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Abstract 

The power clean is a component of the clean and jerk Olympic lift and is 

also commonly utilised in training programs for several sports. Few 

studies have explored electromyographical (EMG) activation of the major 

muscles used during this exercise. The aim of the present study was to 

examine muscle activation during the power clean for the following 

muscles: gastrocnemius (GS), vastus lateralis (VL), transversus abdominis 

(TA), multifidus (MU), erector spinae (ES) and trapezius (TR). Eight 

experienced lifters performed five maximal voluntary contraction (MVC) 

exercises followed by three sets of three power clean repetitions at 70%, 

80% and 90% 1RM. There was a significant increase with load for peak 

EMG of ES and GS and mean EMG of GS and VL. This suggests that 

athletes targeting the ES, GS and VL in their strength training could 

potentially benefit by increasing intensity from 70 to 90%. There was no 

evidence to suggest that this intensity increase benefits the TA and MU 

muscles. The power clean produced significantly higher peak values than 

the MVC exercises for the MU and ES muscles, suggesting that it could be 

used as both a strength training exercise for these muscles and an MVC 

exercise in future studies. 
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1. Introduction 

 

Weightlifting is a popular sport worldwide, with aspects of weightlifting technique 

being used frequently in the training of competitive and recreational athletes, and in 

particular in sports that require high instantaneous power production. The power clean 

is a component of the clean and jerk Olympic lift, during which the bar is lifted from the 

ground up to the shoulder in a continuous motion. With extended elbows and a pronated 

grip, the power clean begins with a forceful extension through the hips and knees to lift 

the bar from the ground. The athlete then pulls the bar upwards until it is ‘caught’ on the 

anterior deltoids via rotation of the arms around and under the bar as the hips and knees 

flex into a quarter squat position (Baechle and Earle, 2008).  

 

There is a substantial body of electromyography (EMG) research for a range of different 

movements. It is well established that there is a positive relationship, although not 

always linear, between EMG activity and muscular force (Robertson et al., 2004). It has 

also been shown that muscular exercises can cause an increase in EMG activity and in 

the development of muscular strength. For example, Santtila et al. (2009) reported that 

eight weeks of strength training increased muscle force and EMG activity in the triceps 

brachii of soldiers. 

 

One previous study explored EMG activity during the power clean, power snatch and 

their comparative Olympic versions (Hakkinen and Kauhanen, 1986). It was reported 

that lifting techniques changed greatly with barbell load. EMG activity of the 

gastrocnemius (GS), the vastus lateralis (VL), the biceps femoris and erector spinae 

(ES) was similar in the power clean and Olympic clean, with only minor differences 

between phases of the different exercises. Given the nature of the clean, it would not be 

unreasonable to assume that, in addition to the GS, VL, and ES, some of the other 

primary muscles involved are the transverses abdominis (TA), the multifidus (MU) and 

the trapezius (TR).   

 

The GS assists with the transfer of force into the ground and plays an important role in 

plantar flexion around the ankle during the later part of the pull of the power clean, 

when the whole body goes into full extension. Bilodeau et al.(1994) noted higher EMG 

frequency with increased force in the GS of non-athletes during both the ramp and step 

increases in isometric plantar flexions. 

 

The VL plays a key role in the extension of the knee. It is believed that this is one of the 

major muscles involved in the power clean technique as it generates force and 

momentum throughout the pull phases of the power clean and plays an eccentric role 

when catching the bar on the shoulders. Paoli et al. (2009) studied the effect of load 

during the back squat and found that VL activation increased with load. Increased load 

during the power clean is likely to elevate EMG activity of the VL in a similar way to 

the back squat given the similarity in movements.  

 

The TR is thought to have a substantial role in the bar movement, particularly during 

the later pull phase of the clean. The middle fibres play the major role in suspension of 

the shoulder girdle mainly due to their size and ability to apply the necessary loads to 

the mechanisms formed by the scapula and clavicle (Johnson and Pandyan, 2003). 



Hagberg and Hagberg (1989) reported TR EMG activity increased with load during 

isometric shoulder shrugs. 

