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Supporting Autonomic Management of Clouds:
Service Clustering with Random Forest

Rafael Brundo Uriarte, Francesco Tiezzi and Sotirios A. Tsaftaris

Abstract—A promising solution for the management of services
in clouds, as fostered by autonomic computing, is to resort to self-
management. However, the obfuscation of underlying details of
services in cloud computing, also due to privacy requirements,
affects the effectiveness of autonomic managers. Data-driven
approaches, in particular those relying on service clustering
based on machine learning techniques, can assist the autonomic
management and support decisions concerning, e.g. the schedul-
ing and deployment of services. Unfortunately, applying such
approaches is further complicated by the coexistence of different
types of data within the information provided by the monitoring
of cloud systems: both continuous (e.g. CPU load) and categorical
(e.g. VM instance type) data are available. Current approaches
deal with this problem in a heuristic fashion. In this paper,
instead, we propose an approach that uses all types of data,
and learns in a data-driven fashion the similarities and patterns
among the services. More specifically, we design an unsupervised
formulation of Random Forest to calculate service similarities and
provide them as input to a clustering algorithm. For the sake of
efficiency and to meet the dynamism requirement of autonomic
clouds, our methodology consists of two steps: off-line clustering
and on-line prediction. Using datasets from real-world clouds, we
demonstrate the superiority of our solution with respect to others
and validate the accuracy of the on-line prediction. Moreover, to
show applicability of our approach, we devise a service scheduler
that uses similarity among services, and evaluate its performance
in a cloud test-bed using realistic data.

Index Terms—Cloud Computing, Autonomic Computing, SLA,
Random Forest, Similarity Learning.

I. INTRODUCTION

In cloud computing, virtually everything can be provided as
an on-line, on-demand service. The characteristics of clouds,
such as scalability, heterogeneity and dynamism, make clouds
considerably complex. A prominent approach to cope with
this complexity is autonomic computing [1], which aims at
equipping systems with capabilities to autonomously adapt
their behaviour according to dynamic operating conditions.
To achieve self-management, the system entities in charge
of enacting autonomic strategies, the so-called autonomic
managers, require knowledge about the operating environment
as well as the system itself.

The abstraction of the underlying complexity provided by
clouds (achieved, e.g. via virtualization) restricts the knowl-
edge available to autonomic managers and consequently lim-
its their range of actions. Data-driven approaches based on
machine learning techniques, which do not require human
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knowledge and intervention, can assist the operation of auto-
nomic managers. Thus, we advocate the use of a clustering
approach, which generates knowledge consisting of groups
(i.e. clusters) of services with similar characteristics. This form
of knowledge can be exploited by autonomic managers for
different purposes, such as: optimisation of resources, service
scheduling and anomalous behaviour detection.

A critical aspect that complicates any data-driven knowledge
extraction approach is that information (called features) on
services consists of both categorical (e.g. virtual machine in-
stance type) and continuous (e.g. CPU load) types of data. This
problem is typically addressed in a heuristic fashion: either
only one data type is used, which reduces distinguishability, or
combinations of data types are constructed by human experts.
Both solutions do not cope well with the dynamism of the
autonomic cloud: when new types of services are introduced
they may not be distinguishable or a human intervention might
be necessary again. Moreover, dealing with the potentially
enormous amount of data concerning cloud services, as they
are more frequently deployed in a Big Data fashion, is another
important challenge.

In this paper, we tackle the challenge of providing a truly
autonomic and effective management of services in clouds
through similarity-based knowledge, which is calculated by
using all types of service features. To this aim, we propose
a learning methodology relying on the Random Forest (RF)
algorithm [2]. We learn the service similarities from the
definition of services or their monitoring information, and
provide them to a clustering algorithm. In particular, in order
to achieve efficiency and meet the dynamism requirement of
autonomic cloud systems, our methodology consists of two
main steps:

1) off-line clustering, to learn similarities and obtain the
clusters;

2) on-line prediction, to predict to which of the computed
clusters an incoming new service belongs.

Our methodology was designed to support important charac-
teristics of Big Data: it addresses its volume, velocity and
variety of data with easily parallelizable training and prediction
phases, supports categorical and continuous variables, has
constant prediction time and a mechanism to detect changes
in the patterns of services.

The main contributions of this paper are:

• An analysis of the specificities of the Autonomic
Cloud (AC) domain and the definition of the requirements
of a clustering approach for AC services;

• An off-line approach that relies on the RF algorithm to
learn the similarities among all observed services, which
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are structured as a matrix that is then provided to an off-
the-shelf clustering algorithm to identify clusters;

• A cluster parsing to reduce the size of the matrix (and
memory footprint);

• An on-line prediction approach that uses the re-sized
matrix to assign new services to clusters with low com-
putational requirements;

• A performance and accuracy analysis of the proposed
methods using real-world datasets;

• A use-case implemented in a cloud test-bed, which
demonstrates the benefits of the proposed solution
through a novel scheduling algorithm that employs the
similarity of services to allocate them in the cloud re-
sources.

This paper is a revised and extended version of [3]. While
the general aim remains the same, the technical development
has been significantly extended. Among the novelties, we
highlight the extension of our methodology to detect new
tendencies in the services, which is a key element to define
when to retrain the forest. Retraining is indeed necessary to
preserve accuracy of predictions as new services are deployed
in the system. This extension complements our solution and
would facilitate its deployment in practice. Also the validation
of the proposed methodology was extended with several new
experiments. We show in practice how our solution improves
the performance of the cloud in terms of reduction of Service-
Level-Agreement (SLA) violations and evaluate the retraining
strategy we propose.

The rest of the paper is organised as follows. Section II
discusses the potential uses of the similarity knowledge and
illustrates the requirements of the AC domain. Section III
presents the proposed methodology. Section IV describes the
application of the methodology to real-world datasets and in
the use-case. Section V reviews related works, while Sec-
tion VI draws conclusions and hints at directions for future
work.

II. SIMILARITY KNOWLEDGE AND AC DOMAIN
REQUIREMENTS

In this section, we discuss the benefits of the similarity
knowledge, i.e. a measure of how alike two services are, and
describe the requirements of the AC domain for the solutions
seeking to learn such knowledge from the data. We estimate
a measure of similarity by relying on service definitions, such
as SLAs, and monitoring information. In the domain, this
knowledge is versatile and can either be directly used by
autonomic managers or provided to a clustering algorithm.
Clustering algorithms use the similarity among services to
group them in a way that a service is more similar (in the
considered aspects) to the services in its group than to services
in other groups.

