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Abstract
We present Sketch, a library and a distributed runtime for building interactive tools for exploring large datasets,
distributed across multiple machines. We have built several sophisticated applications using this framework; in this
paper we describe a billion-row spreadsheet, and a distributed-systems performance analyzer. Sketch applications
allow interactive and responsive exploration of complex distributed datasets, scaling effectively to take advantage
of large computational resources.

1. Introduction
We target interactive data visualization applications for large
datasets. We define a dataset as being “large” if — given the
resources of a single machine — manipulating the dataset
exceeds an allocated time budget. Visualizing large datasets
presents several difficulties: (1) View renderings are limited
by screen resolution and human perception — especially a
challenge when the number of data points vastly exceeds the
number of pixels on the screen. (2) Renderings must be com-
puted at interactive speeds (on the order of seconds). (3) The
graphical user interface must enable interaction with the data
through the displayed renderings (e.g., zooming, scrolling,
filtering, searching, and data transformations); these inter-
actions lead to new data views which must be computed at
interactive speeds.

Building interactive visualization applications to satisfy
these requirements is difficult. Sketch is a library including a
distributed runtime that can be used to simplify the construc-
tion of such applications. Ideally, Sketch should be used as il-
lustrated in Figure 1: when inserted as a drop-in between the
data model and the view, it should automatically transform a
single-machine application into a distributed application.

We describe in Section 4 two applications that we have
built or refactored to run on top of Sketch: (1) a spreadsheet
for billion-row data sets and, (2) ViewCluster, a distributed
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Figure 1: Application parallelization using Sketch: the
Sketch runtime is inserted between the model and the view,
making an application distributed and scalable.

systems performance analyzer. In practice applications need
to be refactored to use Sketch; however, we have found this
effort to be reasonable (1 man-week for ViewCluster).

Sketch’s design is based on two fundamental principles:
• Visualizations always display bounded views of the input
data. Since we cannot show all the data, we should not even
compute views that exceed the display resolution.
• Aggregations are performed using streaming algorithms.
Streaming algorithms are an active branch of research in big
data analysis [Mut05, CGHJ11]; their main feature is using
memory sublinear in the size of the input data. In this paper
we use the term “sketching algorithms” for a particular class
of randomized streaming algorithms which: (a) can perform
multiple passes over the data (subsequent passes may depend
on results computed by earlier passes), (b) use a sublinear
amount of memory (usually logarithmic), and (c) produce
results insensitive to the input order (i.e., two permutations
of an input dataset produce the same result). In this work all
aggregations are performed using sketching algorithms.

We exploit two core features of sketching algorithms:
1. Sketching algorithms are naturally parallelizable by con-
struction, since the algorithms can be run concurrently and
independently on partitions of the analyzed data, and the fi-
nal result can be produced by combining the partial results.
This enables us to “throw more cores” at a problem.
2. The sub-linear memory usage required by sketching al-
gorithms implies that the partial results are “small”; the par-
tial results are the only input-dependent information that
crosses the network. In consequence, network messages are
infrequent and small, which is a prerequisite for providing
interactive response.

1.1. Visualizations as Sketches
The Sketch library exposes remote data to the client-side vi-
sualization application using a distributed object abstraction
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called a Partitioned Data Set (PDS), described in detail in
Section 3. PDSs expose a very narrow interface; essentially,
the only operation for extracting “useful” data that from a
PDS is to use it the as input of a sketching algorithm (per-
forming some form of aggregation).

One could also implement sketching algorithms on top
of a general-purpose traditional distributed analytics en-
gine, such as MapReduce, DryadLinq, or Spark. However, a
generic engine is too powerful for our needs: using it one can
also write lots of algorithms that can never run at interactive
speeds. Sketch is a highly specialized distributed analytics
engine; it does not support general-purpose queries, but it
is optimized especially for executing sketching algorithms.
We are thus trading-off generality for speed, by making it
difficult for users to use expensive algorithms (e.g., joins).

In general, sketching algorithms compute approximations
of the desired results, usually trading off memory or time
against precision. Typically the approximation degree is cho-
sen by heuristics. Instead, one important insight we provide
is to derive the approximation degree from the display reso-
lution in order to compute approximate results which are in-
distinguishable from the exact results. For example, to draw
a histogram the sampling rate should be chosen to make error
bars smaller than one pixel in size. One should be unable to
distinguish visually between two histograms renderings: one
computed using the complete data set and one computed on
a sampled dataset.