 

Trunk muscles are expected to contribute in stability and force transfer from the lower 

to the upper body. Previous research has shown trunk muscle activitation to increase 

with load (Anderson and Behm, 2005; McCook et al., 2007; Nuzzo et al., 2008; 

Willardson et al., 2009). Anderson and Behm (2005) studied trunk muscle activity 

during the squat with stable and unstable conditions and found that ES activity 

increased with load. Nuzzo et al. (2008) reported similar results with the MU displaying 

progressively greater activation during 50%, 70%, and 90% of one repetition maximum 

(1RM) lifts. However, Willardson et al. (2009) found ES activity to be similar between 

unstable 50% 1RM and stable 75% 1RM squats, dead-lifts and overhead press. The 

discrepancies between studies could possibly be attributed to different methodologies or 

the variability of the technique used by participants during squats. McCook et al. (2007) 

found that muscle activation increased with load in the TA/IO (transverse 

abdominis/internal oblique) during trunk flexion and in the MU and ES during trunk 

extension. During maximal voluntary contraction (MVC) the EMG of antagonist 

muscles increased during both flexion and extension with no difference in the TA/IO 

during the two phases. The latter suggests that for maximal efforts the TA/IO is required 

to increase intra-abdominal pressure in equal amounts for movements in both directions. 

As the TA does not have a significant moment arm for flexion or extension (Urquhart 

and Hodges, 2005) it contributes to enhanced spinal stability via modulation of tension 

in the thoraco-lumbar fascia (Hodges et al., 2005). Granata and Marras (1995) noted 

that co-contraction increases with movement velocity, something that may happen 

during the power clean and is also associated with greater intra-abdominal pressure. 

 

Despite its popularity and frequent use in training programmes, research on the muscle 

activation during the power clean exercise is scarce. Thus, the purpose of this study was 

to examine muscle activation for different loading conditions during the power clean 

exercise for the following muscles: GS, VL, TA, MU, ES and TR. The loading 

conditions of 70%, 80% and 90% 1RM were chosen, as they reflect a range of training 

intensities frequently used by elite and recreational athletes. 

 

2.  Methods 

 

Eight male participants volunteered for this study (25.1±3.2 years, 185.6±6 cm, 

86.4±11.8 kg). All participants were involved in competitive sports, were free of 

injuries and had substantial experience in weight training (3.9±1.1 years) and the power 

clean (3.2±1.7 years). The protocol was approved by the institutional ethics committee 

and written informed consent forms were obtained before the study commenced. 

 

Participants began with a standardised 5-minute warm-up on a cycle ergometer 

(Matheson et al., 2001). This was followed by a range of dynamic exercises, including 

familiarisation with all the exercises used during the test. The sites for the electrodes 

were shaved and abraded with alcohol wipes. Surface EMG amplifier electrodes 

(SX230 1000, Biometrics, Gwent) were attached to the skin on the self-reported 

dominant hand side of participants following recommendations from the literature 



(Seniam, 2015). EMG signal was recorded (1000 Hz) and processed through the W4X8 

Datalog system (Biometrics, Gwent). 

 

The initial MVC trial took place on an isokinetic dynamometer (Cybex Humac Norm, 

CSMI Medical Solutions, USA). The VL surface electrode only was attached at this 

time. The VL was chosen so as not to hinder the movement pattern of the power clean 

or damage the electrodes when the bar comes into contact with the anterior surface of 

the quadriceps during the clean. The electrode was placed superior to the lateral side of 

the patella and 66% down the line from the anterior spina iliaca. Two practice trials 

were followed by five seated unilateral isokinetic (contraction/contraction) knee flexion 

trials at a speed of 90 degrees/second (Pincivero et al., 1997). Range of motion stops 

were placed at the point where the participant’s knee was at full extension and at 90º of 

flexion (Matheson et al., 2001). 

 

The 5 remaining electrodes were then attached to the skin of the participants. Bressel et 

al. (2011) stated that the transverse abdominis could not be isolated using surface 

electrodes and identified the placement as transverse abdominis/internal oblique 

(TA/IO). Marshall and Murphy (2003) also note the lack of a clear fascial separation of 

the two muscles therefore terming them as fused. Therefore in the current study the TA 

electrode is abbreviated as TA/IO from this point onwards.  

