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Ape parasite origins of human malaria virulence
genes
Daniel B. Larremore1,2, Sesh A. Sundararaman3,4, Weimin Liu3, William R. Proto5, Aaron Clauset6,7,8,

Dorothy E. Loy3,4, Sheri Speede9, Lindsey J. Plenderleith10, Paul M. Sharp10, Beatrice H. Hahn3,4,

Julian C. Rayner5,* & Caroline O. Buckee1,2,*

Antigens encoded by the var gene family are major virulence factors of the human malaria

parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we

use network analysis to show that var architecture and mosaicism are conserved at multiple

levels across the Laverania subgenus, based on var-like sequences from eight single-species

and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using

select whole-genome amplification, we also find evidence of multi-domain var structure and

synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to

P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that

the modular genetic architecture and sequence diversity underlying var-mediated host-

parasite interactions evolved before the radiation of the Laverania subgenus, long before the

emergence of P. falciparum.
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W
ild-living apes in Africa are naturally infected by at
least six Plasmodium species that form a separate
subgenus, termed Laverania1–10. Three of these

species, P. reichenowi, P. gaboni and P. billcollinsi, have been
found only in chimpanzees, while the other three, P. adleri,
P. blacklocki and P. praefalciparum, have been found only in
gorillas (Fig. 1a). Zoonotic transfer has occurred at least once,
when a gorilla parasite (P. praefalciparum) gave rise to human
P. falciparum, which causes the vast majority of malaria-
associated morbidity and mortality in humans1,10.

A key component of P. falciparum virulence is the parasite’s
ability to cause infected erythrocytes to adhere to the vascular
endothelium. This allows the parasite to escape elimination
in the spleen but can also lead to vascular obstruction and
inflammation, key components of severe pathological complica-
tions such as cerebral malaria11,12. Cytoadherence is mediated by
members of the P. falciparum erythrocyte membrane protein 1
(PfEMP1) family, which contain between three and eight different

Duffy-binding-like (DBLa-z) and cysteine-rich interdomain
region (CIDRa-d) domains and are expressed on the surface of
infected erythrocytes, where they bind to endothelial receptors.
Each P. falciparum genome encodes B60 different PfEMP1
proteins, which are expressed from var genes, one at a time, by
means of epigenetic regulation13,14. Given their central role in
P. falciparum pathogenesis, but absence from all other human
Plasmodium species, the origins of var genes are of particular
interest.

Three factors have limited our ability to investigate the
evolutionary history of var genes. First, obtaining blood samples
from Laverania-infected wild-living apes is not ethical. As a
result, all ape-derived var sequences analysed to date come from a
single P. reichenowi parasite, called PrCDC, from a wild-born
chimpanzee, who was found to be Plasmodium infected in
captivity15. Second, P. falciparum var genes are highly diverse
(Fig. 1b). Not only is there rapid recombination between genes
within and across chromosomes, which shuffles gene content
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Figure 1 | Characterization of Laverania var gene sequences. (a) Phylogeny of Plasmodium species. The tree was constructed from mitochondrial

sequences (2.4-kb spanning cox1 and cytB). The scale bar indicates 0.01 substitutions per site. Colours indicate species infecting humans (red),

chimpanzees (purple) and gorillas (aqua). Asterisks indicate successful PCR amplification of var sequences; a cross indicates identification of var-like genes

in near-full-length P. gaboni genomes. (b) Three-level schematic of modular var diversity, structure and architecture. Coloured ovals represent classes of

DBL or CIDR domains. White boxes represent the N-terminal segment (NTS), transmembrane (TM) and acidic terminal segment (ATS) domains; a wedge

between TM and ATS domains indicates the intron that separates the two var exons. Alternating conserved variable architecture is illustrated using

blocksharing (see the Methods section) between one representative DBLa domain (DD2var11) and other DBLa domains published by Rask et al19. A black

bar indicates the location of the PCR amplified DBLa tag region, which spans three conserved homology blocks (HB3, HB5 and HB2)19, 72–147 amino acids

in length.
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within genome repertoires during infection16,17, but sexual
reproduction in the mosquito vector also generates diversity via
reassortment of chromosomes and conversion events18. Thus,
conventional phylogenetic approaches fail to resolve evolutionary
relationships between var genes, requiring new and
recombination-tolerant analysis techniques19–24. Finally, the
mosaicism and diversity generated by rapid recombination16,17,
combined with the fact that most var genes are subtelomeric,
render the assembly of full-length var genes from shotgun
sequenced parasite genomes extremely difficult25,26.

Here we overcome these impediments by generating 369 new
var sequence fragments from five ape Laverania species, derived
by PCR amplification from faecal and blood samples of naturally
infected wild-living and sanctuary apes, respectively. We use
network approaches and other recombination-tolerant methods
to analyse these new sequences, together with 353 previously
reported var gene sequences from one P. reichenowi and seven
P. falciparum isolates15,19. In addition, we identify and analyse
partially assembled var-like sequences from otherwise near-full-
length genomes of two P. gaboni parasites (SYpte37 and SYptt75),
one of the Laverania species most distantly related to
P. falciparum27,28. Analysis of these sequences reveals that
several PfEMP1 domains, as well as the genetic structure and
multi-domain architecture that are characteristic of P. falciparum
var genes, are present across the Laverania subgenus. Thus, many
var multi-gene family features predate the most recent common
ancestor of extant Laverania species.

Results
Laverania species identification and sequence generation. To
study var gene architecture in ape Laverania species, we first
determined the Plasmodium species composition of 11 blood
and faecal samples from sanctuary and wild-living apes using a
limiting dilution PCR approach called single-genome sequencing
(SGS)29. To ensure amplification of single-parasite templates,
blood and faecal DNA was diluted such that o30% of all
PCR reactions yielded an amplification product. Amplicons
were sequenced directly without cloning into a plasmid vector
and sequences containing ambiguous bases indicative of template
mixtures were discarded. This approach eliminates Taq

polymerase-induced recombination (template switching) and
nucleotide misincorporations in finished sequences, and also
ensures a proportional representation of plasmodial variants as
they exist in vivo (see the Methods section for a more detailed
description of SGS). Targeting eight different mitochondrial,
apicoplast and nuclear loci and sequencing up to 174 different
SGS amplicons per sample (Supplementary Table 1), we identified
eight samples with single-species infections of P. reichenowi (C1),
P. gaboni (C2), P. billcollinsi (C3) or P. praefalciparum (G1). Three
additional faecal samples represented mixed-species infections of
several gorilla or chimpanzee parasites, including one of unknown,
non-Laverania species origin (Supplementary Table 1).

Given their enormous diversity, var homologs were amplified
targeting a conserved region of the DBLa domain, termed the
var gene ‘tag’, using conventional PCR and previously reported
primers30,31 (see the Methods section and Supplementary
Table 2). Amplicons were cloned, and multiple clones per
sample were sequenced and grouped into unique haplotypes by
phylogenetic analysis. The var gene tag is commonly analysed
because it is sufficiently conserved in two locations to allow
reliable amplification, and is located within the DBLa domain,
which, unlike other DBL domains, is present in almost all var
genes20–22,30–32. The DBLa tag consists of three conserved
homology blocks19 (HBs) interspersed with highly variable
regions (HVRs) of diverse length and sequence content
(Fig. 1b), an architecture that facilitates mosaicism21. Standard
sequence analysis techniques cannot adequately analyse these
mosaic sequences19–24 and we therefore used a network analysis
method to characterize the evolutionary relationships between
Laverania var fragments. Figure 2 illustrates this type of analysis,
where each node represents a var DBL sequence tag and a link
between two nodes represents a shared identical sequence mosaic
element. Due to frequent recombination and the possibility that
immune selection differs between adjacent HVRs, networks were
constructed independently for each of the two HVRs, which in P.
falciparum were shown to exhibit different community
structures21. For each sample, only unique var tag haplotypes
were included into the analysis (see the Methods section for a
detailed description of network construction and statistical
community detection).