These groups, called clusters, have a wide range of ap-
plication in clouds. For example, they can be employed in
autonomic management for service profiling, which helps to
identify and label clusters according to the patterns of the
services in each cluster, or for supporting service scheduling,
behaviour prediction and efficient identification of possible

TABLE I
CORRESPONDENCE BETWEEN AUTONOMIC CLOUD CHARACTERISTICS

AND REQUIREMENTS FOR CLUSTERING ALGORITHMS.

AC Characteristics Requirements
Security, Heterogeneity, Dynamism Mixed Types of Features

Large-Scale, Dynamism On-line Prediction
Security, Heterogeneity,

Dynamism, Virtualization Similarity Learning

Large-Scale, Multi-Agent Parallelism
Heterogeneity Large Number of Features

SLAs violations. Another use concerns anomalous behaviour
detection, which aids autonomic managers to detect failures or
intrusions, by assuming that the majority of the services are
normal and by looking at the cluster with the most dissimilar
services.

The correlations among services, necessary to cluster ser-
vices, are difficult to extract from raw data and performance
features, especially in the autonomic clouds, since its char-
acteristics limit the available information. We discuss below
its most relevant characteristics and their impact on this
task expressed in terms of requirements; we summarise their
correspondence in Table I.

Approaches to improve security are commonly based on
data cryptography, data anonymisation and control of cross-
layer transmission of information. To learn from such data
a clustering algorithm has to support mixed types of fea-
tures (e.g. discrete, continuous, symbolic). Moreover, virtu-
ally everything can be provided as a service in a cloud
(heterogeneity). Therefore, using only either categorical or
continuous features may lead to clusters that do not distinguish
different services, which hence provide inferior performance.
Alternative approaches to deal with mixed types of features
can rely on the use of pre-processing techniques, such as
discretisation, normalisation or standardisation, and on hand
crafting of new features that combine categorical and con-
tinuous ones. However, these solutions require human expert
intervention and the full understanding of the dataset and
the relationships among features, which are also hindered by
security restrictions, virtualization and service heterogeneity.
Moreover, they require building a new heuristic every time
the autonomic manager faces a new service type. Therefore,
a data-driven similarity learning approach is required in this
domain.

On the other hand, due to the heterogeneity and complexity
of cloud services (indeed, services may be characterised by,
e.g. 100 features), the clustering algorithm should process
them in an acceptable time and should not be invasive on the
system. Therefore, the clustering algorithm needs to support a
large number of features.

Clouds usually are large-scale. To cope with the potentially
big amount of services within an acceptable time, a clustering
algorithm should run in parallel. This also allows to move the
processing elements close to the data sources, thus reducing
the impact on single resources and avoiding unnecessary
network traffic, which is particularly convenient when data
is costly to transmit and store. These are indeed typical
requirements when big data are processed.
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Clouds are inherently dynamic. New services are constantly
added to the system, as the requested resources vary over time
(also due to the pay-per-use business model often employed
in clouds). This would require to re-cluster all services each
time a new service is added, which however is impracticable
due to the large scale of clouds and the inconstant arrival rate
of services. Hence, it is necessary to predict on-line the cluster
to which a new service belongs.

Finally, autonomic computing is agent-based. A clustering
algorithm can then benefit from a multi-agent architecture in
order to conveniently parallelise its workload.

III. AUTONOMIC MANAGEMENT OF CLOUDS WITH
CLUSTERING

To achieve a meaningful measure of similarity among ser-
vices in the context of autonomic clouds, we assume no prior
knowledge. Since multi-dimensional correlations are difficult
to extract from raw data and performance features, we use
clustering methods to learn similarities and identify patterns.
From the range of available clustering algorithms, we have
considered those that (i) can handle mixed data types (contin-
uous and categorical) without human expert intervention, (ii)
are fast both in the training and in the prediction phase, and
(iii) offer high performance (with regard to accuracy).

In this section, we first discuss our choice for unsupervised
clustering with the RF algorithm to address the above re-
quirements, and then we proceed in defining our methodology
based on RF to learn similarities among services and to cluster
services using the obtained similarity knowledge.

A. Clustering as unsupervised machine learning

Machine learning techniques can be categorised in super-
vised and unsupervised.

Supervised approaches infer a function from a labelled train-
ing set consisting of observations for which class memberships
are known. In our context, an observation corresponds to a
service and is denoted as a 1 × f vector x, containing the
values (continuous or categorical) of the f (in number) features
(characteristics) of the services. Classes are the “categories”
of the observations: for instance, “small” and “large” for
virtual machines. The function inferred on the basis of the
training set is then used to determine the class of non-labelled
observations. Evidently, the reliance on a training set, and
in particular its size and labelling quality, directly affects
the performance of the supervised learning technique. This
dependency hinders the adoption of this technique in the
context of autonomic clouds, as manually labelling services,
beyond its substantial cost, is particularly difficult to perform
due to the heterogeneity, dynamism and security aspects in the
domain.

In view of these limitations, in this paper we adopt un-
supervised learning, which is used to find structure and
patterns in data without the need of labelled training data.
More specifically, we propose a combination of a similarity
learning step, to discover a proper measure of similarity among
observations (corresponding, in our case, to services in the
cloud), and a clustering algorithm, to group the observations

according to this measure of similarity. In light of the domain
requirements (illustrated in Section II), as the means to obtain
such notion of similarity we devise a solution based on the
RF algorithm [2].

B. Service Clustering with Random Forest in the AC Domain

The RF algorithm relies on an ensemble of independent
decision trees and was initially developed for regression and
classification. Decision trees are tree-like structures where
at each node an input feature is tested and a decision is
progressed to the left or right branches to a subsequent node.
A terminal node (leaf) contains the final decision (e.g. in the
case of classification a class label). RF has a training and
a prediction step. In its training step, RF uses bootstrapping
aggregation (i.e. re-sampling from the dataset) and random
selection of features to train t decision trees (where t is a
number defined by the human or autonomic manager of the
cloud). In the prediction step, the observations are parsed
through all t trees and the classes of the observations are
defined aggregating the decision of each tree (in the simplest
case a majority rule is used). For details on the classification
and regression algorithms we direct the reader to [2]. In
summary, the main benefits of RF are:

• it supports mixed types of features in the same dataset;
• due to feature selection, it effectively handles data with

a large number of features;
• it is one of the most accurate learning algorithms [4];
• it is efficient and scalable [4];
• it is easily parallelisable.