1.2. Contributions
Sketch borrows many principles from other published sys-
tems (see the related work in Section 6). While we do not
claim that Sketch and our applications are better than com-
peting systems in all respects, we believe the following to be
original contributions of this work:
• We describe the PDS software abstraction, which al-
lows the manipulation of large distributed data sets
through a simple API. Unlike most other big data frame-
works (e.g. MapReduce, Hadoop, DryadLINQ [YIF⇤08],
Spark [ZCF⇤10]), the PDS abstraction is provided as a
stateful, distributed, gargage-collected service — see Sec-
tion 3. Despite the simple API, PDSs do not preclude ma-
nipulating complex data models, much richer than a simple
relational or nested-relational model — for an example see
the ViewCluster application.
• We describe a modular implementation of the PDS API.
The implementation relies on multiple datatypes all imple-
menting the exact same interface. For example, there are
separate implementations to contain data, encapsulate paral-
lelism (at the rack, cluster, or core level), implement inter-
process communication, provide fault-tolerance, or bound
the response time. A distributed system is built by mixing
and matching the desired datatypes in complex hierarchies.
• We demonstrate that these abstractions are powerful
building blocks for constructing significant visualization
tools, describing two complex applications in Section 4. We

evaluate the scalability of one of the applications on a com-
puter cluster (Section 5). For example, our spreadsheet ap-
plication computes a histogram of a dataset with 4.1 billion
rows in 1.2 seconds seconds using all 1240 cores.

2. Linear Transformations
The PDS design is based on a theory of linear transfor-
mations. Here we provide the intuitions behind this the-
ory, which is described formally in a separate paper [BP14].
This theory has informed the design and implementation of
Sketch. In particular, the formalism enables us to give a clear
semantics to Sketch computations. Prior work [XZZ⇤14] has
shown that it is easy to abuse parallel frameworks such as
Map-Reduce to write programs that are subtly flawed; we
also argue in Section 6 that other aggregation network-based
systems widely deployed have similar subtle shortcomings.
A formally sound design avoids such mistakes. This ap-
proach is also espoused by Algebird [Bes14].

Collections and monoids. The core mathematical struc-
ture we rely on is a commutative monoid M: a set with a
commutative and associative operation +M : M ⇥M ! M
and a zero 0M which is the identity element for +M . A typi-
cal example of such a monoid is the set of real numbers. In
our framework all sketch computations (and, thus, all ren-
derings) are computed on monoids.

A collection can be modeled as an unordered multiset of
values (a value can appear multiple times in a multiset). If X
is the type of values, we write C (X) for the type of collec-
tions with values of type X . C (X) is a monoid with multiset
union, zero being the empty set.

Given a monoid M, we denote with M[K] the type of key-
value dictionaries with keys of type K and values of type
M. (If a key is “missing” in the dictionary we define it to
map to 0M). The notation {k0 7! m0,k1 7! m1} represents
the dictionary mapping k0 to m0 and k1 to m1. Dictionaries
also form a monoid: given two dictionaries d,e 2 M[K], we
define (d + e)[k] =def d[k] + e[k]. In Sketch dictionary keys
may be used for data location. For example, a distributed
collection of values of type X with partitions on hosts h0
and h1 is modeled as a dictionary d 2 C (X)[K]; d[h0] is the
partition containing data present on host h0.

Linear functions. A linear (homomorphic) function be-
tween two monoids f : M ! N is a function that “preserves”
operations: f (a +M b) = f (a) +N f (b), and f (0M) = 0N .
Linear functions are “parallelizable”: they can be applied
separately on “pieces” and the results can be combined to-
gether. The familiar Map and Reduce operators are linear
(Map is between two collections, and Reduce between a col-
lection and a monoid of “reduced” values). As we show in
Section 3, all operations on PDSs are linear.

3. Distributed Datasets
The core abstraction in the Sketch framework is a Partitioned
Data Set (PDS). By packaging data in a PDS, user appli-
cations manipulate large distributed datasets using multiple
machines/cores, without worrying about writing concurrent
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interface IPDS<T> {
IPDS<S> Map<S> (IMap<T,S> map);
R Sketch<R>(ISketch<T,R> s);
IPDS<Pair<T,S>> Zip<S> (IPDS<S> other);}

interface IMap<T,S> { S Map(T input); }
interface ISketch<T,R> {

R Create (T data);
R Combine(List<R> skts);}

Figure 2: PDS C# interface.

code or handling failures that occur in a distributed setting.
3.1. The PDS API
A PDS is a generic, distributed, partitioned object. A PDS
object implements the IPDS<T> interface, from Figure 2.
(We have slightly simplified the actual interfaces for peda-
gogical purposes; the actual API also supports asynchronous
execution, error and progress reporting, remote background
operation cancellation, and other practical features.)