P. reichenowi DBLα (PrCDC)
P. falciparum DBLα

P. reichenowi DBLα (SYptt15)

Figure 2 | Networks of DBLa sequences from P. reichenowi and P. falciparum. Each node represents a DBLa HVR sequence and each link represents a

shared amino-acid substring of significant length21. Laverania species and strain origin is indicated by node colour and shape. Left and right networks

correspond to left and right HVRs, respectively. P. falciparum and P. reichenowi sequences do not cluster by species or sample in either HVR. Link lengths and

node placements are determined by a force-directed layout to better reveal structure, if it exists (see the Methods section). Additional analyses of these

networks are shown in Supplementary Fig. 1.
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Shared var mosaic structure in P. reichenowi and P. falciparum.
We first examined the 37 new DBLa tags from a P. reichenowi
monoinfection detected by routine blood analysis in an asymp-
tomatic sanctuary chimpanzee (SYptt15), who was housed in close
proximity to the habitat of wild apes. It is well established that
human P. falciparum and chimpanzee P. reichenowi are closely
related sister taxa15, and previous analyses of PrCDC var gene
sequences indicated sequence homology with field and lab strains
of P. falciparum15,20,22,23,33. While early studies investigated
shared polymorphisms in preliminary assemblies of a small
subset of these genes20, more recent studies analysed the complete
set of PrCDC DBLa domains, finding conserved gene regions
between PrCDC and P. falciparum isolates 3D7 and HB3 (ref. 23),
as well as the presence of P. falciparum HBs in PrCDC DBLa
sequences33. In contrast, we focused specifically on the most
polymorphic HVR regions of P. falciparum and P. reichenowi
DBLa homologs. Using a network community detection
algorithm, a Bayesian k-mer analysis and a pairwise distance
approach, we found that var mosaics within the P. falciparum–
P. reichenowi network do not cluster by parasite species (Fig. 2;
Supplementary Fig. 1a,b), and that var genes from both species
exhibit the same modular HVR architecture, that is, a pattern of
alternating regions of conservation and variability (Supplementary
Fig. 1c). We have previously hypothesized that this genetic
structure may allow for neighbouring HVRs to respond
independently to different selection pressures21. Thus, our
results confirm and extend previous findings that DBLa
organization and capacity for diversification in response to
immune selection were already present in the most recent
common ancestor of P. falciparum and P. reichenowi.

var DBLa tag structures predate the Laverania radiation.
Having analysed var tags from P. falciparum and P. reichenowi,

we next examined parasite sequences from across the ape
Laverania subgenus. Numerous identical mosaic elements in
otherwise divergent sequences and a shared overall HVR archi-
tecture extended to the most divergent species (Fig. 3;
Supplementary Fig. 2). We were able to reconstruct highly con-
nected networks for each HVR, indicating the presence of shared
mosaic elements among the vast majority of tags from single-
species parasite infections. Every Laverania var tag contained
three conserved sequence motifs separating two HVRs: in 86% of
sequences, the three conserved motifs corresponded to three of
the five most common P. falciparum var motifs (in the order:
HB3, HB5 and HB2)19, while in the remaining 14%, HB5 was
intact in the middle of the tag and more divergent forms of HB3
and HB2 were encoded by the 50 and 30 end of the tag,
respectively (Supplementary Fig. 3).

We confirmed that these tags were not derived from non-var
DBL-containing genes by including tags from P. falciparum
erythrocyte-binding antigen (eba) genes, P. falciparum and
P. reichenowi DBL merozoite surface protein 1 (msp3.4) and
DBLMSP2 (msp3.8), and P. vivax Duffy-binding proteins in our
analysis (Supplementary Table 3). We also included P. falciparum
DBLe tags to compare tags with var-derived, yet non-DBLa,
sequences. As shown in Fig. 3, tags from single-species ape
Laverania infections remained separated from both the non-var
DBL tags and the P. falciparum DBLe tags, with a majority
connected to one or both of the large connected components
formed by the P. falciparum and known P. reichenowi tags. This
majority included every new P. reichenowi and P. praefalciparum
tag, and all but one P. billcollinsi tag. On the other hand, only 10 P.
gaboni tags were connected to one or both large components, with
the other 26 connected only to other P. gaboni tags in separate,
small components. These smaller P. gaboni components did not
share mosaic elements with DBLe or non-var DBL sequences,
suggesting that they represented divergent, yet var-like, domains.

P. falciparum DBLα 

P. falciparum DBLε 
P. gaboni,    P. billcollinsi,     P. praefalciparum
P. reichenowi

Non-var DBL

D

D
C

A

C

B A
B

Figure 3 | Networks of DBL sequences from Laverania single-species infections in the context of known DBLa and non-DBLa sequences. Each node

represents a DBL HVR sequence from a single-species infection and each link represents a shared amino-acid substring of significant length. Note that for

each sample, only unique var DBL haplotypes were included in the network analysis. Nodes with zero links indicate sequences that share no significant

amino-acid substrings with other sequences. Networks were built separately for each HVR, where mosaic diversity is highest (see the Methods section).

Colours correspond to Laverania species as indicated; annotated yellow nodes correspond to (A) dblsmsp1 and (B) dblmsp2 from Pf3D7, PfIT and PrCDC;

(C) both DBL domains from ebl1, eba140, eba165, eba175 and eba181 of Pf3D7 and PfIT; (D) P. vivax Duffy-binding proteins; see Supplementary Table 3 for a

comprehensive list of non-DBLa sequences.
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Laverania parasites contain ape-specific var-like DBL domains.
We next investigated the relationships between sequences from
all ape Laverania samples by conducting a network analysis that
excluded P. falciparum, but included sequences from both mixed-
species and single-species infections (Fig. 4). Sequences from
P. billcollinsi and P. praefalciparum remained integrated within
the large connected component that also included P. reichenowi,
indicating conservation of mosaic elements within HVRs across
these species. This finding is consistent with mitochondrial DNA
(Fig. 1a), apicoplast and nuclear phylogenies1,34, which place
P. billcollinsi and P. praefalciparum closer to P. reichenowi. In
contrast, sequences from four single-species infections of
P. gaboni, which represent a much more distant Laverania
species, exhibited much less shared sequence content in HVR
networks. However, P. gaboni sequences appeared to fall into two
subgroups based on tag length: (i) longer P. gaboni sequences
(94-135 amino acids), which share mosaic elements with
P. reichenowi and P. billcollinsi in 8 of 15 sequences in the left
HVR and 2 of 15 sequences in the right HVR, and which we
therefore term DBLa-like (red, unboxed in Fig. 4); and (ii) shorter
P. gaboni sequences (72-85 amino acids), which remain
disconnected from the P. reichenowi–P. billcollinsi component
in 21 of 21 cases and which we therefore termed DBLx-like
(red, boxed in Fig. 4). Thus, within the HVRs, longer P. gaboni
DBLa-like sequences are partially overlapping with P. reichenowi
and P. billcollinsi, while the shorter sequences appear to be
distinct.