In [5], Breiman and Cutler proposed an unsupervised ver-
sion of RF. The algorithm works as follows: (i) the training
dataset (original data) is labelled as class one; (ii) the same
number of synthetic observations are generated by sampling
at random from the univariate distributions of the original data
(synthetic data); (iii) the synthetic data are labelled as class
two; (iv) the trees are trained with the original and synthetic
data; and (v) only the original data are parsed through the
trees, which yield the references of the leaves in which the
observations ended up.

What is particularly relevant for our purpose is that this
algorithm generates an intrinsic similarity measure. Intuitively,
the more times two observations end up on the same leaf,
the more similar they should be, as they followed the same
decision nodes.

More formally, the similarity between two observations xj
and xk (where indices j and k are used to refer to two distinct
observations) is calculated as follows. Each observation is
parsed through all t trees of the forest; the leaves in which the
observations end up are annotated as lij and lik respectively,
where i is the index of the tree. Let I represent an indicator
function, which yields 1 if two observations end in the same
leaf in that tree and 0 otherwise. Thus, the similarity between
two observations is defined as:

S(xj , xk) =
1

t

t∑
i=1

I(lij , l
i
k) (1)



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, IN PRESS, ACCEPTED MAY 2016 4

The similarity of all pairs of n observations is calculated,
generating the Similarity matrix Sn×n. The Dissimilarity ma-
trix Dn×n, which is generated from the similarity matrix as
Dn×n =

√
1− Sn×n, is symmetric, positive and lies in the

interval [0,1]. This matrix requires a considerable amount of
fast memory when dealing with large datasets. To address this
issue, Breiman proposed the use of the references of the leaves
in which the observations ended up in each tree, which results
in the Leaves matrix (Ln×t matrix), where t is the number of
trees, and usually n >> t. Therefore, the forest can be built in
parallel and the system can generate the dissimilarity matrix
when necessary.

To cluster the observations, the dissimilarity matrix is
passed as input to a compatible clustering algorithm, for exam-
ple, the Partitioning Around Medoids (PAM) [6]. Otherwise,
the dissimilarity matrix can be transformed into points in
the Euclidean space to be used as input by other clustering
algorithms, e.g. the standardised version of K-means [7]. The
disadvantages of this extra step is the computational cost and
the time necessary to perform the transformation operation.

Due to the scale of autonomic clouds and high arrival rate
of new observations, a very low prediction time is necessary.
The existing unsupervised RF approaches need to re-execute
the whole clustering process for each new observation just to
obtain the similarity of the new observation, which obviously
is impracticable due to the high overhead of this process. In
Section IV-B we compare the performance of our solution to
the standard off-line algorithm.

The alternative is to use on-line RF algorithms, which
learn similarities and cluster observations in an instantaneous
fashion without requiring all data a priori. Unfortunately, the
most known on-line adaptations of the algorithm are compu-
tationally demanding, cannot make fast predictions and are
devised for supervised learning, which is not easily adaptable
and does not suit the requirements of the cloud domain (we
refer to Section V for more details).

In light of these limitations and of the domain requirements,
we propose a novel on-line prediction algorithm based on RF.

C. On-Line Prediction with RF

We propose an efficient on-line prediction solution tailored
to fulfil the requirements of AC (summarised in Table I).
This solution takes advantage of the design of the clustering
algorithm and pre-processes the clustering components to
enable a fast and low memory implementation.

The outcome of the RF similarity learning is the Ln×t

matrix, where n is the number of observations and t is
the number of trees. As n grows, this matrix may grow
significantly and will have a large memory footprint as this
matrix is necessary for the clustering of new services. We
propose a solution which, in the prediction phase, requires
only a new Medoids matrix, Mm×t, where m is the number of
medoids (essentially the number of clusters) and t the number
of trees. Since m << n (typically m ≤ 20), this matrix has a
very small memory footprint.

Our solution, termed RF+PAM, combines the strengths of
similarity learning of RF with the computational benefits of

PAM and is divided in off-line training and on-line prediction,
which are coupled and thus are presented here together.

The training phase, as depicted in Figure 1, consists of the
following steps:

(i) given as input the training set, which is composed of the
original n observations and synthetic data (as described
in the previous section), build a forest with t trees;

(ii) parse the observations (original data) through the re-
sulting forest and yield two matrices: the Dissimilarity
matrix (Dn×n) containing the dissimilarity of all pairs of
observations, and the Leaves matrix (Ln×t), containing
the references of the leaves in which the observations
ended up;

(iii) give the Dissimilarity matrix generated in the previous
step to the PAM clustering algorithm, which yields the
m medoids for the dataset, i.e. the observation of each
cluster which maximises the inter-cluster dissimilarity
(the representative of each cluster);

(iv) from the Leaves matrix (generated by step (ii)) the obser-
vations (vectors) that were chosen as the representatives
of each cluster (i.e. the medoids) are selected to create
a much smaller matrix, the Medoids matrix (Mm×t).

The advantage of this approach with respect to the standard
RF is that we need to store only the forest and the medoids
matrix (Mm×t), which has a much smaller memory footprint.

In the prediction phase of RF+PAM, a new observation is
assigned to the cluster of the most similar medoid, i.e. the
medoid which the new observation ended up in the same leaf
most often, considering all trees of the forest. Figure 2 depicts
the main steps of the prediction phase, which are described
below:

(i) when a new observation x1×f arrives, it is parsed through
the forest, which outputs the leaves vector l1×t contain-
ing the references of the leaves in which x1×f ended up
in each tree;

(ii) together with the leaves vector and the Medoids matrix
obtained in the training phase, the dissimilarity between
each medoid and the new observation is calculated
(dissimilarity vector d1×m);

(iii) the new observation is assigned to the cluster whose
medoid has the least dissimilarity to the new observation,
that is the cluster of the medoid which has the least value
in the vector generated by the previous step.

The benefits of RF+PAM are several: it can be trained
in parallel; it handles, in a data-driven fashion, mixed data
types; and it can provide predictions in a rapid and efficient
manner. In Section IV, we will demonstrate the accuracy and
effectiveness of our approach comparing it with clustering
based approaches that have been used in the context of
service management, but adapted to the problem of service
clustering. Since these methodologies rely mostly on the K-
means clustering algorithm, to isolate and quantify the exact
benefit of similarity learning, we also considered a version of
our RF based approach, termed RF+K-means, which utilises
the K-means algorithm for clustering services and a similarity
measure obtained by RF. Note that we do not necessarily
advocate the use of RF+K-means, but we explained it below
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Fig. 1. Training phase of the proposed RF+PAM solution; notably, only the forest and the Medoids matrix are stored for the prediction phase. Green arrows
indicate the inputs of each step and blue dotted arrows their outputs.

