly selec-
ted from the fairy-tale, and used to synthesize speech utterances
with respect to the considered systems. 15 native French spea-
kers have participated in the evaluation. The evaluation has been
conducted according to a crowd-sourcing technique using social
networks. Pairs of synthesized speech utterances were randomly
presented to the participants who have been asked to attribute a
preference score according to the naturalness of the speech ut-
terances on the comparison mean opinion score (CMOS) scale.
Participants have been encouraged to use headphones.

4.3.2. Discussion

Figure 5 presents the CMOS obtained for the compa-
red methods. The PROPOSED method is substantially prefer-
red to the other methods, which indicates that the use of sym-

bolic/acoustic alternatives conducts to a qualitative improve-
ment of the speech synthesized over all other systems. Then,
CONVENTIONAL method is fairly preferred to the BASELINE
method, which confirms that the integration of speech prosody
also improves the quality of speech synthesis over the BASE-
LINE system (cf. observation partially reported in [6]).

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

BASE.

CONV.

PROP.

CMOS

FIGURE 5 – CMOS (mean and 95% confidence interval) obtai-
ned for the compared methods.

5. Conclusion
In this paper, the use of speech alternatives in unit-selection

speech synthesis have been introduced. Speech alternatives may
be advantageously used either to improve the quality and the va-
riety of the speech synthesis. Objective and subjective evalua-
tions supports evidence that the use of speech alternatives qua-
litatively improves speech synthesis over conventional speech
synthesis systems. In further studies, the use of speech alter-
natives will be integrated into a joint modelling of symbo-
lic/acoustic characteristics so as to improve the consistency of
the selected sequence of speech units.
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