 

The remaining MVC trials consisted of four sets of five-second isometric contractions 

interspersed with five-second relaxation periods, with 100-second rest periods between 

MVC trials (Matheson et al., 2001; Wong and NG, 2005). The GS MVC was measured 

using maximal bilateral plantarflexion on a Cybex Seated Leg Press (USA) with the 

ankle joint remaining at 90° (Kawakami et al., 1998).  The TA/IO MVC was measured 

using trunk flexion on a Life Fitness Abdominal (USA) at a hip angle of 10° (Bressel et 

al., 2011). The MU and ES MVC were measured using trunk extension on a Life 

Fitness Back Extension (USA) at a hip angle of 0° (vertical) ° (Bressel et al., 2011). 

Lastly, the TR MVC was measured using maximal bilateral barbell shrug with 100% of 

1RM (Andersen et al., 2008). 

 

Each participant was then given a five-minute period to complete a power clean-specific 

warm up. A Panasonic SDR-S50 video camera (Panasonic, Indonesia) was 

synchronised to the EMG system through an IS2-LAD optical synchronisation cable 

using a start switch (Biometrics, Gwent). This allowed subsequent distinction of the 

beginning and end of the power clean movement. Participants then completed sets of 

three repetitions at 70%, 80% and 90% of their 1RM in a randomised order. The 1RM 

was the highest load the participant had achieved in the two months before the study. 

Three repetitions, rather than a single repetition, were performed for each load to 

provide a more accurate reflection of muscle activation. EMG signal obtained through 

three repetitions has been found to have very high reliability for a range of exercises 

(e.g. maximal or sub-maximal voluntary contractions, jump landings and cuttings) for 

trunk muscles, hamstrings and quadriceps (Dankaerts et al., 2004; Fauth et al., 2010). 

Three repetitions were therefore considered appropriate for the present study. Foot 

placement was standardised at shoulder width and hand placement at 7cm away from 

the inner edge of the barbell grip with a pronated hand position. Three-minute rest was 

provided between sets to minimise any fatigue effects (Caterisano et al., 2002).  



 

The data for all power clean sets and MVC trials was rectified and low-pass filtered 

with a cut-off frequency of 25 Hz. The mean and the peak EMG values of the three reps 

were calculated for each load. All data were normalised as a percentage of the highest 

EMG value recorded during either the MVC or the power clean trials.  

 

The Shapiro-Wilk test was used to assess normality of distribution. For parametric data, 

a repeated measures ANOVA was used for each individual muscle to compare the three 

loading conditions. When sphericity was violated the Greenhouse-Geisser adjustment 

was applied. Post-hoc comparisons were performed to compare all pairs of load 

conditions and the Bonferroni adjustment was applied to eliminate the possibility of 

type I errors. Non-parametric data was analysed using a Friedman’s ANOVA and 

significant differences between pairs of load conditions were explored through a 

Wilcoxon signed-rank test. To provide an indication of the magnitude of the differences, 

the effect sizes (d) for all statistically significant differences were calculated based on 

Cohen’s suggestions, with each pooled SD being calculated as described by Field 

(2009). In line with Cohen’s recommendations, effect sizes of a magnitude of 0.2, 0.5 

and 0.8 were considered small, moderate and large respectively. For all statistical 

analyses significance was accepted at p≤0.05. 

 

3. Results 

 

The MU (p=0.033) and ES (p=0.009) had significantly higher peak values during the 

power clean than during the isolated MVC exercises (IME). Interestingly, the highest 

EMG values for the VL and TA/IO were also recorded during the power clean for all 

participants, although not being significantly different to those of the IME. The highest 

EMG values for the GS and TR were recorded during the IME and were not 

significantly different to those recorded during the power clean exercise.  