We discuss several implementations of this interface in
Section 3.2. One should think of a IPDS<T> object as
a distributed tree rooted at the client machine and hold-
ing a value of type T in each leaf (see Figures 3 and 4
for examples). The tree edges are labeled with location
information. For example, a path through the tree could
be “rack0.machine6.core4”. Using the formalism from Sec-
tion 2, a tree of type IPDS<T> is a dictionary of type T[L*],
where L* is the set of paths.

The IPDS<T> interface comprises only three methods;
two of these methods have as arguments user-defined com-
putations (IMap and ISketch) encapsulated in closure ob-
jects. Figure 3 illustrates the effects of these methods. These
closures and the sketch result of type R must be serializable
for transport on the network. The types T and S do not need
to be serializable; the only data that traverses the network is
the result of sketches, R.
Map transforms an IPDS<T> tree into an IPDS<S> with
the same “shape” applying the IMap function to each leaf.
Sketch runs a sketching algorithm computing a “small”
result of type R. A sketch object s of type ISketch<T,R>
contains two user defined-functions: s.Create : T ! R
and s.Combine : C (R) ! R. Given a dataset dictionary
d = {l0 7! v0, . . . , ln 7! vn}, we define d.Sketch(s) =
s.Combine(s.Create(v0),...,s.Create(vn)).
(Note that the paths through the tree are ignored.) The
datatype R together with the binary operation induced by
Combine must be a monoid.
Zip combines two dictionaries together into a dictionary of
cross-products, pairing values with identical keys. Given two
dictionaries d, e, the result z = d.Zip(e) is a dictionary
z such that z[p] = Pair(d[p], e[p]) for all paths p.

These operations (Map, Sketch, and Zip) are func-
tional: they create a new result, and have no side effects (the
user-defined functions Map, Create, Combine supplied
are required to have no side effects). They are also linear, as
defined in Section 2 (Zip is linear in both arguments).
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Figure 3: Computations on PDSs. Map applies a tranfor-
mation to each leaf, Sketch computes a sketch, and Zip
combines two datasets into a single one.

An IPDS is a an opaque remote object that contains some
data. That data is not accessible to the client in any way.
The client can only manipulate the IPDS through its API:
Map, Zip, and Sketch. The first two operations create new
PDSs, to they cannot be used to “extract” any useful data.
Unlike MapReduce collections, DryadLINQ IQueryable
objects, or Spark RDDs, an IPDS does not provide an iter-
ator interface, so one cannot enumerate the data in a PDSs.
Thus executing a Sketch is the only way to obtain infor-
mation from a PDS. The PDS thus forces programmers to
think of all data extraction operations as aggregations.
3.2. Dataset Implementations
PDSs are abstract objects, accessed solely through the IPDS
interface. Sketch provides several basic implementations of
this interface. Each implementation solves a particular prob-
lem arising when building a distributed system. Because
all component pieces have the same interface they can be
stacked in arbitrary ways and so by mixing and match-
ing these implementations, users of the Sketch framework
can build distributed PDSs with various degrees of paral-
lelism, concurrency, network transparency, and resilience.
This modular construction of a distributed system is pow-
erful, elegant, and is an original contribution of this work.
• LocalPDS<T> is a container for one value of type T.
• ParallelPDS<T> contains a list of child IPDS<T>
objects. All processing on these objects is performed in-
dependently and in parallel. Running a Map on a Paral-
lelPDS returns a new ParallelPDS. Sketch runs re-
cursively on the children and then uses Combine to assem-
ble the partial results produced into the final one.
• ProxyPDS<T> contains a single child IPDS<T> lo-
cated on a remote machine. The proxy uses a remote method
invocations to forward Map, Sketch, and Zip calls to
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the remote PDS. The proxy also relays back to the client
results and exceptions that occur during remote method
execution. ProxyPDS also participate in the distributed
garbage-collection of PDSs (more details about the dis-
tributed garbage-collection are presented in the companion
technical report [BIM⇤15]).
• LazyPDS<T> contains a single child of type
IPDS<S>, and a “frozen” closure map of type
IMap<S,T>. For a lazy dataset l, l.Map(t) =
LazyPDS(l.child,Compose(l.map, t)). I.e.,
the lazy dataset postpones the execution of any Map by
composing closures and returns immediately.
Invoking a sketch s on a lazy dataset l creates a
new sketch sl by composing s with the frozen
map: sl = Compose(l.map,s) and invokes it
l.child.Sketch(sl).
• ReplicatedPDS<T> is similar to a parallel dataset, but
all its children must represent identical values, i.e., they are
replicas of one dataset, ideally residing in independent fault
domains. Like parallel datasets, replicated datasets forward
calls to all their children. However, their behavior differs in
the presence of errors (exceptions): if an exception occurs
while running on a child, the replicated dataset swallows the
exception and marks the corresponding child as unavailable.
Exceptions that occur on all children are considered deter-
ministic and are returned to the caller. ReplicatedPDS
thus provides fault-tolerance.
• HedgedPDS<T> is a cross between a PartialPDS
and a ReplicatedPDS, which implements hedged re-
quests: a request is sent to all its identical children, and the
first response received is immediately relayed back [DB13].
HedgedPDS are instrumental in reducing significantly the
tail response time of requests, especially when dealing with
a large number of machines.