Although the DBLx tags fell outside the large connected
component of the P. reichenowi-P. billcollinsi network
(Fig. 4, boxes), they were all amplified using standard
P. falciparum DBLa primers, and they all exhibited the classical

DBL architecture with fully intact HB5 motifs in the tag centre.
However, they were unrelated to other known DBL domain
classes (Supplementary Fig. 4). All four single-species P. gaboni
samples, as well as one P. gaboni-containing mixed-species
sample, contained DBLx sequences. On the basis of polymorph-
isms in the HB3-like region, DBLx sequences formed two
subgroups, which we refer to as DBLx1 and DBLx2
(Supplementary Fig. 3; see the Methods section). DBLx sequences
were not limited to chimpanzee parasites, as the mixed-species
infection gorilla sample GTggg118, which contained both
P. praefalciparum and P. adleri, also featured DBLx2 tags. The
GTggg118 DBLx2 tags shared mosaic elements with both DBLx1
and DBLx2 tags from P. gaboni, while the GTggg118 DBLa-like
tags were well-connected to the P. billcollinsi-P. reichenowi
component (Fig. 4). We thus hypothesize that the GTggg118
DBLx2 tags derive from P. adleri, a closely related sister taxon to
P. gaboni (Fig. 1a), while the DBLa-like tags may be derived from
either P. adleri or P. praefalciparum. Thus, it is likely that DBLx
sequences represent new var-like DBL subdomains that are
restricted to the C2/G2 branch of the Laverania subgenus
(Fig. 1a).

var multi-domain structures predate the Laverania radiation.
To confirm the presence of var-like genes in P. gaboni, we
also examined near-full-length parasite genomes and unplaced
contigs, which were derived by select whole-genome
amplification27,28 from two chimpanzee blood samples (SYpte37
and SYptt75). Three lines of evidence indicated that var-like
genes, consisting of multiple DBL domains, were indeed present
in this parasite species. First, we identified 55 var-like DBL
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Figure 4 | Networks of DBL sequences from single- and multi-species Laverania infections. Each node represents a DBL HVR sequence and each link

represents a shared amino-acid substring of significant length. Note that for each sample only unique var DBL haplotypes were included in the network

analysis. Nodes with zero links indicate sequences that share no significant amino-acid substrings with other sequences. Networks were built separately for

each HVR, where mosaic diversity is highest (see the Methods section). Circular nodes represent chimpanzee parasites and square nodes represent gorilla

parasites. Node colour corresponds to species and node size corresponds to tag length as indicated. DBLx sequences are enclosed in boxes. Annotations

call attention to (A) P. praefalciparum single-species infection sequence; (B) DBLx sequences from gorilla samples, hypothesized to be P. adleri, that share

mosaic elements with DBLx chimpanzee parasites.
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domains in 40 different contigs, 14 and 2 of which were further
classified using the VarDom server19 as being related to
P. falciparum DBLe and DBLz domains, respectively (Table 1;
Methods). None of the remaining DBL domains could be
similarly subclassified, but four contigs featured exact
nucleotide matches for DBLa-like tag sequences, providing a
cross-validation between methods. Three contigs featured three,
four, and five adjacent and non-identical DBL domains, a
configuration unique to vars. An additional six contigs featured
two adjacent DBL domains, but in these cases an eba gene origin
could not formally be excluded35.

The finding of only nine contigs with var-like multi-DBL
configurations in our P. gaboni genomic data is likely related to
difficulties in assembling these sequences from short read data.
De novo assembly is hindered by identical and near-identical
motifs present in different DBL domains, which make an
accurate determination of the number and order of these
domains in a given var gene difficult36. In contrast, acidic
terminal segment (ATS) domains, which are also a unique feature
of var genes, lack these repeat structures, although they share
some sequence motifs due to frequent recombination37. We thus
reasoned that ATS regions would more likely assemble into full-
length or near-full-length domains and looked for these var
signatures in the P. gaboni genomic sequences. Indeed, ATS

domains were readily identified in 16 contigs derived from the P.
gaboni SYptt75 genome. In P. falciparum, the ATS domain
encodes the intracellular portion of the PfEMP1 protein, which is
expressed from a separate exon (Fig. 1b). ATS domains are
unique to var genes, except for a single-copy non-var gene with
an ‘ATS-like’ domain on chromosome 1 (PF3D7_0113800)19.
Using the VarDom server to characterize the P. gaboni ATS
domains, we identified seven of ten known major HBs
(Fig. 5). These were very similar to P. falciparum var ATS HBs,
but very different from the non-var ‘ATS-like’ domains of
PF3D7_0113800 and its P. reichenowi, and P. gaboni orthologs
(Fig. 5; Supplementary Fig. 5), thus providing compelling
evidence for the presence of bona fide var ATS domains in
P. gaboni.

Finally, three of the ATS-containing contigs exhibited a longer
two-exon var gene structure, with a DBL and transmembrane
domain in exon 1 and an ATS domain in exon 2. One of these
contigs contained an additional open-reading frame (ORF)
downstream of the var-like exon 2, which was 88% identical in
its nucleotide sequence to genes and intergenic flanking
sequences in P. falciparum (PF3D7_0323800) and P. reichenowi
(PRCDC_0323100) on the same chromosome, respectively (the
latter two shared 94% nucleotide sequence identity). Although the
function of these orthologs is unknown, they are single-copy

Table 1 | Var gene-like structures in P. gaboni whole-genome contigs.

Sample Total var-like
DBLs identified

Number of DBLs (number of contigs) DBL classification* var-like ATS

1-DBL 2-DBL 3-DBL 4-DBL 5-DBL DBLe DBLf unclassified

SYpte37 15 8 (8) 4 (2) 3 (1) — — 2 — 13 0
SYptt75 40 23 (23w) 8 (4) — 4 (1) 5 (1) 12 2 26 16z

ATS, acidic terminal segment
*DBLa–d domains according to the classification by Rask et al.19 were not identified. In addition, we found no evidence of DBLa-CIDR domain pairs.
wIncludes the three-exon single-DBL containing contig shown in Fig. 6.
zIncludes the three contigs with var-like DBL-TM^ATS multi-domain (two exons) structure
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Figure 5 | Conservation of var ATS domain homology block structure in P. gaboni. The homology block (HB) structure of var ATS domains identified in 16

contigs of a near complete P. gaboni genome (PgSY75) are shown in relation to representative P. falciparum and P. reichenowi var ATS domains (Pf3D7 and

PrCDC1, top) as well as a non-var ‘‘ATS-like’’ domain of the P. falciparum PF3D7_0113800 gene and its P. reichenowi and P. gaboni orthologues (bottom). HBs

(arrows) were predicted by VarDom 1.0 and annotated in an alignment of all 20 sequences. Colours correspond to VarDom reported E-values, representing

an estimate of the likelihood of observing such a match by random chance. Black lines indicate the relative length of each sequence.
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genes immediately adjacent to a var exon 2 pseudogene on
chromosome 3 of both P. falciparum and P. reichenowi (Fig. 6).
This synteny implies the existence of ancestral ORFs on
chromosome 3, including a var gene that retained both exons
in P. gaboni, but represents a single-exon pseudogene in
P. falciparum and P. reichenowi. Thus, the presence of a two-
exon var structure and synteny on chromosome 3 for three
Laverania species, which span the root of the subgenus
phylogeny, indicate that var genes evolved their extant two-exon
and multi-domain structure before the radiation of this subgenus.

Laverania var repertoire structure. It has previously been shown
that P. falciparum var genes can be divided on the basis of DBLa
domains into two main groups, classified by the number of
cysteine residues in the tag region30, which map to distinct
community structures in network analyses21. These two main
groups can be further subdivided into a total of six Cys/PoLV
(CP) groups based on the presence or absence of key amino acid
residues30,38. These cysteine-based classifications were found to
be associated with different upstream promoter regions and
clinical outcomes, and var repertoires in individual P. falciparum
parasites appear to be stably structured with respect to these
categories32. We observed the same cysteine-based organization,
both with respect to cysteine counts and CP groups, in DBLa tags
from P. billcollinsi, but not from P. gaboni, although in the latter
case we identified far fewer DBLa-like motifs (Supplementary
Fig. 6). Thus, cysteine-based organization of var gene repertoires
extends to P. billcollinsi, but may not extend to P. gaboni (and by
inference P adleri).