Fig. 2. Prediction phase of the proposed RF+PAM solution. Green arrows indicate the inputs of each step and blue dotted arrows their outputs.

for completeness and for the purpose of providing a fair
comparison with methodologies in the literature. We also use
it as a way to showcase the superiority of relying on PAM in
the context of autonomic service management.

The training phase of RF+K-means uses the same initial
steps of RF+PAM to obtain the dissimilarity matrix. However,
it needs an extra step before clustering. Since the standardised
version of K-means uses the Euclidean distance to cluster
observations, the dissimilarity matrix is first transformed into a
set of points in the Euclidean space using the Multidimensional
Scaler (MDS) algorithm [8]. Thus, the distances between the
observations are approximately equal to their dissimilarity.
Next, the observations are clustered using K-means, which
returns the cluster assignments of the observations. The out-
comes of this phase, which need to be stored, are the leaves
matrix, the forest and the clustering assignments.

The on-line prediction phase of RF+K-means is similar to
the RF+PAM solution. It is composed of the following steps:
(i) it parses the new observation through the trees; (ii) it
calculates the dissimilarity between the new observation and
all original data using the leaves matrix and the result of step
(i), which consists of the references of the leaves in which
the new observation ended up; and (iii) it assigns the new
observation to the cluster with the least average dissimilarity
between the new observation and all the observations in
that cluster. Notably, also this solution calculates only the
dissimilarity of the new observation with respect to the original
data, i.e. it does not require the re-calculation of the whole
dissimilarity matrix.

Although the differences between RF+K-means and
RF+PAM are subtle, the impact is significant. RF+PAM is
faster and has lower memory requirements, as it uses the
medoids matrix, which is much smaller than the leaves matrix
used by RF+K-means. Despite that the requirement of the
MDS step in the RF+K-means can open the road to the

wide range of algorithms that need a Euclidean distance for
clustering, it is computationally demanding.

We conclude this subsection by discussing the issue of
determining the number of clusters. Such issue is ambiguous
and problem dependent. In many cases, the expert of the
domain defines this number according to the particularities of
the problem and to the objectives of clustering. For example,
in cloud service clustering, if a cloud provider offers a fixed
number of different services (e.g. specific applications), the
number of clusters is likely to be this number.

Nevertheless, for a complete autonomic solution, there exist
many techniques for the automatic determination of the num-
ber of clusters. They usually emphasise the intracluster com-
pactness and intercluster separation, and consider the effects
of other factors such as the geometric or statistical properties
of the data [9]. For a review on 30 of these techniques, we
refer to [10]. RF+PAM is particularly effective for most of
these techniques, as only the PAM clustering and the medoid
selection (steps (iii) and (iv) of the training), which are not
computationally demanding, must be re-executed for different
numbers of clusters.

D. When to Retrain?

Since we divided our methodology into training and pre-
diction, and the training phase is off-line, naturally we would
expect at some point the need to retrain the forest. Retraining
requires the definition of a mechanism to recognise when a
forest should be rebuilt. Although this definition is mostly
problem-specific and depends on the available resources and
accuracy requirements of managers, we analyse some ap-
proaches to decide when to retrain RF+PAM.

In RF+PAM, managers may define simple metrics for
retraining, such as time intervals (e.g. every day) or a ratio
between the number of new observations and the number of
observations used to train the forest (e.g. when the number
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of predicted observations is 10 times the number of training
observations, then retrain). However, these solutions may not
consider the evolution in observation patterns. Statistical tools
which verify such changes, e.g. ADWIN2 [11], can be used to
detect new tendencies, but they do not support customisation
according to the user needs (for example, how different is the
new pattern of observations). Therefore, they do not provide
the means to define the trade-off between the cost of retraining
and prediction accuracy.

We thus propose the use of the dissimilarity among new
observations and the cluster medoids to define a measure
of the evolution of observations. The intuition behind the
proposal is that if new observations are far from all medoids,
these medoids (and their clusters) do not represent well the
observations anymore.

More formally, we named this dissimilarity-based measure
as alpha:

α =
p

b

where, p stands for the average dissimilarity during the pre-
diction phase between the new observations and their closest
medoid, considered within a time window (e.g. the dissimilar-
ity of all observations which arrived in the last 30 seconds);
and b represents the average dissimilarity between the training
set and their closest medoid. Note that the computational
cost of measuring α is small. More specifically, b is calcu-
lated only once, i.e. only during the training phase, simply
by: (i) selecting in the dissimilarity matrix the rows of the
medoids; (ii) selecting the dissimilarity values corresponding
to the observations within a particular medoids’s cluster;
and (iii) averaging these values. p, instead, is a natural by-
product of the prediction of each observation (service) and
only requires their cumulative sum within a time window.

The need for retraining, in other words what threshold to
use on α is problem-specific. For instance, in cases where even
small errors are costly and the services’ patterns change often,
even small number of different new services might require
the retraining of RF+PAM. The proposed alpha enables the
manager to adapt it according to their needs and the context.
On one hand, the manager defines a threshold such that, when
alpha is higher than this threshold, the system rebuilds the
forest. On the other hand, the manager defines how much a
single service affects the alpha measure by setting the time
window for p, i.e. it is calculated considering only the new
observations within this time window. Although this solution
needs inputs from the manager, which requires insights on the
dataset, it also provides enough flexibility to achieve a fair
trade-off between prediction quality and retraining costs.

IV. VALIDATION

Our approach has been implemented as an open-source
multi-agent framework written in Python1. Our tool has both
a standalone and a distributed version. In the latter, agents can
be placed in different resources and run in parallel, in order

1Our implementation is available in http://sourceforge.net/projects/rfpam/
along with the framework employed in our use-case, and the results and
additional information about the experiments reported herein.

to speed up the RF training step taking advantage of cloud
resources.

Our experiments are purposely designed to: (i) demonstrate
the importance of similarity learning and appreciate clustering
quality compared to other methodologies when evaluated on a
common dataset; (ii) validate the quality of on-line prediction,
which was trained with less data, comparing to a version which
had all the data available; and (iii) present a use case, in which
we developed a scheduler based on RF+PAM, to demonstrate
the practical applicability of our solution in a cloud setting.

We use two datasets in the experiments, the first 12 hours
of a publicly available dataset released by Google [12] and a
dataset from a grid platform.