Sketch relies on a custom Remote Method Invocation
implementation, built on top of Windows Communication
Foundation. The RMI layer provides the support needed for
distributed garbage-collection, caching and fault-tolerance;
leases are used to prevent client crashes from leaking server
resources. More details about the RMI layer are available in
a companion technical report [BIM⇤15].

3.3. Putting the Pieces Together
Figure 4 shows a typical tree-shaped distributed PDS object.
The leaves of the tree are all LocalPDS objects located on
the server machines, holding references to the partitions of
the data (of type T) that is being processed. On each server,
all leaves have a common ParallelPDS parent; this par-
ent effectivelly utilizes all cores on each server in parallel.

Server 1 contains a second ParallelPDS, with two
children, both in Rack 0 (one being on the same machine);
the child in Server 0 is referenced through a ProxyPDS.
This second-level ParallelPDS provides rack-level ag-
gregation, effectivelly utilizing the higher bandwidth avail-
able in a rack to the top-of-the-rack switch.

Application

Network

Client 
Parallel

Proxy Proxy

GUI

Parallel

Local Local Local Local

Parallel

Local Local

Parallel

IPDS
interface

Rack aggregation

Core parallelism

Cluster parallelism

RMI layer

Proxy

ref ref ref

Parallel

Server 0 Server 1 Server n

Rack 0 Rack r

Address space

T T T T T T

Figure 4: Sample distributed PDS state spanning multiple
address spaces on multiple machines.

Finally, the client machine contains a set of ProxyPDS
onbjects, one for each rack. These are all children of a
root ParallelPDS. The root invokes computations con-
currently on all children, providing cluster-level parallelism.

The visualization application interacts with the root of this
distributed tree as with an object in its local address space.
In fact, the client cannot tell the difference between a Lo-
calPDS running on the local machine and a distributed data
set running on the cluster. Even failures on remote machines
(including machine crashes) are handled transparently by the
PDS abstraction. Errors that occur on remote machines can
be either automcatically handled (e.g., by Replicated-
PDS or HedgedPDS objects), or are are exposed as stan-
dard C# exception, which are usually trapped by the GUI
and displayed as error messages.

The Sketch service does not have a central coordinator;
each server provides the service completely independently
of its neighbors. Each client acts as a separate control point
for the computations it initiates. We have not explored the
interference caused by running multiple clients simultane-
ously on the same service.

To provide fault tolerance, the input data must be
replicated (replication is performed by the storage layer,
e.g., a filesystem such as the Cosmos distributed filesys-
tem [CJrL⇤08]). To handle a replicated dataset the client in-
serts ReplicatedPDS nodes when loading the data. Inter-
estingly, ReplicatedPDS nodes can be used at any level
in the PDS tree: either just above leaves, above the rack-level
nodes, or even as the root of the complete hierarchy.

Figure 3 shows how computations operate on PDSs. Run-
ning a Map on a PDS produces another PDS with the ex-
act same shape and with the corresponding components lo-
cated in the same address spaces as the sources. Running a
Sketch produces a scalar result, that aggregates data from
leaves up the tree. Executing a Zip on two PDSs with the
same shape produces as a result with the same shape. In con-
sequence, all PDS that descend from the same source have
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the exact same shape.
For the client all method invocations on a distributed

dataset are single-threaded and atomic, and seem to be ex-
ecuted in the local address space; in reality all computations
run concurrently in a fault-prone distributed system.

