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ABSTRACT
Building effective optimization heuristics is a challenging
task which often takes developers several months if not years
to complete. Predictive modelling has recently emerged as
a promising solution, automatically constructing heuristics
from training data, however, obtaining this data can take
months per platform. This is becoming an ever more criti-
cal problem as the pace of change in architecture increases.
Indeed, if no solution is found we shall be left with out of
date heuristics which cannot extract the best performance
from modern machines.

In this work, we present a low-cost predictive modelling
approach for automatic heuristic construction which signif-
icantly reduces this training overhead. Typically in super-
vised learning the training instances are randomly selected,
regardless of how much useful information is present. Our
approach, on the other hand, uses active learning to care-
fully select the more informative examples, thus reducing
the training time.

We demonstrate this technique by automatically creat-
ing a model to determine on which device to execute four
parallel programs at differing problem dimensions for a rep-
resentative Cpu–Gpu based system. Our methodology is
remarkably simple and yet effective, making it a strong can-
didate for wide adoption. At high levels of classification
accuracy the average learning speed-up is 3x, as compared
to the state-of-the-art.

1. INTRODUCTION
Creating analytical models on which optimization heuris-

tics can be based has become harder as processor complex-
ity has increased. Compiler developers often have to spend
months if not years to get a model perfected for a single
target architecture. Many modern compilers support a wide
range of disparate platforms, and since heuristics are not
portable within or out-with processor families this has ulti-
mately resulted in out of date compilers [20].

Machine Learning based predictive modelling has rapidly
emerged as a viable means of automating heuristic construc-
tion [13, 30]; by running example programs (optimized in dif-
ferent ways) and observing how the variations affect program
run-time a machine learning tool can predict good settings
with which to compile new, as yet unseen, programs. This
new research area is promising, having the potential to fun-
damentally change the way compiler heuristics are designed,
but suffers from a number of issues. One major concern is

the cost of collecting training examples. That is to say,
while machine learning allows us to automatically construct
heuristics with little human involvement, the cost of gener-
ating training examples (that allow a learning algorithm to
accumulate knowledge) is often very expensive.

In this work we present a novel, low-cost predictive mod-
elling approach that can significantly reduce the overhead of
collecting training examples for parallel program mapping
without sacrificing prediction accuracy. The usual proce-
dure in supervised learning is to passively collect training
examples at random, regardless of how useful they might be
to the learner. We propose using active learning instead,
which is a method by which the learning algorithm itself is
able to iteratively choose the training instances it believes
carry the greatest information based upon whatever knowl-
edge it has already accumulated. Specifically, we use active
learning to automatically construct a heuristic to determine
which processor will give the better performance on a Cpu–
Gpu based heterogeneous system at differing problem sizes
for a given program. We evaluate our system by compar-
ing it with the typical random sampling methodology, used
in the bulk of prior work. The experimental results show
that our technique accelerates training by a factor of 3x on
average.

2. MOTIVATION
To motivate our work, we demonstrate how much unnec-

essary effort is involved in the traditional random-sampling
based learning techniques, and point out the extent to which
a better strategy can improve matters. In Fig. 1(a) we show
for HotSpot, from the Rodinia [5, 6] suite, when it is better to
run on the Cpu versus the Gpu for maximum performance.
The benchmark accepts two independent program inputs,
and their values form the axes of the graph. The graph
data itself was generated by randomly selecting 12,000 in-
put combinations and running them on both the Cpu and
Gpu enough times to make a statistically sound decision
about which device is better for each, where a boundary line
approximately separates the regions at which either device
should be chosen.

In Fig. 1(b) a random selection of 200 inputs to HotSpot

is chosen, as might be typical in a standard ‘passive’ learn-
ing technique. From this data a heuristic is created with
the RandomCommittee machine learning algorithm from the
Weka tool-kit [17], and the heuristic achieves a respectable
95% accuracy. Machine learning can clearly learn good
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(a) The problem space
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(b) Random sample points

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

120

Program Input Parameter

P
ro

g
ra

m
 I
n

p
u

t 
P

a
ra

m
e
te

r

CPU GPU Sample Points

(c) Intelligent sample points

Figure 1: Figure (a) shows the problem space of the Rodinia HotSpot benchmark. 12,000, 2-dimensional program inputs are
run to discover which device (Cpu or Gpu) gives the better performance. A boundary line approximately separates the parts
of the space where Cpu and Gpu are better. Figure (b) shows a random selection of 200 inputs. Using RandomCommittee to
learn a heuristic with these inputs achieves an accuracy of 95%. Figure (c) shows an intelligent selection of 31 inputs. Using
RandomCommittee to learn a heuristic with these inputs achieves an accuracy of 97%, representing a 6x speed-up in training
time.

heuristics, but our intuition insists that the majority of the
randomly selected inputs offer little useful information.