Specifically, the Google dataset contains traces from one of
Google’s production clouds with approximately 12500 servers.
The data consists of monitoring data of services in 5 minutes
intervals. To illustrate the content of the dataset we list some
features: CPU and memory usage, number of tasks, assigned
memory, unmapped page cache memory, disk I/O time, local
disk space, task requirements and priority. The complete list
of the features can be found in [12].

The second dataset, made available by the Grid Workload
Archives [13], contains the traces of a grid of the Dutch
Universities Research Testbed (DAS-2)2 with approximately
200 nodes. This dataset consists of requests of resources to
run services and has over 1 million observations. Among the
features available are: Average CPU Time, Required Time,
User ID, Executable ID and Service Structure.

A. Demonstrating the quality of RF based similarity learning

In this section, we evaluated the use of RF for unsupervised
similarity learning in the autonomic cloud domain in an off-
line setting, i.e. all observations are available for the training
of the forest. In particular, we compared the clustering quality
of our solution with two methodologies that used the Google’s
cloud dataset. Since these methodologies use K-means, for a
fair comparison and to illustrate the importance of similarity
learning, we compare here with the variant of our approach,
RF+K-means, which relies on K-means.

The first methodology (Mt1) [14] is divided into four steps:
(i) selection and preparation of the features; (ii) application
of the off-the-shelf K-means clustering algorithm to construct
preliminary classes; (iii) definition of the break points for the
qualitative coordinates based on the results of the second phase
and (iv) merging of close adjacent clusters.

While applying Mt1 in the Google dataset, the authors
selected the CPU and Memory features, transformed into nor-
malised per hour values, and the Duration was normalised and
converted into seconds. In the second step, they heuristically
defined 18 classes that represent the combination of: Small,
Medium, Large for CPU and Memory, and Small and Large for
Duration, and clustered the data points using K-means. In the
third step, they employed these definitions and the clustering
results to define the break points to separate the observations
and, in the fourth step, they merged adjacent classes ending
up with 8 clusters. Evidently, Mt1 cannot be deployed as a

2http://www.cs.vu.nl/das2/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, IN PRESS, ACCEPTED MAY 2016 7

general solution for autonomic clouds given the necessary
expert interventions. However, since it uses the same dataset,
it was considered here for comparison.

The second methodology (Mt2) [15] is defined as follows:
(i) selection of the continuous (numerical) features; (ii) cre-
ation of new features based on the existing ones (even if
redundant); (iii) normalisation of data and (iv) clustering the
data using K-means.

Mt2 has been applied to the considered dataset by defining
the number of clusters as 8. It is clear that in Mt2 the
categorical values are ignored and that the careful selection
of the features is critical; this deviates from the approach
proposed in this paper, which aims at offering a robust and
flexible solution that can accommodate many different settings.

Both methodologies employ K-means for clustering. There-
fore, for a fair comparison and to demonstrate the gain from
defining a dissimilarity matrix (i.e. learning the similarity
between observations), we use as clustering algorithm K-
means rather than PAM. Hence, as already described in
Section III-C, we used the dissimilarity matrix, generated by
the unsupervised RF similarity learning, as the input for the
MDS algorithm, and the resulting Euclidean points as input
for K-means clustering.

For all experiments, we defined the number of clusters
as 8 (as Mt1 and Mt2 did). We considered two variants of
the original dataset, dropping certain features in each case:
Dataset 1 prepared for Mt1 (see the methodology definition),
and Dataset 2 which contains only all continuous features of
the original dataset (i.e. categorical ones are excluded), which
is used by Mt2. Then, we applied our methodology based on
RF to both datasets to compare its cluster quality with the
other two methodologies.
Clustering quality measures. Unlike supervised classification
where several measures to evaluate performance exist, clus-
tering has no widely accepted measure. For Mt1, the authors
used the Coefficient of Variation (CV), i.e. the ratio of the
standard deviation to the mean. However, since each data
dimension has a different CV, which requires an unwieldy
multi-dimensional comparison with large dimensions, such
interpretation is far from straightforward [15]. Therefore, in
alignment with approaches in the clustering literature, here
we report some of the most popular indicators for evaluating
and comparing clustering results.

Connectivity indicates the degree of connectedness of the
clusters. The measure has a value between 0 and ∞, with 0
being the best. Dunn index is the ratio of the shortest distance
between data points in different clusters by the biggest intra-
cluster distance (a high Dunn index is desirable). Silhouette
measures the degree of confidence in the assignment of an
observation; better clustering has values near 1, while bad
clustering -1 (in the literature some works point out that over
0.75 is the best class for an observation). These indicators (and
others) are analysed in [16], which recommends the Silhouette
measure for the evaluation of noisy datasets.

Table II summarises the results of the experiments on the
methodologies detailed above. These results show that RF+K-
means performed considerably better on both datasets, con-
sidering any of the evaluation criteria, when comparing to the

TABLE II
QUALITY OF CLUSTERING WITH RF+K-MEANS.

Dataset 1 Dataset 2
Mt1 [14] RF+K-means Mt2 [15] RF+K-means

Connec. 53.33 33.42 32.26 25.89
Dunn 0.01 0.08 0.06 0.15

Silhou. 0.67 0.98 0.89 0.99

other two methodologies. Similarity learning here outperforms
the other approaches, leading to better defined clusters, even
when projected to the Euclidean space with MDS. These
results also demonstrate that our approach works well in the
considered application domain. We should also note that, for
a fair comparison, only the continuous features of the datasets
were used, although our RF solution is able to handle also
categorical ones.

B. Evaluating the RF based on-line prediction

To assess the performance of the on-line prediction of
RF+PAM, we conducted experiments to verify the agreement
between two set-ups of the algorithm: a benchmark set-up
where all the data are available for training/prediction, and
another set-up where only a subset of data is available for
training and the remaining data is used for testing. We use
the former set-up to obtain a ground truth cluster assignment,
since all information is available and we cannot expect the
algorithm (with less data for training) to perform better than
that. We evaluate the on-line prediction by measuring whether
unseen observations (not included in the training set) ended
up in the same cluster as assigned by the benchmark set-up
that gave the ground truth. Thus, accuracy in this context is
measured as the agreement in the cluster assignment.