Every computation on a PDS may involve thousands of
concurrent threads on multiple machines; however, all com-
putations on a PDS behave as simple atomic operations that
complete when a result is returned to the client. No combi-
nation of system errors or network partitions can create or
leak an incorrect or partial PDS object.
4. Applications
In this section we describe two complex applications that
were built on top of the Sketch framework: we start with a
distributed spreadsheet, and then we discuss a distributed
system performance monitoring application. Both applica-
tions render data views bounded by screen resolution — in-
dependent of the size of the displayed data.
4.1. A Spreadsheet for Large Data
We describe a spreadsheet for browsing distributed datasets.
Figures 5 and 6 displays several screenshots showing dif-
ferent views of a dataset comprising 4.1 billion tweets with
12 columns. Users can filter, search, compute new columns,
sample, find heavy hitters, sort on arbitrary column combina-
tions, scroll, draw charts (multidimensional histograms and
heatmaps), and perform set operations between two views
of the same dataset (intersection, union, difference, etc.).
A real-time video of the spreadsheet in action is available
at https://youtu.be/NkV5r7OzCoc. We use refer-
ences to the video: V(1:23) represents the video at time 1:23.
A brief user manual is available as [Bud14].

Building interactive applications for this data size is very
challenging, but the Sketch framework automates most of
the work required for exploiting the resources of a computer
cluster and hiding network communication. The challenge is
to express all of the above operations in terms of the Sketch
API from Figure 2.

The spreadsheet operates on database-like tables, with a
known schema (i.e., a list of typed columns). A table can
have few columns (hundreds) and many rows (billions); the
rows are partitioned on machines and cores. The table data is
represented as an IPDS<Table> object, where Table is a
simple (non distributed), immutable, relational-like table ob-
ject. The Table implementation has a schema, an array of
columns, and a bitmap with 1 bit per row, used for filtering.

The spreadsheet application does not depend on the ac-
tual storage substrate. Our implementation can ingest data
from files, SQL Server databases (one for each server), the
Cosmos [CJrL⇤08] distributed storage system (similar to the
Hadoop filesystem), and from a custom distributed column-
store. The Table lazily loads the browsed columns in RAM
when using the column store (one Table per core).

Each spreadsheet window maintains a reference to an
IPDS<Table> and shows a rendering of the associated

Row
Scroll-bar

Visible columns
Hidden columns

Position Count

Sorting order

Dataset size Column scroll-bar

Row header

Figure 5: Tabular representation of a large dataset with 4.1
billion rows and 12 columns. There are 17 visible rows rep-
resenting 134 data rows.

data view. User actions can either change the rendering (e.g.,
scroll, chart), or change the dataset itself (e.g., filter), causing
a recomputation of the rendering. All renderings are com-
puted using sketches.

4.1.1. Data views
The main challenge of a billion-row spreadsheet is to fit as
much information into the very limited screen real-estate.
The spreadsheet can display three types of data views: tables,
histograms (and arrays of histograms) and heatmaps.
Tabular views

We have explored several alternatives for displaying data
in a tabular fashion, before settling on the solution we de-
scribe here. A typical screen can accomodate hundreds of
rows of tabular display, out of billions. The core insight is to
represent a data cube in each row.

In general, only some columns are visible (the user can
choose to hide or display columns at any time). The dis-
played data is always sorted (in some lexicographic order)
on all visible columns; in Figure 5 the data is sorted descend-
ing on the Language column, descending on Timezone, De-
scending on CreatedAt and ascending on AdultScore. Each
displayed row corresponds to a data cube computed from the
dataset projected on the displayed columns. The row header
displays both the position of the row in the sorted order, and
the size of the cube (i.e., the number of occurrences of the
respective projected row in the full dataset). For example,
the first row in the table corresponds to 15 data rows whose
projection on the 4 visible columns is the one displayed. See
also the accompanying video for how cubes are re-computed
as additional columns are un-hidden V(1:36). The cube dis-
play is very compact when there are few distinct values in
the visible columns. Computing these cubes is very fast, be-
cause only the visible cubes need to be computed – as de-
scribed in the next section. (Note that the cubes are sorted
on the displayed columns, and not on the cube size.)