We prove this intuition in Fig. 1(c) where we have instead
selected just 31 inputs and once again asked the Random-
Committee algorithm to learn a heuristic. Using fewer than
15% as many observations as the standard passive learning
technique we achieve an accuracy of 97%. There is, there-
fore, significant potential to reduce the training cost for the
machine learned heuristics if we could only choose the right
inputs to train over.

3. OUR APPROACH
As a case study, this work aims to train a predictor to

determine the best processor to use for a given program
input. We wish to avoid profiling inputs that provide little or
no information for the learning algorithm to train over. We
achieve this by using active learning which carefully chooses
each input to be profiled in turn, based on what is already
known.

Figure 2 provides an overview of our approach. First,
some number of program inputs are chosen at random to
‘seed’ the algorithm and these are then profiled to determine
the better device for them – Cpu or Gpu. What follows is a
number of steps which progressively add to the set of train-
ing examples until some termination criterion are met. To
select which program input to add to the training set for pro-
filing, a number of different, intermediate models are created
using the current training set and different machine learn-
ing algorithms. Our method then searches for an input for
which the intermediate models or heuristics most disagree
on whether it should be run on the Cpu or the Gpu. The
intuition is that the more these models agree on an input,
the less likely it will improve the prediction accuracy of the
learned heuristic.

The technique for choosing new training inputs is called
Query by Committee (Qbc) [27] and is described in Sect. 3.1,
Sect. 3.2 explains our disagreement metric, whilst Sect. 3.3
details how the inputs are profiled: particularly, how the
decision about whether the input should be run on the Cpu
or on the Gpu is made statistically sound.

Learning
Algorithms

New
Sample
Points

Initial
Training
Points

Active Learner

Intermediate
Model

Intermediate
Model

Final

Model

Figure 2: An overview of our active learning approach. Ini-
tially, we use a few random samples to construct several
intermediate models. Those models are utilized to choose
which new data point is to be profiled next. The new sam-
pled data point is then used to update the models. We
repeat this process until a certain termination criterion is
met where a final model will be produced as the outcome.

3.1 Query by Committee
The key idea behind active learning is that a machine

learning algorithm can perform better with fewer training
examples if it is allowed to choose the data from which
it learns. There are a number of approaches available [4]
but we employ a heterogeneous implementation of Query
by Committee (Qbc), a widely utilized active learning tech-
nique.

The ‘committee’ in our Qbc implementation consists of
a number of distinct learning algorithms that are initially
trained with a small set of randomly collected examples. In
our case, each training example is a set of program inputs
with a label indicating which processor gives better perfor-
mance when these inputs are profiled. As these models are
initially built from a small set of examples they are unlikely
to be highly accurate at first, but we are able to iteratively
improve these models with the following steps using new,
carefully chosen, training examples.

The challenge in active learning lies in how to select those
training examples that are most likely to improve the pre-
diction accuracy of a model out of all the potential examples
we could use. In Qbc this is achieved by asking each dis-
tinct model to make predictions on a random collection of
program inputs not currently present in the training set -
called the candidate set. Since each model is built using
a different algorithm they may or may not reach consen-



sus as to whether a particular program input should be run
on a particular device. We then only profile those inputs
for which the ‘committee’ disagrees the most, and then add
those new examples into the training set. The learning loop
begins again by creating its distinct intermediate models us-
ing the new information it has gathered and carefully selects
another informative example to learn from. This procedure
repeats until some completion criterion are met.

The insight behind Qbc is that we do not want to cre-
ate new training instances from parts of the problem-space
which are already collectively understood by the committee
of algorithms.