Discussion
Until recently, the only known close relative of P. falciparum was
P. reichenowi, a Laverania parasite infecting chimpanzees. Over
the past 5–6 years, five additional species within the Laverania
subgenus have been described, each infecting either chimpanzees
or gorillas. This Laverania species diversity provides an
unprecedented opportunity to study the origins of genomic
features that previously seemed unique to P. falciparum, such as
the var gene family encoding erythrocyte membrane proteins.
Here we show that various aspects of the multi-scale modularity
of these loci can be recognized in diverse Laverania species, with
the implication that a var or var-like gene family already existed
in their last common ancestor. First, at the var gene repertoire
level, we find genes with a characteristic two-exon structure,
encoding multiple adjacent domains potentially capable of
binding diverse endothelial markers. Like the constituent

domains of the P. falciparum-encoded PfEMP1 proteins, the
other Laverania DBL sequences can be subclassified into distinct
groups, which may reflect differences in endothelial binding or
other specificities. Second, at the domain architecture level,
alternating conserved and hypervariable regions enable combi-
natorial diversity while presumably maintaining protein structure
and binding functions. Finally, at the microscale level, some
protein motifs within hypervariable regions are shared among
even the most divergent Laverania species, despite the evidence of
high-frequency recombination within species. Thus, many key
elements of the var multi-gene family appear to have originated
many (perhaps tens of) millions of years ago.

In P. falciparum, the var-encoded PfEMP1 proteins play a key
role in pathogenesis by mediating the binding of infected red
blood cells to specific host receptors in a wide range of tissues.
Particular disease syndromes have been associated with individual
DBL domains, two of which were present in P. gaboni. The first,
DBLe, is found in the var2csa genes of P. falciparum19 and
P. reichenowi15, which exist as only one or two var variants per
genome and have been identified in every complete var repertoire
analysed to date. In P. falciparum, var2csa genes are responsible
for placental binding, and the DBLe domain has thus been
implicated in pregnancy-associated malaria39. Similarly, we
identified DBLz in P. gaboni. Although there currently are no
host receptors or disease syndromes that have been associated
with this individual domain in P. falciparum, triplet combinations
of DBLe and DBLz domains have been linked to IgM-positive
rosetting phenotypes40. The presence of recognizable DBLe and
DBLz domains in the most divergent Laverania species suggests
that DBL domain differentiation into subtypes represents an
ancient host adaptation, and that DBLe and DBLz may represent
functionally constrained domains across the Laverania subgenus.

Beyond single var domains, the var repertoires of P. falciparum
parasites can be divided into groups that have been associated
with different clinical phenotypes, such as severe malarial
anaemia and cerebral malaria, using a cysteine-based classifica-
tion of DBLa tags38,41,42. These groups are represented in similar
proportions across P. falciparum and P. reichenowi parasites, and
our data suggest that this repertoire structure may also extend to
P. billcollinsi (Supplementary Fig. 6); an insufficient number of
DBLa-like tags precludes an extension of this classification to
P. gaboni at the present time. Given their association with clinical
disease in humans, the extent to which these sequence features
are also indicative of pathology in apes warrants further study.

Although we identified var-like features in species spanning the
Laverania subgenus, we also found that certain signatures
identified in P. falciparum and P. reichenowi var genes are absent
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Figure 6 | Shared synteny of var-like genes in P. falciparum, P. reichenowi and P. gaboni. An open-reading frame (ORF) located downstream of a

predicted var-like gene in P. gaboni showed 88% sequence identity (dark grey bars) with a single-copy gene present in both P. falciparum 3D7

(PF3D7_0323800) and P. reichenowi CDC1 (PRCDC_0323100). The P. gaboni var-like gene is syntenic with a var exon 2 pseudogene in both P. falciparum

and P. reichenowi, suggesting that a var gene was present at this location in the ancestor of all three Laverania species.
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from the more divergent parasite species. For example, we found
no evidence of CIDR domains in either of the P. gaboni genomes,
despite identifying numerous DBL domains (Table 1). Moreover,
DBLa-like P. gaboni sequences were not sufficiently similar to
P. falciparum DBLa domains to be confidently classified as such.
Since the vast majority of P. falciparum var genes encode a
DBLa-CIDR domain pair, the apparent absence of CIDR
domains from P. gaboni is puzzling, especially in light of the
role that CIDR domains are believed to play in host receptor
binding43. It will be important to determine whether P. gaboni
var-like genes contain other domains with CIDR-like function or
whether P. gaboni differs in its biology from other Laverania
parasites. Second, the network analysis of PCR tags revealed
new DBL domains that we termed DBLx because they are unlike
the other six known var DBL domain classes shared by
P. falciparum44 and P. reichenowi15 (Fig. 4; Supplementary
Figs 3 and 4). These DBLx tags, which were amplified using
P. falciparum DBLa primers, are shorter than all other tags, and
can be further subdivided into DBLx1 and DBLx2 subgroups
based on differences in the highly conserved HB3-like region
(Supplementary Fig. 3). Divergence from the P. falciparum
‘LARSFADIG’ motif within this HB3-like region has also been
reported for another partially characterized P. gaboni genome15,
but adjacent sequences were not analysed, thus leaving their
relationship with DBLx domains unknown. Finally, we identified
multiple copies of P. gaboni ATS domains, which exhibit a
var-like HB structure that is very similar, but not identical, to
P. falciparum and P. reichenowi ATS domains (Fig. 5; Table 1;
Supplementary Fig. 5). Taken together, these data indicate
that, while var-like genes in P. gaboni (and possibly also
P. adleri) share important structural similarities with those
of P. falciparum and P. reichenowi, they also exhibit important
differences, which may reflect differences in function and
biology.

The presence of var-like genes throughout the Laverania
subgenus suggests an ancient adaptation for antigenic variation,
and potentially cytoadherence. However, while links exist
between var expression and clinical disease in humans, the
disease causing potential of var-like gene products in Laverania
parasites infecting wild apes remains unknown. Nonetheless,
there may be important parallels since recent field studies of
habituated chimpanzees in the Tai Forest, Côte d’Ivoire revealed
higher faecal parasite burdens in both young45 and pregnant46

individuals, similar to what has been described in humans. Given
the role of the var-encoded PfEMP1 proteins to mediate
endothelial binding in the presence of a vigorous host immune
response, it is likely that var genes play a similar role in other
Laverania species. However, the extent of var gene diversity,
especially among the more divergent Laverania species that lack
certain P. falciparum-specific DBL and CIDR domains, suggests
potentially different biological solutions. Additional field studies
of habituated ape populations will be necessary to establish the
biological consequences of ape Laverania infections and the
pathogenic potential of their var-like gene products.

Methods
Sample collection. Ape faecal samples were collected from wild-living central
(Pan troglodytes troglodytes; DGptt540) and eastern (P. t. schweinfurthii;
KApts1680) chimpanzees and western lowland gorillas (Gorilla gorilla gorilla;
GTggg140, GTggg118) for previous molecular epidemiological studies of Laverania
parasites1. Samples were collected in RNAlater (1:1 vol/vol), transported at ambient
temperatures and stored at � 80 �C. We also analysed left-over blood samples from
chimpanzees cared for at the Sanaga-Yong Rescue Centre (SYptt5, SYptt15,
SYptt20, SYpte37, SYptt75, SYptt79 and SYptt82), which were obtained in the
context of routine health examinations or for specific veterinary purposes. Samples
were shipped in compliance with Convention on International Trade in
Endangered Species of Wild Fauna and Flora regulations and country-specific
import and export permits. DNA was extracted from faecal and blood samples

using the QIAamp Stool DNA Mini Kit and QIAamp Blood DNA Mini Kit
(Qiagen, Valencia, CA), respectively, described in detail in ref. 47.