The vertical (row) scroll-bar is a very important GUI el-
ement. The vertical position of the scroll-bar represents the
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Figure 6: Spreadsheet screenshots of a dataset of tweets with 4.1 billion rows and 12 columns, manipulated on a cluster with
155 machines (1240 cores): 3D histogram (array of histograms): showing SpamScore/AdultScore/TweetLength, 2D histogram
with CDF showing tweet length distribution colored with tweet time, and heatmap of tweet length vs creation time.
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Figure 7: Execution timeline for computing a histogram; di-
agonal arrows show messages between client and servers.

position of the first displayed row in the sorted order. The
size of the scroll-bar represents the amount of data that is
visible on the screen. For Figure 5 the window contains 134
data rows, so the scroll-bar height is WH⇥134/(4.1⇥109),
where WH is the window height. This implies that the size of
the vertical scroll-bar can change when scrolling, based on
the distribution of the visible cubes within the dataset; for
example, if a displayed row accounts for half of the data, the
scroll-bar would be at least half of the window size. While
this visual effect is unusual, we found that it conveys useful
additional information about the data distribution.
Histograms and heatmaps

Charting large datasets requires aggregating information.
The Sketch spreadsheet enables visualizations using multi-
dimensional histograms V(1:17) and heatmaps V(2:19).
As noted in [IVM13, LJH13], when displaying very large
datasets, with many more points than pixels on the screen,
charts must show aggregate data. The Sketch spreadsheet
supports the chart types suggested by the cited prior work;
all these charts are essentially multidimensional histograms.

Using the formalism in Section 2, a histogram is a dictio-
nary value of type R[B], where B is the set of buckets and
R is the set of real numbers; if we fix a set of buckets B,
histograms over those buckets form a monoid. Heatmaps are
dense 2D histograms.

As shown in Figure 7, a histogram is computed in 3 steps:
(1) a Sketch to compute the range of the data (minimum and
maximum values), (2) a client-side quantization computa-
tion to determine the buckets B, and (3) a second Sketch to
compute the histograms proper. The number of buckets |B|
is always chosen to be smaller than the number of pixels on

the X axis. While the X axis resolution decides the number
of buckets, the Y axis resolution decides the sampling rate:
which is chosen so that the error bars are smaller than 1 pixel
(with high probability, in the worst case, for all possible data
distributions). In general the data range cannot be computed
on sampled data, since it may lose rare outliers.

Figure 6 middle shows a two-dimensional histogram
(where each bar is a stack) V(1:25). The image also displays
the a line plot of the cumulative distribution function (CDF).
Computing naively the CDF would require sorting the com-
plete dataset; however, the CDF can be computed very ef-
ficiently by numerically integrating a histogram where each
bucket has the width of exactly 1 screen pixel.
4.1.2. Interacting with data
Each window maintains a history of the rendered data to-
gether with the renderings themselves, enables the user to
navigate back and forth instantly. (The history and render-
ings are all small objects, which fit in the client memory.)

Sorting is the main operation performed on tabular data
displays. Sorting is very fast; for example, it takes less than
1/2 second to sort through 4 billion rows using 155 machines
when data is already loaded from disk V(1:37).

The secret is only to sort the rows that can must be
shown to the user. Sorting is implemented using a general-
ized “NextK” Sketch. The NextK sketch has the follow-
ing parameters:
• The lexicographic sort order to use: this is the same as the
set of “visible” columns
• f : the (projection on the visible columns) of the first row
to display on the screen ( f is used for scrolling within a
sorted dataset)
• k: the number of rows to sort

NextK computes a dictionary containing the cubes to dis-
play on the screen; each key of the dictionary is a row of
the dataset (projected on the visible columns) and the corre-
sponding value is number of times the row occurs in the full
dataset (shown in the row header count, in Figure 5). The
algorithm for computing NextK is very simple:
• Tuples smaller than f in the indicated lexicographic order
are discarded.
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• From the remaining tuples the k smallest are kept, main-
taining the number of occurrences of each. (If there are fewer
than k distinct tuples, all of them are kept.)

The set of k smallest tuples with described operations
forms indeed a commutative monoid (“zero” is a set with
no tuples), so NextK is a proper Sketch. The computation
can be performed very efficiently using a priority queue; for
a balanced dataset the complexity is O(N/C logk), where N
is the dataset size, and C is the number of cores.

Scrolling a sorted dataset is performed at interactive
speeds. No other visualization or analytics engine that we
know of provides this capability.

There are two types of scrolling:
1. Paging (up/down) is very efficient. Scrolling down is
performed using a NextK sketch with f set to the last vis-
ible tuple, and scrolling up is a NextK sketch with f set to
the first visible tuple and the sort direction reversed.
2. Dragging the scroll-bar is the most complex operation
on a tabular view. This is done in two stages: determining the
new “first tuple” f , and then running NextK. To compute ef-
ficiently f we again take advantage of the limited screen res-
olution: since each pixel displacement of the scroll-bar can
represent many millions of rows in a large dataset, we can
choose any of these rows as the starting tuple. The scroll-
bar position is in fact representing a quantile: for example,
in a window 200 pixels tall, the scroll-bar position 3/4 from
the top represents some percentile between 75% and 75.5%
(since each pixel represents 0.5% of the data). We use a well
known sketching algorithm for computing such an approx-
imate quantile (e.g. [CM05]), with cost logarithmic in the
required precision.