3.2 Assessing Disagreement
We use information entropy (1) [9] to evaluate the level

of disagreement for each potential candidate that could be
added to the training set next, where p (xi) is the proportion
of committee members that predict that the instance (set of
inputs) x is fastest on device i of n. From within all the
candidates found to have the maximum entropy value in a
given iteration of the learning loop one example is randomly
chosen to be profiled next. This means the inputs associated
with that instance are run on the Cpu and Gpu kernels
and it is determined which processor is faster under those
conditions. The relevant label is given to the instance and
the information added to the training set. The learning
loop begins another iteration and the intermediate models
formed again, but this time the new information is taken
into account.

H (x) = −
nX

i=1

p(xi) log p(xi) (1)

3.3 Statistically Sound Profiling
Since computer timings are inherently noisy we use statis-

tics to increase the reliability of our models. In particular,
we record a minimum number of timings from each device,
as specified by the user. We use Interquartile Range [24]
outlier removal then apply Welch’s t-test [33] to discover if
one hardware device is indeed faster than the other. If we
cannot conclude from the t-test that this is the case, then
we perform an equivalence test. Both devices are said to be
‘equivalent’ if the difference between the higher mean plus
its 95% confidence interval minus the lower mean minus its
confidence is within some threshold of indifference. In our
system this threshold was set to be within 1% of the min-
imum of the two means. If the fastest device cannot be
determined and they are not equivalent an extra set of ob-
servations are obtained and the tests applied again, up until
some user defined number of tries. In the case of equivalence
or the threshold of attempts being reached the Cpu is chosen
as the preferred device since it is more energy-efficient.

4. EXPERIMENTAL SETUP
We evaluated our approach on a heterogeneous platform

comprised of an Intel Core i7 4770 (3.4 GHz) Cpu and
NVIDIA GeForce GTX Titan (6GB) Gpu. The bench-
marks we used were taken from the Rodinia suite, namely
HotSpot, PathFinder, and SRAD. We also included a sim-
ple matrix multiplication application. Each benchmark was
chosen because it has equivalent OpenMp and OpenCl im-
plementations and a multidimensional problem space.

Benchmark Dim Min Max Step Size Cand
HotSpot 2 1 128 1 16, 384 10,000

MatMul 3 1 256 1 1.6x107 10,000

Pathfinder 2 2 1024 1 1.0x106 10,000
SRAD 2 128 1024 16 3, 136 2,636

Table 1: The sizes of the input spaces for each benchmark.
Dim indicates the number of dimensions – each dimension
is then treated in the same way for our case study. Min
gives the minimum value of each dimension. Max gives the
maximum value of each dimension. Step gives the step value
on each dimension. Size is the total number of points in the
input space. Cand is the number of points in the candidate
set for each benchmark.

Qbc Algorithms.
Our committee comprised 12 unique machine learning al-

gorithms, taken from the Weka tool-kit. They are Logis-

tic, MultilayerPerceptron, IB1, IBk, KStar, RandomFor-
est, LogitBoost, MultiClassClassifier, RandomCommit-

tee, NNge, ADTree, and RandomTree: all configured with
default parameters. These 12 were specifically selected for
their capability of producing a binary predictor from nu-
meric inputs and the fact that they have been widely used
in prior work.

Program Input space.
The sizes of the input spaces for each benchmark were

chosen to give realistic inputs to learn over. Table 1 de-
scribes the number of dimensions and their range for each
benchmark. That table also gives the total number of inputs
for each benchmark.

Initial Training Set and Candidate Set Sizes.
For all benchmarks the minimum initial training set size

of one was used. The candidate set size (shown in Table 1)
was chosen to be 10,000 examples, or the largest number
possible under the problem size constraints.

Termination Criterion.
In all cases, the active learning iterations were halted at

200 steps. This value was selected because for all bench-
marks the learning improvement had plateaued by that time.

Run-time Measurement and Device Comparison.
To determine if a benchmark is better suited to the Cpu

or Gpu for a given input it was run on each processor at least
10 times, and at most 200 times. We employed a number of
statistical techniques to ensure our data was as accurate as
possible, including Welch’s t-test, equivalence testing, and
interquartile-range outlier removal.