Plasmodium species identification. The Plasmodium species composition in ape
faecal and blood samples was determined by SGS and phylogenetic analysis1,47.
Briefly, faecal and blood DNA was end point diluted in 96-well plates, and the
dilution that yielded o30% wells with positive PCR reactions was used to generate
between 2 and 174 different SGS sequences per sample (according to a Poisson
distribution, the DNA dilution that yields PCR products in o30% of wells contains
one amplifiable template per positive PCR 483% of the time). Amplification
products were gel purified, and sequenced directly without interim cloning.
Sequences that contained double peaks as an indicator of more than one amplified
template were discarded. Different genomic loci were amplified, including portions
of mitochondrial (cytochrome B), nuclear (erythrocyte binding antigens eba165
and eba175, 6-cysteine protein p47 and p48/45, lactate dehydrogenase, reticulocyte-
binding protein homolog 5) and apicoplast (caseinolytic protease C) genes. All
relevant primers are provided in Supplementary Table 4. For each genomic region,
up to 73 single template-derived amplicons were sequenced and their species origin
was identified by phylogenetic analysis (Supplementary Table 1). This analysis
identified seven blood samples and one faecal sample to represent single-species
infections of P. reichenowi (SYptt15, 46 SGS sequences), P. gaboni (SYptt5, 86 SGS
sequences; SYpte37, 59 SGS sequences; SYptt75, 122 SGS sequences; SYptt82, 59
SGS sequences), P. billcollinsi (SYptt20, 174 SGS sequences; SYptt79, 16 SGS
sequences) and P. praefalciparum (GTggg140; 2 SGS sequences), although many of
these specimens contained multiple variants (haplotypes) of the respective species.
Three other faecal samples (GTggg118, KApts1680 and DGptt540) contained more
than one ape Laverania species, and one included an additional non-Laverania
species of unknown origin (Supplementary Table 1).

PCR amplification of var genes. DBL domains were amplified, cloned and
sequenced (see, for example, refs 30,31) using conventional (rather than limiting
dilution) PCR. Different primers sets, listed below, were used to amplify 2.5 ml of
faecal or blood derived DNA in a 25-ml reaction volume, containing 0.5 ml dNTPs
(10 mM of each dNTP), 10 pmol of each primer, 2.5 ml PCR buffer, 0.1 ml BSA
solution (50 mg ml� 1) and 0.25 ml expand long template enzyme mix (Expand
Long Template PCR System, Roche). Most samples were subjected to single-round
amplification with previously published primers, including DBLa-50 (50-GCACG
AAGTTTTGCAGATATWGG-30) and DBLa-30 (50-AARTCTTCKGCCCATTCC
TCGAACCA-30)31, or DBLaAF0 (50-GCACGMAGTTTYGC-30) and DBLaBR
(50-GCCCATTCSTCGAACCA-30)30. Only three samples were amplified with
additional primers, including C1DBLaAF0 (50-GCACGVAGTTTTGC-30) and
C1DBLaBR (50-GCCCATTCSTSGAACCA-30), and C2DBLAF (50-AARTAHAG
TTTTGCTGATTTARG-30) and C2DBLAR (50-TTCGGACCATTCGKCWAW
CCA-30), respectively, or by nested PCR. The C2DBLAF and C2DBLAR primers
were designed to specifically amplify P. gaboni DBL tags using an alignment of
select whole-genome amplification derived contigs of SYpte37. Cycling conditions
included an initial denaturing step of 2 min at 94 �C, followed by 35–60 cycles of
denaturation (94 �C, 10 s), annealing (50–55 �C, 30 s) and elongation (68 �C,
1 min), followed by a final elongation step of 10 min at 68 �C. Both single-round
and nested PCR-derived amplicons were gel purified and subcloned into pGEM-T
Easy (Promega) or PCR4 TOPO (Life Technologies) plasmid vectors. Positive
clones were sequenced, and analysed using SEQUENCHER (Gene Codes
Corporation, Ann Arbor, MI) or Lasergene (DNASTAR) software.

Criteria of var gene sequence selection. Amplified var DBL sequences were
inspected for primer sequences (which were removed from final sequences) and the
presence of a single intact ORF; sequences lacking an intact ORF or identifiable
50 and 30 primer sequences were discarded. To remove Taq polymerase errors in
cloned DBLa var tag sequences, a neighbour-joining tree was constructed for each
sample and sequences differing by less than three nucleotides were condensed into
a single-consensus sequence. Thus, for each sample only unique DBLa var tag
haplotypes were analysed.

Network analysis. A short region of var gene sequence within the DBLa domain,
which we refer to as a ‘tag,’ comprises three conserved HBs (HB3, HB5 and HB2)
separated by two HVRs19. We identified HVRs using a sequence entropy approach,
modifying a previously published procedure21 to accommodate ape Laverania
sequences. To extract highly variable sequence content for further study, we
identified and removed the three conserved HBs from the 30-end, middle and
50-end of each tag sequence. This was carried out by first aligning all sequences first
to HB3 without inserting any gaps mid-sequence (step 1), that is, we required that
all sequences align at and only at HB3. Next, we calculated the Shannon entropy of
the aligned sequences at each position (step 2) and scanned from HB3 towards the
centre of the tag to find the first position p at which entropy was 42 bits (step 3)
such that each subsequent position also had entropy 42 bits. Finally, we retained
all sequences from p towards the centre of the tag (step 4). Steps 1–4 were repeated
for HB2, thus removing low-entropy HBs from the ends of each sequence. Second,
we removed conserved central sequence content, splitting the tag into two HVRs.
We repeated steps 1 and 2 with HB5. We then scanned from HB5 towards each

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9368

8 NATURE COMMUNICATIONS | 6:8368 | DOI: 10.1038/ncomms9368 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


end of the tag, finding the first position p in each direction with entropy 42 bits
such that each subsequent position had entropy 42 bits, and retained everything
from p towards the end of the tag. All steps are shown graphically in
Supplementary Fig. 7. The high-entropy HVR between HB3 and HB5 is referred to
as the left HVR and the high-entropy HVR between HB5 and HB2 is referred to as
the right HVR.

Two types of networks were created. First, networks of var sequences were
generated by assigning each HVR sequence to a node and placing a link between
two nodes when their corresponding sequences shared a block of length L or greater
at the amino-acid level. L¼ 7 for left HVR and L¼ 6 for right HVR, based on null
model calculations21. Figures were produced using force-directed layouts in webweb
software v3.1 (http://danlarremore.com/webweb). Second, bipartite networks of
both var genes and their shared blocks were created by assigning each HVR
sequence and each shared block of length L or greater to a node, and placing a link
between a sequence node and a shared block node if the block is present in the
sequence. These bipartite networks are related to the other type of network via one-
mode projection. Community detection was performed using the biSBM method
applied to bipartite networks of sequences and their shared amino-acid substrings48.

k-mer stackup analysis. Within an amino-acid sequence, we refer to any
contiguous substring of length k amino acids as a k-mer. All k-mers were extracted
from all sequences, noting the starting position (normalized to the total length of the
sequence). For Supplementary Fig. 2a, all k-mers from P. falciparum and P. reichenowi
were sorted by their frequency of appearance, and stacked histograms of their starting
positions were created with 50 bins. For Supplementary Fig. 2b, all k-mers from each
of P. falciparum, P. reichenowi, P. gaboni and P. billcollinsi were sorted by their
presence across species, and stacked histograms of their starting positions (relative to
the species indicated at the top of each plot) were created with 50 bins.