 

The peak and mean EMG values are shown in Figures 1 and 2, respectively, with the 

statistical tests shown in Table 1. Figures 1 and 2 illustrate a trend for increased EMG 

with load for the GS, VL, ES and TR. However, increases in peak EMG were 

significant between loads for the ES and GS only. Post hoc tests for the ES peak values 

revealed significantly lower values with a large effect size for the 70% compared to 

both the 80% (p=0.012, d=0.91) and 90% loads (p=0.027, d=1.08). Post hoc tests for the 

GS peak values revealed significantly lower values for the 70% load than for the 90% 

load only (p=0.027, d=0.59).  

 

For the mean data significant differences between loads were found for the GS and VL. 

Post-hoc tests for the GS revealed significantly lower values for the 70% compared to 

both the 80% load (p=0.016, d=0.25) and 90% loads (p=0.016, d=0.64). There was no 

significant difference for the VL pairwise comparisons, with just the comparison 

between 80% and 90% approaching significance (p=0.074, d=0.35). The average group 

values for the mean EMG for all muscles ranged between 20-35% of the peak values. 

 

 

 

 



Table 1: Statistical Tests for Peak and Mean EMG Data 

Peak EMG p F or χ2 DF 

 

Mean EMG p F or χ2 DF 

GS 0.030* 7.00 2 

 

GS 0.018* 7.75 2 

VL 0.079 7.50 2 

 

VL 0.045* 3.62 1.3 

TA/IO 0.416 0.94 1.2 

 

TA/IO 0.905 0.10 2 

MU 0.740 0.31 2 

 

MU 0.895 0.11 2 

ES 0.010* 9.00 2 

 

ES 0.168 2.29 2 

TR 0.199 1.82 2 

 

TR 0.264 1.47 2 

p: significance value; F or χ2: test statistic; DF = degrees of freedom.  

 * indicates that the 3 conditions are significantly different. 

 

 

 
Figure 1: Peak±SD EMG amplitude (%MVC) for each muscle across the three loads. 

 

 

 



 
Figure 2: Mean±SD EMG amplitude (%MVC) for each muscle across the three loads. 

 

4. Discussion 

 

For the peak EMG values, GS activation increased between the 70% and 90% loads, 

with ES activation was also higher at 80% and 90% than at the 70% load. The latter is 

in agreement with previous studies suggesting that loads greater than 75% 1RM elicit 

increased ES activation (e.g. Willardson et al., 2009). As these were the only significant 

differences in peak values, it could be suggested that when producing the extra force 

and stability required to lift heavier loads, the ES and GS seem to be the main muscle 

groups that require increased peak activation. Interestingly, despite the difference in the 

peak ES values, the increase in the mean ES values was not significantly different 

between loading conditions. This suggests that with increased load there is higher EMG 

activity in some phases of the lift, but seems to be poorly maintained throughout the 

muscle’s range of motion. To further our understanding with respect to when such 

increases may occur, future studies could perhaps split the power clean into different 

phases and calculate the EMG values for each phase. 

 

The mean EMG values showed a significant increase with load for the GS and VL. GS 

activity was higher at the 80% and 90% than the 70% load. The main role of the GS is 

to plantar flex the ankle during the later pull phase of the power clean. If at this point 

enough force is generated from the quadriceps and shoulder muscles it could be the case 

that the GS may not need to be fully activated. This is particularly true with a lower 

load and may explain the increase from the 70% 1RM to the heavier lifting conditions. 

The mean VL data suggest that with increased load participants rely more heavily on the 

ability of the VL (and possibly the rest of the quadriceps group) throughout the lift. 

Despite the overall loading effect, the differences between each pair of loads did not 

reach significance. This could perhaps be linked to the range of loads selected for this 



study. For example, Paoli et al. (2009) did find significant differences between loads in 

the VL when comparing a wider range of back squat loads that included loading of 30% 

and 70% 1RM.  

 

In addition to the above significant differences, there was a trend for EMG increase with 

load for the TR. Given the sample size and the range of loads, it is possible that if more 

participants or a wider range of loads are used then significant differences may be found 

in the TR as well as in other muscles. With the present study prioritising the six muscles 

tested and considering the limitations of wired EMG and the restriction of movement 

which can occur when electrodes are attached to participants, it was decided not to 

collect data on any other muscles. It is however recommended that in future studies the 

EMG activity of other muscles that may also play an important role in the power clean 

is included, such as the hamstrings and the gluteus maximus. 