Computing new columns: the user can type an arbirary
C# function to compute values for a new column. The input
to the function is a data row; the function is applied to each
row separately V(3:26).

Filtering can be performed similarly, by evaluating an ar-
bitrary predicate on each data row. Filtering uses bitmaps to
represent efficiently subsets of a large dataset. Sampling is a
special form of filtering.

Combining two datasets: Each view of the dataset has
a little yellow icon on the top-right displaying a “set inter-
section” sign. By dragging and dropping that icon V(1:00)
from a window displaying a source dataset S to a window
representing destination dataset D (over the same underly-
ing table), the user is presented with a pop-up menu with
a set of choices for a set operation op: union, intersection,
difference, replacement, etc. The result of this manipulation
is to perform D = D op S, and the view of the destination’s
window is recomputed. This kind of direct manipulation for
large datasets is described in detail in a separate technical
report [Bud10], and is remarkably effective for navigating
multiple views of the same underlying dataset.

Heavy hitters is a computation that can find the most fre-
quent tuples (or tuple projections) in a dataset; it can be

computed using the standard Misra-Gries sketching algo-
rithm [MG82]. The user inputs a frequency; the algorithm
is guaranteed to produce all tuples that occur with at least
the specified frequency.

Most charts interaction is via direct manipulation:
Zooming in is performed by dragging a box with the

mouse; the box determines a predicate, that is used for fil-
tering V(4:13). Zooming can be used both to exclude data
outside of the box, or the data inside the box. Zooming into
a histogram may cause the buckets to be “blown up,” reveal-
ing the finer-grain substructure of the data.

Pivoting is also performed as described in [Bud10]: by
performing drag-and-drop with the little pink C icon be-
tween two displayed histograms V(4:58). The “C” stands
for “color”; the effect is to divide each bucket in the des-
tination histogram into colored sub-buckets that correspond
to the bars in the source histogram, as shown in Figure 6 (in
the Figure each bar represents a tweet length; the colors rep-
resent the time-of-day when each tweet was issued). Pivots
are quite effective for visually detecting (partial) correlations
between the two columns that are charted V(5:52).

4.2. ViewCluster: Distributed System Perf. Analysis
In this section we describe briefly the ViewCluster tool,
which is used for offline performance analysis of distributed
systems by visualizing distributed systems event traces. Fig-
ure 8 shows 2 screenshots of ViewCluster.

An ideal tool to understand and debug the performance
of a distributed system allows the user to visualize perfor-
mance at multiple resolutions (e.g., cluster/machine/thread
and second/millisecond/microsecond). ViewCluster collects
a large variety of low-level events (context switches, inter-
thread signals, deferred procedure calls, interrupts, network
packet sends and receives), and high-level activity metrics
(memory allocations, garbage collection, and application-
specific events). Fine-grained event tracing produces tens of
thousands of events/machine/minute, amounting to several
gigabytes/minute/cluster. Note that the data model is signifi-
cantly more complex than just a relational table. ViewCluster
is a proof that the Sketch framework can be used to visualize
dataset with complex structures (object graphs), and not just
tabular data.

The original version of the ViewCluster application pre-
dated the Sketch framework, and was a single-machine im-
plementation; it copied traces from all analyzed machines
to the client machine for analysis. By refactoring the tool
around the Sketch framework we have obtained a distributed
application which browses and analyses the traces in place,
on the machines where they are collected; all machines in the
analyzed cluster can participate in the trace browsing and vi-
sualization. The porting effort took around one person-week.

Using Sketch provides immediate benefits: (1) data is
never moved from the original machines; (2) the work per-
formed by each machine is constant, irrespective of the size
of the analyzed system: trace parsing and data navigation are
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Figure 9: Scale-out experiment, where we keep a constant
amount of data per server and increase the number of
servers. Graph displays end-to-end time measured at client
for computing various sketches. X axis is number of server
machines, Y axis is time in milliseconds.

performed in parallel on all machines, and scale with the size
of the monitored system.

Visualization is a powerful tool for performance debug-
ging, but providing a good user experience requires interac-
tive response times. Data loading is a relatively slow pro-
cess (linear in the size of the collected traces, one the or-
der of minutes); loading requires parsing on-disk trace files
to construct a complex in-memory representation of system
activity on each server, including multiple indexes used to
navigate the data structures quickly on user requests. After
parsing, data exploration can be done at interactive speeds:
the response time is on the order of seconds for clusters with
tens of machines (which involves browsing sets of tens of
millions of events). The user can scroll on both axes, and
zoom in/out; she can also change visualization details or can
mouse-over to find out more details about a specific event.