In the experiment, we first use all observations and obtain
the cluster assignments for the benchmark set-up. We proceed
carrying out a K-Fold cross-validation strategy to evaluate the
agreement. K-Fold cross-validation divides the dataset in K
partitions. It reserves one partition for testing and uses the
other K− 1 for training the trees and learning the similarities
and clusters. We execute the following steps K times, every
time using a different K-th partition:

1) Train a forest using the data in the K − 1 partitions and
obtain cluster assignments;

2) Predict the cluster assignment of the observations belong-
ing to the K-th partition using the on-line RF methodol-
ogy;

3) Compute the Adjusted Rand Index (see below for details)
between the results of steps 2 and the ground truth of the
benchmark set-up.

To illustrate the power of PAM, we compare the results
of the above process, using RF+PAM and RF+K-means. A
measure of quality for comparison of clustering methodolo-
gies is the Adjusted Rand Index (ARI), which quantifies the
agreement of the clusters produced by each methodology.
The maximum value 1 indicates that two results are identical
(complete agreement); value 0 indicates results equivalent to
random; the minimum value −1 indicates completely different
results. For more details, we refer to [17].
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TABLE III
CLUSTERING AGREEMENT RESULTS BETWEEN THE GROUND CLUSTER

AND THE PROPOSED METHODOLOGIES.

Google Dataset DAS-2 Dataset
K RF+PAM RF+K-means RF+PAM RF+K-means

100 0.81 (0.32) 0.50 (0.37) 0.70 (0.23) 0.52 (0.21)
50 0.75 (0.19) 0.45 (0.19) 0.68 (0.17) 0.54 (0.18)
20 0.73 (0.09) 0.43 (0.11) 0.67 (0.11) 0.47 (0.08)
10 0.70 (0.06) 0.43 (0.13) 0.63 (0.09) 0.44 (0.09)
5 0.69 (0.05) 0.42 (0.06) 0.61 (0.07) 0.41 (0.01)

Table III presents the results of the experiments considering
both Google and DAS-2 datasets. The results are averaged over
all K-Folds and presented along with the standard deviation
(reported within parenthesis). RF+PAM performs significantly
better in the tests. This difference is due to the reliance of
the K-means version on MDS to lower the dimensions and
construct a Euclidean distance. Since many features are used,
the dimensionality reduction step and embedding the observa-
tions in linear space (from unfolding the higher dimensional
manifold), achieved with MDS, lead to poorer separability of
the clusters.

Notably, these datasets are examples of real-monitoring
data from the cloud domain and are not (manually) prepared
(via, e.g. transformation or removal of categorical features).
When comparing the results of the two datasets we see clear
improvements with high dimensional data (Google’s dataset).
It indicates that RF is able –without heuristic or manual
expert intervention to prepare the dataset– to benefit from the
additional information contained in the features to cluster the
data (through similarity learning) and can, dynamically, adapt
to scenarios where the relation among features changes.

To further highlight the importance of the categorical fea-
tures in aiding cluster separability, we repeated the previous
experiments excluding categorical features from the datasets.
In this case the ARI of the on-line and off-line solutions
using the datasets without the categorical variables was 10 -
15% when compared to use all features. This suggests that
the information contained in these features is important to
improve clustering quality and the performance of the on-line
solution. In this regard, we re-emphasise the importance of
accommodating a mix of categorical and continuous features
in autonomic cloud computing.

C. Cloud Use Case

To demonstrate the applicability of the on-line RF+PAM
methodology in a practical real AC setting, we propose a
scheduling algorithm based on the similarity between services.
Intuitively, the scheduler assigns an incoming service to the
node executing the most dissimilar services, thus avoiding
race conditions for the node’s resources. For each node, the
scheduler averages the dissimilarity between the new service
and the services running in that node, then it assigns the
service to the node with the highest average dissimilarity. In
these experiments, the calculation of the dissimilarity among
services is based on their SLAs.

The scheduling steps are detailed in Algorithm 1. The
scheduler receives as parameter the new service (nSer) and

the list of nodes (node list), which also contains the list
of the services running in each node. Then, it clusters the
new service and calculates, for each node, the dissimilarity
between the new service and all services running in that node.
According to the RF+PAM methodology, this dissimilarity is
calculated between the new service and the cluster medoids
of the running services. Then, if there is at least one service
running in the node, the total dissimilarity is divided by the
number of services. Otherwise, since no service will compete
for the same resource, the dissimilarity for the node is defined
as 1.1 to prioritise it in the assignment phase (as the maximum
dissimilarity is 1).

Algorithm 1 Calculate the dissimilarity between a new service
and the services running in the nodes of the cloud.

1: procedure CALCULATE DISSIMILARITY(nSer, node list)
2: nSer.c ← CLUSTER SERVICE(nSer.SLA)
3: for node in node list do
4: node dissi ← 0
5: for s in node do
6: d ← dissimilarity(nSer, s.c)
7: node dissi ← node dissi + d
8: if node dissi > 0 then #Average Dissimilarity
9: node dissi ← node dissi / len(node.Sers)

10: else #No Services in the node, best case
11: node dissi ← 1.1
12: nodes dissi.append([node,node dissi])
13: ASSIGN SER(nSer, nodes dissi)

In the assignment phase, the scheduler assigns the service to
the node with most dissimilar services, after verifying whether
it has enough resources to run the service. When no node
is available, the service joins a waiting list. When a service
terminates, the scheduler selects the compatible service from
the waiting list with the highest dissimilarity to the services
running in the node (not considering the terminated ones).

We employed these concepts in a framework that coordi-
nates the execution of services. In our use case, services are ap-
plications executed in a cloud defined by SLAs, which specify
service descriptions and quality of service requirements using
the SLAC language [18]. The framework has a central sched-
uler that receives service requests and schedules them. More
specifically, when it receives a new service, it communicates
with the RF+PAM implementation to request the clustering
of the service, which is performed based only on the features
specified in its SLA. Other information, such as monitoring
data, can be used for the clustering process; however, since in
our use case most services have a short duration, collecting and
analysing monitoring data would generate a high overhead.
With the clustering knowledge, the scheduler assigns the
service to the corresponding node and sends it to an agent
deployed in that node. Afterwards, it configures the monitoring
system (in our framework we exploited Panoptes [19]) to
monitor the services and to send the collected information
to the scheduler. Finally, the scheduler uses this monitoring
information to manage the services, as depicted in Figure 3.

The experiments were conducted in a cloud using the
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Fig. 3. Similarity Scheduling in the developed framework.

OpenNebula3 tool and 2 physical machines with different
hardware configurations, providing 14 heterogeneous VMs in
which the agents of the framework are employed to execute
services.