Testing.
For testing, a set of 500 inputs were excluded from any

training sets. Both our active and passive learning exper-
iments were run 10 times and the arithmetic mean of the
accuracy was taken, where the accuracy of each experiment
was the average accuracy of all 12 models.

5. EXPERIMENTAL RESULTS
In this section we present the overall results of our ex-

periments, showing that our active learning approach can
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Figure 3: On average our methodology requires 3x fewer
training examples to create a high quality heuristic than the
traditional random-sampling technique, proving that this
simple algorithm can save weeks, and potentially months,
of compute time.

significantly reduce the training time by a factor of 3 when
compared to the random sampling technique.

Figure 3 shows the average learning speed-up of our ap-
proach over the passive, random-sampling technique tradi-
tionally used in heuristic construction. The speed-up values
are based on the number of inputs which need to be profiled
in order to train a predictor to an accuracy of at least 85%.
As can be seen from this figure, our approach constantly
outperforms the classical random-sampling technique for all
benchmarks, which in real terms means a saving of weeks to
train these heuristics.

Moreover, if we look at the points selected by the Qbc
algorithm for HotSpot in Fig. 4, we see they are reminis-
cent of the intelligent selection shown in Fig. 1(c) previously.
In particular, the Qbc algorithm concentrates around the
boundary line between devices, the most informative region
in the space where the curve can be precisely predicted.

6. RELATED WORK
Analytic Modelling.

Analytic models have been widely used to tackle complex
optimization problems, such as auto-parallelization [3, 25],
runtime estimation [7, 34, 18], and task mappings [19]. A
particular problem with them, however, is the model has to
be re-tuned whenever it is targeted at new hardware [28].

Predictive Modeling.
Predictive modeling has been shown to be useful in the op-

timization of both sequential and parallel programs [8, 29,
31, 16]. Its great advantage is that it can adapt to changing
platforms as it has no a priori assumptions about their be-
haviour but it is expensive to train. There are many studies
showing it outperforms human based approaches [15, 21, 10,
35, 14, 11, 32]. Prior work for machine learning in compilers,
as exemplified by the MilePost GCC project [12], often uses
random sampling or exhaustive search to collect training ex-
amples. The process of collecting training examples could
be expensive, taking several weeks if not months. Using
active learning, our approach can significantly reduce the
overhead of collecting training examples. This accelerates
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Figure 4: This graph shows the points selected by the Qbc
algorithm to train on during one run to produce a heuristic
for HotSpot. The inputs selected for training cluster around
the boundary between device classes. These are the most
informative points in the space since they precisely define
the curve shown in Fig. 1(a).

the process of tuning optimization heuristics using machine
learning. The Qilin compiler [23] uses runtime profiling to
predict a parallel program’s execution time and map work
across the CPU and GPU accordingly; however, where their
approach is designed to work after deployment ours can be
performed ahead of time, thereby reducing any slow-downs
experienced by the end-user.

Active Learning for Systems Optimization.
A recent paper by Zuluaga et al. [36] proposed an active

learning algorithm to select parameters in a multi-objective
problem. Their work is not concerned with single-objective
workload scheduling and does not consider statistical sound-
ness of raw data. Balaprakash et al. [1, 2] used active learn-
ing to reduce execution time of scientific codes but they only
consider code variants and OpenCl parameters as inputs,
they do not discuss the impact of problem size on perfor-
mance. Furthermore, neither of these authors employed the
Qbc methodology in their work.

Problem Size Optimization.
Optimizing code for different problem sizes in heteroge-

neous systems is discussed by Liu et al. [22] where they give
an implementation of a compiler which uses a combination
of regression trees and representative Gpu kernels, but their
approach uses exhaustive search. Adaptic is a compilation
system for Gpus [26] and uses analytical models to map an
input stream onto the Gpu at runtime but their technique is
not easily portable, where ours tackles that problem directly
by making learning cheaper.

7. CONCLUSIONS
We have presented a novel, low-cost predictive modelling

approach for machine learning based automatic heuristic
construction. Instead of building heuristics based on ran-
domly chosen training examples we use active learning to
focus on those instances that improve the quality of the re-



sultant models the most. Using Qbc to construct a heuristic
to predict which processor to use for a given program input
our approach speeds up training by a factor of 3x, saving
weeks of compute time.
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