Bayesian k-mer analysis. A window of length k was scanned across each amino-
acid sequence from P. falciparum and P. reichenowi monoinfections, extracting all
length k substrings. Some substrings appeared in sequences from both species,
while others were species specific. This analysis, derived and developed in detail
below, estimates the overlap in populations of tag sequences using Bayesian
statistics to correctly extrapolate the parameters of the conjugate prior distribution
that characterizes the overlap from limited sample data49.

For this analysis, we examine 296 DBLa tag sequences from P. falciparum and
94 from P. reichenowi. Each sequence is a string of amino acids, so from a
sequences of length N, we can extract N� kþ 1 substrings (that is, k-mers, or
words) of length k. In what follows, we use k¼ 7 for all examples. (Other values of
k may be used, and results do not depend sensitively on moderate k; we tested
kA[5, 15].) The 390 total sequences comprise 45,731 words for k¼ 7, but some
words appear in multiple sequences; the total number of unique words is 22,431.
This indicates that, on average, each word appears approximately two times across
all 390 sequences. In fact, the distribution is highly heterogeneous: 70% of words
appear only once, 16% appear only twice and 6% appear only three times, meaning
that 92% of words appear in only 1–3 of the total 390 sequences. This hetero-
geneity, depicted in Supplementary Fig. 8, makes it difficult to decide whether these
two sets of sequences are drawn from distinct populations.

Some words are shared by both P. falciparum and P. reichenowi (8%), some are
unique to P. falciparum (65%) and the rest unique to P. reichenowi (27%). If only
8% of (length 7) words are shared by both species, one might conclude that the
populations of words are well separated. However, owing to the massive diversity of
words in both species, this interpretation is incorrect. Instead of calculating the
overlap between species for our data set, we wish to estimate the overlap for the
global populations of P. falciparum and P. reichenowi.

Before the mathematical formulation, we advance the following helpful analogy,
by imagining each word as a biased coin. Suppose we have a large bag of coins and
each coin has a biased probability of landing on heads. Further, imagine that the
biases are not all the same, but are instead drawn from some distribution. We wish
to estimate the distribution, so we take the coins, one by one, and flip them, writing
down which coin was flipped and whether it lands on heads or tails each time.
However, for 70% of the coins, we only get one flip. For 16% of the coins, we only
get two flips, and for 6% of the coins we only get three flips and so on. When
estimating the distribution of p, we must take into account the number of flips
observed for each coin.

Given our small sample from the distribution, we wish to approximate the
global distribution of values of pi. This will tell us how much the populations
overlap. Our data consist of fi and ri, the numbers of observations of word i
in P. falciparum and P. reichenowi, respectively. We model the assignment of each
occurrence of word i to P. reichenowi as an independent Bernoulli trial, with
parameter pi. Let the set of pi be Beta distributed with parameters a and b, where
we use the Beta distribution because it is the conjugate prior of the Bernoulli
distribution. Then, the likelihood of observing data {xi}, given the parameters, is

L xif g j a; bð Þ ¼
Yn

i¼1

Z
pi

Yfi þ ri

j¼1

Pr word is from P:reichenowi j pið ÞPr pi j a; bð Þ
 !

dpi

2
64

3
75

which may be integrated using beta functions B to get

L xif g j a; bð Þ ¼
Yn

i¼1

B fi þ a; ri þbð Þ
Bða; bÞ

Taking a log yields

log L fxig j a;bð Þ ¼
Xn

i¼1

log
B fi þ a; ri þbð Þ

B a; bð Þ

� �

This log-likelihood function is related to a solution to an analogous problem from
the domain of probabilistic competition dynamics49 in which two teams were
competing for points over the course of many competitions. We maximize it in
MATLAB using the fminsearch function, using the observed fi and ri values.

Pairwise distance analysis. Protein sequences were aligned pairwise using
MUSCLE v3.8.1 (ref. 50), and Hamming distances (number of sites at which the
two aligned sequences differ) were calculated neglecting gaps at both ends of the
alignment to adjust for variable sequence lengths. Hamming distances were
alternatively calculated by counting a contiguous block of gaps as a single
difference, with no qualitative difference in results.

Blocksharing. We quantified sequence conservation from one particular sequence
to an ensemble of others by scanning a window of length k across the particular
sequence and computing the fraction of sequences in the ensemble containing
each k-mer or block. This produces a measure of conservation between 0 and 1 in
the frame of reference of the particular sequence; Fig. 1b shows this blocksharing
for the DBLa domain of DD2var11 compared with the background of data
in ref. 19; k¼ 7.

CP group analysis. Var tag sequences can be classified according to the number of
cysteine residues as well as sequence content at defined ‘positions of limited
variability (PoLV)’30. In the var sequence literature, these are referred to as Cys-
PoLV groups, or simply CP groups. We identified CP groups with a MATLAB
script according to the following definitions: group 1: MFK* at PoLV, two cysteine
residues; group 2: *REY at PoLV2, two cysteine residues; group 3: two cysteine
residues, not group 1 or 2; group 4: four cysteine residues, not group 5; group 5:
*REY at PoLV2, four cysteine residues; group 6: one, three, five, or six cysteine
residues. Histograms of cysteine counts and CP groups are shown in
Supplementary Fig. 6.

P. gaboni select whole-genome amplification. DNA was extracted from two
chimpanzee blood samples (SYpte37 and SYptt75) identified as P. gaboni single-
species infections by single-genome sequencing (Supplementary Table 1) and
subjected to select whole Plasmodium genome amplification as described27,28.
Briefly, total DNA (100 ng–1 mg) was digested using the methylation dependent
restriction enzymes MspJI and FspEI in multiple replicates. The digestion products
were amplified using phi29 polymerase and one of two primer sets consisting of 10
primers (8–12 nt in length each) designed to bind frequently and broadly to the
P. falciparum genome but only rarely to the chimpanzee genome28. A amount of
50 ng of first round product was reamplified in a second reaction using the second
primer set. Replicates were pooled and a short insert library was constructed using
the TruSeq DNA PCR-Free Sample Preparation Kit (Illumina) and sequenced
using a MiSeq Reagent Kit V2 (500 cycles; Illumina) to generate 250 bp paired end
reads. Reads were mapped to the P. falciparum 3D7 reference genome using
Geneious (Biomatters Limited, Auckland, New Zealand), and subjected to guided
assembly using Velvet Columbus51. For SYptt75, contigs produced by Velvet were
aligned to the reference and the resulting core P. gaboni draft genome was
iteratively corrected manually and using PAGIT v1.0 (ref. 52). All reads from
SYptt75 and SYpte37 were mapped to this draft reference and reads that could not
be mapped were assembled separately using Spades v3.1.1 (ref. 53).

Putative var gene identification var domain analysis. Due to the hypervaria-
bility of var sequences, P. gaboni reads did not map to var gene containing regions
of the P. falciparum 3D7 reference genome, nor were var genes readily identified in
the SYptt75 core P. gaboni genome. A search for contigs containing var-like
sequence was therefore performed on unplaced SYptt75 and SYpte37 contigs
(produced by either Velvet or Spades in a reference-independent manner).
Specifically, tblastn and tblastx searches were performed using all P. gaboni
unplaced contigs against a database of available full-length P. falciparum 3D7 and
P. reichenowi CDC1 var genes. Genes and ORFs were identified in the top hits
manually and by Augustus v2.5.5 gene prediction54, and pblast searches using
the resulting amino-acid sequences were again performed against the translated
P. falciparum and P. reichenowi var gene database. Hits were then submitted to the
VarDom 1.0 server (http://www.cbs.dtu.dk/services/VarDom/)19 for domain
identification and classification.