To assess the performance of the Dissimilarity scheduling,
three other scheduling algorithms were used. In the first sched-
uler, named Isolated), each service runs without any other
service in the same VM, thus having all resources available for
the execution of the service. This algorithm was implemented
to serve as the lower bound of the results, i.e. the best possible
case since the services are executed without interference from
each other. The second algorithm, the Least Loaded, assigns
services to the node with the least number of services. Finally,
the third scheduler (named Random) assigns the services
randomly to the nodes. Notably, all four algorithms rely on
the resource admission control, so that services are assigned
only to machines that have enough resources to run them.

In the experiments, the services are generated based on
the distribution of the Google’s cloud dataset [12] at the
beginning of every round of tests and the same services are
executed using all four described algorithms. Each service has
an associated SLA, which is generated along with the service,
based on an estimation of the resources necessary to finish
the service within the completion time. The created features
are: CPU, RAM, Requirements, Disk Space, Completion Time
and Network Bandwidth. The services in the experiments are
of different types, such as web crawling, word count, machine
learning algorithms, number generation and format conversion,
which are close to real-world applications [20].

In real-world clouds, services arrive in variable intervals.
In our scenario, we assume that the services’ arrival is a

3http://opennebula.org

Poisson process, i.e. the time between consecutive arrivals has
an exponential distribution with parameter λ. Intuitively, the
higher λ is, the more often services arrive; e.g. for λ set to 0.2
a service arrives in average every 5 seconds, while for λ set to
1 the same happens on every second. We created three different
scenarios varying the value of λ to analyse the performance
of the algorithms with different loads: Low (λ = 1), Medium
(λ = 2) and High (λ = 3) arrival rates.

The algorithms were run 10 times, each execution using the
same services for all algorithms. Since we considered different
numbers of services, we executed this method for each number
of services in each of the three scenarios.

Figure 4 shows the total execution time of services in
the different scenarios considering different number of ser-
vices.Notably, such overall time does not correspond to the
time necessary to execute (possibly in parallel) all services, but
it is calculated by summing the execution time of each single
service. The Dissimilarity scheduler performs significantly
better than the Random (in average 59%) and the Least Loaded
(in average 36%). Note also that Dissimilarity is in average
only 14% worse than lower bound, i.e. the Isolated scheduler:
a scheduler that assumes ideal, but impractical and wasteful,
conditions where a service is executed alone.

The results of all experiments suggest that the Dissimilarity
scheduler performs better when the cloud is not overloaded
since it has more options to allocate services in the node with
the most dissimilar ones. However, even with high arrival rates
(worst case scenario for this scheduler) and with a high number
of input services, our solution performs significantly better
than the Random and the Least Loaded ones as it allocates the
services that use different resources together. This approach
reduces the competition for the resources of the node, thereby
improving the cloud’s performance.

In real-world deployments, other aspects of services, such
as service priority or SLA violation probability, must be
considered for designing a scheduler. Yet, our results suggest
that more complex schedulers can benefit from integrating
dissimilarity scheduling in their solutions.

1) SLA Violations: The performance comparison previously
discussed provides insights on the performance advantages
of our scheduler. Here, we show the impacts of RF+PAM
on a production system from the viewpoint of quality of
service. To this aim, we used the same set-up to compare
the algorithms considering the number of SLA violations.
Moreover, we exploited the SLAC Framework [18] to support
the specification and evaluation of SLAs.

For each service, an associated SLA is created based on an
estimation of the resources necessary to complete the service
within the specified completion time. This estimation was
performed beforehand through a benchmarking of each type of
service using different resources of the cloud. The SLA metrics
in the service definition are: CPU, RAM, Requirements, Disk
Space, Completion Time and Network Bandwidth.

After a service is scheduled, the framework configures the
monitoring system to collect information about the new service
and to send the collected information to the SLAC Framework,
which periodically evaluates its SLA.
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Fig. 4. Total run time of the scheduling algorithms in different scenarios.
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Fig. 5. Total number of SLA violations for the scheduling algorithms in different scenarios.

TABLE IV
AVERAGE NUMBER OF SLA VIOLATIONS AND VIOLATION REDUCTION OF
THE DISSIMILARITY COMPARED TO THE LEAST LOADED SCHEDULER IN

DIFFERENT SCENARIOS.

Scenario Random Least Loaded Dissimilarity Violation Reduction
Low 36.8 30.0 16.3 45%

Medium 60.9 53.2 20.1 62%
High 72.1 67.8 32.9 51%

The results of these experiments are shown in Figure 5
and Table IV. Using the Dissimilarity methodology, the SLA
violations were reduced up to 62% and on average by 52%.
The experiments again confirm that the Dissimilarity scheduler
performs better when the cloud is not overloaded.

We also performed experiments using different numbers of
clusters, namely 4, 6 and 10, in the same use case. However,
due to the nature of our use case, in which we try to identify
the server with most different services, the results of the
scheduler with different numbers of clusters are similar to the
results of these experiments. Therefore, we do not show these
additional results in the paper.

2) Detecting new Tendencies on Services via the alpha
Measure : Our methodology can be beneficial for the au-
tonomic management of the cloud system also in the long
run, where the arrival of many new services may affect the
accuracy of predictions. Indeed, as explained in Section III-D,
the accuracy can be preserved by retraining the forest. Thus,
to provide insights of the proposed retraining measure alpha,
we conducted further experiments using the previous scenario.

In these experiments, we calculate the measure α of the new
services and the number of SLA violations. To emphasise the
need of retraining, after a fixed amount of time we purposely
modify the distribution of the SLA metrics of the generated
services to create a new tendency. This is done to demonstrate
in practice the changes in α and their impact on the number
of SLA violations. Also, in the experiments, to show that
after retraining the approach well adapts to the new tendency,
we retrain the forest after detecting the change using α. In
particular, we retrain the forest using the new services together
with the services used in the training phase, using a buffer of
2 minutes.

We compare our Dissimilarity algorithm with the Random
one, because the latter does not need retraining and does not
rely on prior knowledge, i.e. it should be unaffected by the
change of patterns. The test considered 600 services, in a the
High arrival rate scenario, and using a time window of 30
seconds. We run the experiments 5 times and averaged the
results.