 

To further improve our understanding of the EMG patterns during the power clean in 

the present study, it was decided to explore the SD of the data. There were no 

significant differences in the SD of mean EMG. However the SD of peak EMG seemed 

to decrease with increased load in all muscles, with the TR value being statistically 

significant (p=0.047). This trend is unsurprising given the variable nature of lifting 

technique especially at lower loads (Garhammer et al., 1998). The TA/IO and MU, two 

deep trunk muscles which are considered part of the local stabilizing system (Anderson 

and Behm, 2005), had the largest SD values. This reinforces evidence that trunk 

muscles do not always use the same strategy to create trunk stability (Westad et al., 

2010). Overall, heavier loads seemed to produce more consistent peak EMG activity, 

which could have important practical applications when between-participant 

consistency of peak muscle activation is of interest. However, the influence that mean 

EMG activity has comparatively to peak EMG activity is still unclear and warrants 

further investigation. 

 

The peak EMG values were significantly greater during the power clean than the IME in 

the MU and ES muscles, with a similar but non-significant trend for VL and TA/IO. It 

is therefore evident that participants were not reaching maximum EMG during the 

MVC exercises, a phenomenon previously noted by others (Soderberg and Knutsen, 

2000).  It could be the case that during dynamic movements a greater amount of muscle 

mass is present under the electrode site than during MVC exercises, or that differences 

in muscle length under isometric and dynamic conditions cause greater EMG activity 

during dynamic movements.  

 

Although not uncommon to obtain high peak EMG during near to maximum dynamic 

exercises, these findings further emphasise the importance of identifying appropriate 

MVC exercises that would elicit the highest EMG activation. To that respect, the 

present findings have another important practical application. With the power clean 

exercise producing significantly higher peak EMG activity in the MU and ES than 

during participants’ perceived maximal effort in exercises previously recommended in 

the literature, it can be suggested that the power clean can be used in future EMG 

studies for quantification of maximal values for the MU and ES. Moreover, it has been 

suggested that high levels of neuromuscular activation (normally over 60% MVC) over 

prolonged periods of time yield muscle hypertrophy and gains in muscle strength 



(Andersen et al., 2006). This suggests that the power clean could be used as a strength 

training exercise MU and ES. In the present study the highest EMG values for ES and 

MU during the power clean were recorded during the 90% 1RM lifts, which suggests 

that 90% 1RM would be an appropriate loading for the purposes described above. 

Given the statistically significant increases with load for the ES, it would not be 

unreasonable to assume that power clean repetitions higher that 90% could produce 

even higher EMG values. This could have an impact on athlete practice as exercises 

designed to improve strength in these muscles in an isolated manner may be 

unnecessary to elicit improved strength. Despite the differences between the power 

clean and the IME for the VL and TA/IO muscles not being significant, the higher 

values recorded during the power clean imply that the power clean could also be added 

to or utilized to a greater extent in strength training programmes and used as an 

alternative/additional MVC exercise for these muscles. 

 

5. Conclusions and practical applications 

 

During the power clean EMG activity increased with load primarily for the ES, GS and 

VL muscles. This suggests that when athletes attempt to increase lifting loads from 70 

to 90%, key neural adaptations such as increased recruitment of the motor unit pool and 

greater synchronisation would be evident in these muscle groups. It also suggests that 

when athletes target these muscle groups in training they could potentially benefit by 

increasing intensity from 70 to 90%. There was no evidence to suggest that this increase 

in intensity would be of any additional benefit to the MU and TA/IO muscles though. 

Nevertheless, these muscles also produced high EMG values during the power clean, 

which were also higher than the MVC exercise, which suggests that utilising the power 

clean in a training programme could have beneficial effects on the strength development 

of these muscle groups as well. Finally, with higher peak EMG values observed during 

the power clean than for the MVC for the ES and VL, it is suggested that the power 

clean could be considered as an alternative MVC exercise for these muscle groups in 

future EMG studies.  
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