The P. gaboni ortholog of PF3D7_0113800 was identified in the draft SY75
sequence by blast homology to PF3D7_0113800. Gene annotation was performed
using RATT55 with manual correction.
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Neighbour-joining tree construction. Protein sequence tags were aligned using
MUSCLE v3.8.1 (ref. 50) and the phylogeny were created using the neighbour-
joining distance method, with Poisson distances, as implemented in Seaview 4.4.0
(ref. 56).

DBLx identification and classification. DBLx domains were identified as those
tags that (i) were o90 residues in length, and (ii) began with residues NI, DF or
DM. Those that began with residues NI were further classified as DBLx1 and those
that began with DF or DM as DBLx2. A total of 100% of DBLx sequences also
featured a lysine residue (K) in the fourth position of the tag instead of the DBLa
arginine (R). Sequence logos are shown in Supplementary Fig. 3.
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2. Reichenow, E. Über das vorkommen der malariaparasiten des menschen bei

den afrikanischen menschenaffen. Centralbl. f. Bakt. I. Abt. Orig 85, 207–216
(1920).

3. Blacklock, B. & Adler, S. A parasite resembling Plasmodium falciparum in a
chimpanzee. Ann. Trop. Med. Parasitol. 16, 99–107 (1922).

4. Ollomo, B. et al. A new malaria agent in African hominids. PLoS Pathog. 5,
e1000446 (2009).

5. Rich, S. M. et al. The origin of malignant malaria. Proc. Natl Acad. Sci. USA
106, 14902–14907 (2009).

6. Prugnolle, F. et al. African great apes are natural hosts of multiple related
malaria species, including Plasmodium falciparum. Proc. Natl Acad. Sci. USA
107, 1458–1463 (2010).

7. Krief, S. et al. On the diversity of malaria parasites in African apes and the prigin
of Plasmodium falciparum from bonobos. PLoS Pathog. 6, e1000765 (2010).

8. Duval, L. et al. African apes as reservoirs of Plasmodium falciparum and the
origin and diversification of the Laverania subgenus. Proc. Natl Acad. Sci. USA
107, 10561–10566 (2010).

9. Kaiser, M. et al. Wild chimpanzees infected with 5 Plasmodium species. Emerg.
Infect. Dis. 16, 1956–1959 (2010).

10. Rayner, J. C., Liu, W., Peeters, M., Sharp, P. M. & Hahn, B. H. A plethora of
Plasmodium species in wild apes: a source of human infection? Trends
Parasitol. 27, 222–229 (2011).

11. Newbold, C. et al. Cytoadherence, pathogenesis and the infected red cell surface
in Plasmodium falciparum. Int. J. Parasitol. 29, 927–937 (1999).

12. Turner, L. et al. Severe malaria is associated with parasite binding to endothelial
protein C receptor. Nature 498, 502–505 (2013).

13. Jiang, L. et al. PfSETvs methylation of histone H3K36 represses virulence genes
in Plasmodium falciparum. Nature 499, 223–227 (2013).

14. Smith, J. D., Rowe, J. A., Higgins, M. K. & Lavstsen, T. Malaria’s deadly grip:
cytoadhesion of Plasmodium falciparum-infected erythrocytes. Cell. Microbiol.
15, 1976–1983 (2013).

15. Otto, T. D. et al. Genome sequencing of chimpanzee malaria parasites reveals
possible pathways of adaptation to human hosts. Nat. Commun. 5, 4754 (2014).

16. Bopp, S. E. R. et al. Mitotic evolution of Plasmodium falciparum shows a stable
core genome but recombination in antigen families. PLoS Genet. 9, e1003293
(2013).

17. Claessens, A. et al. Generation of antigenic diversity in Plasmodium falciparum
by structured rearrangement of var genes during mitosis. PLoS Genet. 10,
e1004812 (2014).

18. Kraemer, S. M. & Smith, J. D. Evidence for the importance of genetic
structuring to the structural and functional specialization of the Plasmodium
falciparum var gene family. Mol. Microbiol. 50, 1527–1538 (2003).

19. Rask, T. S., Hansen, D. A., Theander, T. G., Gorm Pedersen, A. & Lavstsen, T.
Plasmodium falciparum erythrocyte membrane protein 1; diversity in seven
genomes – divide and conquer. PLoS Comput. Biol. 6, e1000933 (2010).

20. Bull, P. C. et al. Plasmodium falciparum antigenic variation. Mapping mosaic
var gene sequences onto a network of shared, highly polymorphic sequence
blocks. Mol. Microbiol. 68, 1519–1534 (2008).

21. Larremore, D. B., Clauset, A. & Buckee, C. O. A network approach to analyzing
highly recombinant malaria parasite genes. PLoS Comput. Biol. 9, e1003268
(2013).

22. Trimnell, A. R. et al. Global genetic diversity and evolution of var genes
associated with placental and severe childhood malaria. Mol. Biochem.
Parasitol. 148, 169–180 (2006).

23. Zilversmit, M. M. et al. Hypervariable antigen genes in malaria have ancient
roots. BMC Evol. Biol. 13, 110 (2013).

24. Bockhorst, J. et al. Structural polymorphism and diversifying selection on the
pregnancy malaria vaccine candidate VAR2CSA. Mol. Biochem. Parasitol. 155,
103–112 (2007).

25. Manske, M. et al. Analysis of Plasmodium falciparum diversity in natural
infections by deep sequencing. Nature 487, 375–379 (2012).

26. Miotto, O. et al. Multiple populations of artemisinin-resistant Plasmodium
falciparum in Cambodia. Nat Genet. 45, 648–655 (2013).

27. Leichty, A. R. & Brisson, D. Selective whole genome amplification for
resequencing target microbial species from complex natural samples. Genetics
198, 473–481 (2014).

28. Sundararaman, S. A. et al. in 13th International Conference of Parasitologists,
2154 (Woods Hole, MA, USA, 2014).

29. Liu, W. et al. Single genome amplification and direct amplicon
sequencing of Plasmodium spp. DNA from ape fecal specimens. Protoc.
doi:10.1038/nprot.2010.156 (2010).

30. Bull, P. C. et al. Plasmodium falciparum variant surface antigen expression
patterns during malaria. PLoS Pathog. 1, e26 (2005).

31. Kaestli, M., Cortés, A., Lagog, M., Ott, M. & Beck, H.-P. Longitudinal assessment of
Plasmodium falciparum var gene transcription in naturally infected asymptomatic
children in Papua New Guinea. J. Infect. Dis. 189, 1942–1951 (2004).

32. Warimwe, G. M. et al. Prognostic indicators of life-threatening malaria are associated
with distinct parasite variant antigen profiles. Sci. Transl Med. 4, 129ra45 (2012).

33. Rorick, M. M., Rask, T. S., Baskerville, E. B., Day, K. P. & Pascual, M.
Homology blocks of Plasmodium falciparum var genes and clinically distinct
forms of severe malaria in a local population. BMC Microbiol. 13, 244 (2013).

34. Liu, W. et al. in American Society of Tropical Medicine and Hygiene 63rd
Annual Meeting, Abstract #LB-3054 (New Orleans, LA, USA, 2014).

35. Rayner, J. C., Huber, C. S. & Barnwell, J. W. Conservation and divergence in
erythrocyte invasion ligands: Plasmodium reichenowi EBL genes. Mol. Biochem.
Parasitol. 138, 243–247 (2004).

36. Miller, J. R., Koren, S. & Sutton, G. Assembly algorithms for next-generation
sequencing data. Genomics 95, 315–327 (2010).

37. Claessens, A. et al. A subset of group A-like var genes encodes the malaria
parasite ligands for binding to human brain endothelial cells. Proc. Natl Acad.
Sci. USA 109, E1772–E1781 (2012).

38. Bull, P. C. et al. An approach to classifying sequence tags sampled from
Plasmodium falciparum var genes. Mol. Biochem. Parasitol. 154, 98–102 (2007).