The results are reported in Figure 6. The number of viola-
tions with the Dissimilarity scheduler after the new tendency
(change of patterns) grew considerably. After retraining, the
number of violations was considerably reduced, achieving
similar performance as to the one prior to the new tendency.
This suggests that the algorithm adapted well to changing
tendencies. Violations with the random algorithm, instead,
remained almost stable: it performed poorly before and main-
tained poor performance even with the new tendency. In any
case, our Dissimilarity scheduler always performed better than
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Fig. 6. Number of SLA violations and α measure trends in presence of patterns change and after retraining the forest.

the Random one. Remarkably, the increase in SLA violations
for the Dissimilarity scheduler is also captured within the
α retraining measure (Figure 6, plot in the right-hand side),
which is completely agnostic of SLA function and concept.
Observe how the α measure changes trend (increases) as soon
as new patterns appear and it is correlated with the number
of violations. This shows that α can be used as a suitable
proxy for the number of SLA violations, and that by setting a
threshold the manager can decide at which point to retrain the
forest in order to prevent higher number of SLA violations.
Interestingly, similar analysis can be done for any metric
suitable to the application (for example, power consumption
or renting cost) and a manager can set suitable thresholds on
α for that. This demonstrates the versatility of the proposed
framework.

V. RELATED WORKS

A. Methodology

Among the unsupervised solutions, according to the domain
requirements, we look for an algorithm that can process data
fast, handle mixed types, support a high number of features,
and, ideally, process data in an on-line fashion. For an exten-
sive review on the existing unsupervised learning techniques
we refer to [21] and, specifically for on-line clustering, to [22],
[23].

Clustering: Few existing clustering solutions handle mixed
types of data (e.g. [24], [25], [26]). In particular, the majority
of the existing on-line clustering algorithms which handle
mixed data types cannot handle cases with a large number of
features. For example, the HClustream [26] algorithm presents
poor performance results even with 10 features [27].

Another common approach to deal with mixed data types
is to devise data-driven solutions that can learn similarities
among observations (we refer to [28] for a detailed review on
them). However, these solutions either require information a
priori about the data (known as supervised similarity learning),
which is not available in our context, or are computationally
intensive and hence do not scale well to large-scale systems.

Random Forest: Related works which propose or employ
unsupervised RF (e.g. [29], [30], [31], [32], [5]) need to re-
execute the whole clustering process for each new observation
to obtain the dissimilarity, which obviously is impracticable
due to the high overhead of this process (it may take several
minutes to cluster a single new observation). In Section IV-B
we demonstrate quality of our clustering methodology in
comparison to the standard off-line solutions. The most known
on-line adaptations of the RF algorithm ([33], [34], [35],
[36], and even the most recent one [37]) are computationally
demanding and cannot make fast predictions. Moreover, all
these approaches are devised for supervised learning, which
is incompatible and difficult to adapt to the unsupervised
approach since: (i) they create pruned trees with maximum
depth; and (ii) the observations in intermediate leaves should
be re-parsed on every new split and the observations re-
clustered.

B. Applications of Clustering and Similarity in Clouds
Here, we discuss the relevant literature in the cloud domain

that uses a notion of similarity to support decision systems
with knowledge. Note that this paper’s focus is not on es-
tablishing a scheduler, a service profiling methodology, etc.,
but to propose a service clustering methodology supporting
autonomic management of clouds, and to show its applicability
in the domain. Thus, we may think the reviewed approaches
using the concept of dissimilarity as possible applications of
our methodology.

Scheduling: In the service scheduling field, several works,
e.g. [38], [39], [40], [41], [42], use a measure of similar-
ity. However, they consider only numerical features and, as
discussed in Section II, the domain requires the support of
different types of features. In [20], the authors manually
combine features and employ a supervised Incremental Naive-
Bayes classifier to assign a service. However, this approach
depends on the hand-crafted combination of features, which
is problem-specific, and on several parameters defined by the
administrators.

In [43], the authors propose an interesting scheduling ap-
proach, named Paragon, that supports heterogeneity of re-
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sources and services, and analyse the interference of co-
scheduling services into the same resources. They employ a
different notion of similarity based on the performance of ser-
vices, borrowing ideas from collaborative filtering. Similarity
is considered based on how a service x has run on hardware
specification A. By pooling (on training time) these values,
they can extract recommendations for scheduling assignment
relying on SVD – a powerful decomposition technique, which
is computationally demanding and whose distributed versions,
beyond recent developments in randomised SVD, are not
common. Instead, by relying on random forest (and trees),
our approach can be trained in parallel and trees have many
inherent mechanisms to deal with missing values built-in, not
requiring iterative refinements as the approach in Paragon
necessitates. Moreover, the solutions can be used together
since the similarity notion of Paragon can also be built upon
our solution.

Service Profiling: Most approaches in this are are problem-
specific, e.g. [44], [45] focus only on VMs. Hence, they
cannot cover the diversity of the services and the heterogeneity
of clouds. The solution of Kahn et al. [46] on workload
characterisation clusters workload patterns by their similarity.
However, their similarity clustering algorithm is based on
simple heuristic metrics to accommodate VMs, which does
not cope with the dynamism of the AC domain.

Anomalous Behaviour Detection: In [47], [48], the authors
use a heuristic notion of similarity to cluster service requests
and detect anomalous behaviours. Similarly, Wang et al. [49]
propose a methodology to detect anomalies for Web appli-
cations in which the similarity among the workloads is used
to detect problematic requests. However, those works do not
consider different types of features.

In summary, most works in cloud which employ a notion
of similarity implicitly assume: homogeneity on the resources
and services; preparation and normalisation of the data for the
clustering process; and good representation of the relations of
data features. Our clustering solution, instead, does not rely on
these assumptions and is not problem-specific. Thus, it can be
used with any kind of service. Therefore, we advocate that our
solution, or an adaptation of our approach, could significantly
improve decision-making in autonomic clouds.

VI. CONCLUSIONS

In this paper, we developed a methodology to feed au-
tonomic cloud managers with knowledge on the similarities
among services and their clusters. This knowledge has a
wide range of applications in the domain, e.g. for anomalous
behaviour detection, service profiling and service scheduling.

To feed the autonomic managers with such knowledge, we
devised a novel clustering methodology based on RF and
PAM. We validated it through several experiments, which used
real-world cloud datasets. Our methodology shows significant
benefits: superior performance, low memory footprint, support
for mixed types of features, support for a large number
of features and fast on-line prediction. To demonstrate its
applicability in the domain, we implemented and tested a
scheduling algorithm for a test-bed cloud, which uses the
notion of similarity to assign incoming services.

As future works, we will investigate the characteristics of
RF, such as variable importance and feature selection, to
improve our methodology. We also plan to apply our solution
to the management of services, utilising RF+PAM to dynam-
ically calculate the SLA violation risks, and to improve the
dissimilarity scheduler to consider other aspects of the cloud
domain including the sensitivity of the services to hardware
configurations and priorities.
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