39. Gamain, B., Smith, J. D., Viebig, N. K., Gysin, J. & Scherf, A. Pregnancy-
associated malaria: parasite binding, natural immunity and vaccine
development. Int. J. Parasitol. 37, 273–283 (2007).

40. Ghumra, A. et al. Induction of strain-transcending antibodies against group A
PfEMP1 surface antigens from virulent malaria parasites. PLoS Pathog. 8,
e1002665 (2012).

41. Warimwe, G. M. et al. Plasmodium falciparum var gene expression is modified
by host immunity. Proc. Natl Acad. Sci. USA 106, 21801–21806 (2009).

42. Kyriacou, H. M. et al. Differential var gene transcription in Plasmodium
falciparum isolates from patients with cerebral malaria compared to
hyperparasitaemia. Mol. Biochem. Parasitol. 150, 211–218 (2006).

43. Lavstsen, T. et al. Plasmodium falciparum erythrocyte membrane protein 1
domain cassettes 8 and 13 are associated with severe malaria in children. Proc.
Natl Acad. Sci. USA 109, E1791–E1800 (2012).

44. Smith, J. D., Subramanian, G., Gamain, B., Baruch, D. I. & Miller, L. H.
Classification of adhesive domains in the Plasmodium falciparum erythrocyte
membrane protein 1 family. Mol. Biochem. Parasitol. 110, 293–310 (2000).

45. De Nys, H. M. et al. Age-related effects on malaria parasite infection in wild
chimpanzees. Biol. Lett. 9, 20121160 (2013).

46. De Nys, H. L. N. M. et al. Malaria parasite detection increases during pregnancy
in wild chimpanzees. Malar. J. 13, 413 (2014).

47. Liu, W. et al. African origin of the malaria parasite Plasmodium vivax. Nat.
Commun. 5, 3346 (2014).

48. Larremore, D. B., Clauset, A. & Jacobs, A. Z. Efficiently inferring community
structure in bipartite networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90,
012805 (2014).

49. Merritt, S. & Clauset, A. Environmental structure and competitive scoring
advantages in team competitions. Sci. Rep. 3, 3067 (2013).

50. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

51. Zerbino, D. R. & Birney, E. Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

52. Swain, M. T. et al. A post-assembly genome-improvement toolkit (PAGIT) to
obtain annotated genomes from contigs. Nat. Protoc. 7, 1260–1284 (2012).

53. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its
applications to single-cell sequencing. J.Comput. Biol. 19, 455–477 (2012).

54. Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts.
Nucleic Acids Res. 34, W435–W439 (2006).

55. Otto, T. D., Dillon, G. P., Degrave, W. S. & Berriman, M. RATT: rapid
annotation transfer tool. Nucleic Acids Res. 39, e57 (2011).

56. Gouy, M., Guindon, S. & Gascuel, O. SeaView Version 4: a multiplatform
graphical user interface for sequence alignment and phylogenetic tree building.
Mol. Biol. Evol. 27, 221–224 (2010).

Acknowledgements
This work was supported by grants from the National Institutes of Health (R21
GM100207, R01 AI091595, R37 AI050529, R01 AI058715, T32 AI007532 and P30
AI045008) and the Wellcome Trust (grant #090851).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9368

10 NATURE COMMUNICATIONS | 6:8368 | DOI: 10.1038/ncomms9368 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://dx.doi.org/10.1038/nprot.2010.156
http://www.nature.com/naturecommunications


Author contributions
D.B.L., W.R.P., C.O.B. and J.C.R. conceived the study. S.A.S., W.L., W.R.P., D.E.L., L.J.P.,
B.H.H., P.M.S. and J.C.R. characterized ape Laverania infections, amplified DBL tags and
identified DBL, ATS and TM domains. D.B.L. and A.C. designed and conducted Bayesian
k-mer analysis. D.B.L., A.C. and C.O.B. performed network, phylogenetic, pairwise
distance, k-mer and CP analyses. S.A.S., L.J.P., P.M.S. and B.H.H. amplified, sequenced
and analysed near complete genomes of P. gaboni. D.B.L., S.A.S., B.H.H., P.M.S. and
C.O.B. wrote the paper with contributions from all authors. S.S. provided chimpanzee
blood samples that were collected opportunistically during health screens or for specific
veterinary purposes. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institute of General Medical
Sciences or the National Institutes of Health.

Additional information
Accession codes: DBL var tag sequences have been deposited in the GenBank nucleotide
database under accession codes KP167140 to KP167147, and KJ801976 to KJ802011.
P. gaboni unplaced contigs with DBL domains have been deposited in the GenBank
nucleotide database under accession codes KP879220 to KP879255. P. gaboni unplaced

contigs with ATS domains have been deposited in the GenBank nucleotide database
under accession codes KT343259 to KT343272.

Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Larremore, D. B. et al. Ape parasite origins of human malaria
virulence genes. Nat. Commun. 6:8368 doi: 10.1038/ncomms9368 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9368 ARTICLE

NATURE COMMUNICATIONS | 6:8368 | DOI: 10.1038/ncomms9368 | www.nature.com/naturecommunications 11

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Figure™1Characterization of Laverania var gene sequences.(a) Phylogeny of Plasmodium species. The tree was constructed from mitochondrial sequences (2.4-kb spanning cox1 and cytB). The scale bar indicates 0.01 substitutions per site. Colours indicate spec
	Results
	Laverania species identification and sequence generation

	Figure™2Networks of DBLagr sequences from P. reichenowi and P. falciparum.Each node represents a DBLagr HVR sequence and each link represents a shared amino-acid substring of significant length21. Laverania species and strain origin is indicated by node c
	Shared var mosaic structure in P. reichenowi and P. falciparum
	var DBLagr tag structures predate the Laverania radiation

	Figure™3Networks of DBL sequences from Laverania single-species infections in the context of known DBLagr and non-DBLagr sequences.Each node represents a DBL HVR sequence from a single-species infection and each link represents a shared amino-acid substri
	Laverania parasites contain ape-specific var-like DBL domains
	var multi-domain structures predate the Laverania radiation

	Figure™4Networks of DBL sequences from single- and multi-species Laverania infections.Each node represents a DBL HVR sequence and each link represents a shared amino-acid substring of significant length. Note that for each sample only unique var DBL haplo
	Table 1 
	Figure™5Conservation of var ATS domain homology block structure in P. gaboni.The homology block (HB) structure of var ATS domains identified in 16 contigs of a near complete P. gaboni genome (PgSY75) are shown in relation to representative P. falciparum a
	Laverania var repertoire structure

	Discussion
	Figure™6Shared synteny of var-like genes in P. falciparum, P. reichenowi and P. gaboni.An open-reading frame (ORF) located downstream of a predicted var-like gene in P. gaboni showed 88percnt sequence identity (dark grey bars) with a single-copy gene pres
	Methods
	Sample collection
	Plasmodium species identification
	PCR amplification of var genes
	Criteria of var gene sequence selection
	Network analysis
	k-mer stackup analysis
	Bayesian k-mer analysis
	Pairwise distance analysis
	Blocksharing
	CP group analysis
	P. gaboni select whole-genome amplification
	Putative var gene identification var domain analysis
	Neighbour-joining tree construction
	DBLx identification and classification

	LiuW.Origin of the human malaria parasite Plasmodium falciparum in gorillasNature4674204252010ReichenowE.Über das vorkommen der malariaparasiten des menschen bei den afrikanischen menschenaffenCentralbl. f. Bakt. I. Abt. Orig852072161920BlacklockB.AdlerS
	This work was supported by grants from the National Institutes of Health (R21 GM100207, R01 AI091595, R37 AI050529, R01 AI058715, T32 AI007532 and P30 AI045008) and the Wellcome Trust (grant #090851)
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