All renderings, as shown in Figure 8, are computed us-
ing sketches. Each sketch is parameterized by the time range
visible on the screen and by the window resolution in pix-
els. For example, in the left view, average CPU utilization is
computed and displayed for each time interval correspond-
ing to 5 pixels, which is about .5ms in this image. Zoom-
ing requires filtering and recomputing aggregations at finer
time-scales. The server-side computations take advantage of
the index data structures constructed during trace parsing to
touch only those events visible in the displayed rendering.
5. Evaluation
Here we evaluate properties of the Sketch framework us-
ing the Spreadsheet application. We measure first interac-
tivity and scalability (Section 5.1), next we compare perfor-
mance with VisReduce [IVM13] using a common dataset
(Section 5.2).

Hardware platform. We run our experiments on a 155
node cluster. All machines use Windows Server 2012 R2.
Each is equipped with an 8-core 2.1GHz AMD Opteron
2373 EE processor, and at 16GB of RAM. The machines
are organized in 5 racks, each with a top-of-rack switch. The
network is 1Gbps Ethernet. In our evaluation there is only
one client connected to the service, on the same LAN.
5.1. Interactivity and Scalability Evaluation
In the first set of experiments each server processes the same
amount of data. The dataset is a table with 12 columns rep-
resenting a set of tweets; the full dataset, shown in Figure 6,
contains 4.1 billion tweets. Total data size is about 1TB. Data

is partitioned almost uniformly on machines, for 26.45 mil-
lion rows per machine, further divided into 8 parts on each
machine (one part per core), of 3.3 million rows in each part.
The underlying storage is a simple custom column store that
we have implemented.

Browsing speed. We measured the end-to-end execution
time for each operation for an interactive user-controlled
data-browsing session on the full 4.1B rows dataset (his-
tograms, tabular views with scrolling, and heatmaps). The
average latency between the user initiation and the final ren-
dering is 560ms; with a maximum of 7.6s. Loading data
is the most expensive step, in particular non-compressible
string columns require expensive I/O.

The remaining experiments in this section were scripted
(there was no user think time). Each experiment is repeated
7 times, and error bars show variability after the two extreme
values are dropped. The file caches are warmed, so disk I/O
cost is not a factor in these results. Result memoization is
disabled, because it would provide instantaneous answers
when running repeated computations.

Communication latency. To get a baseline for the com-
munication costs we measure the end-to-end execution time
for a Null sketch; the Null sketch Create and Combine
function just return true. Figure 9(a) shows 2 sets of mea-
surements: with (red/continuous line) and without (blue/-
dashed line) per-rack aggregation.

Without rack-level aggregation, the Null sketch latency
increases linearly with the number of servers, as expected,
due to contention on the single client network interface com-
municating with all servers. The rack-level aggregation layer
provides a flat response time over this set of machines. The
two lines cross at 16 servers. With similar constants we ex-
pect that a second-level intermediate aggregation layer is
useful for clusters with more than 16*16 = 256 machines.
Facebook’s Scuba [AAB⇤13] uses an aggregation fanout of
5, which is much smaller.

Scale-out. The next experiment measures the time to
compute the histogram of the CreatedAt column, which con-
tains the DateTime when each tweet was created. Figure 7
shows the timeline of the computation when there is no
rack-level aggregation. Displaying a histogram requires 3
sketches, as explained in Section 4.1. (1) The first computes
the range and precision of the data. After receiving these
results, the client decides the histogram bucket boundaries
and initiates 2 more sketches concurrently: (2) the histogram
proper, and (3) the CDF. After receiving these results the
client renders and displays the histogram on the screen (as
in Figure 6 top right).

Figure 9(b) shows the execution time (tr in Figure 7) of the
first sketch, that computes the data range and precision. Fig-
ure 9(c) shows the end-to-end time (ta in Figure 7) to com-
pute all 3 sketches. The data-range computation dominates
at 65% of the end-to-end histogram time. The last 2 sketches
are computed on sampled data, as explained in Section 4.1.
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Scroll-bars 8 coresNetwork messagesTime Machine CPU usage

Figure 8: Two ViewCluster screenshots at different resolutions, while analyzing of a distributed application. The X axis is
time, and the Y axis is the machine/core. The left screenshot covers 0.1 seconds and 17 machines, while the right screenshot
is a zoomed-in display of the indicated region, covering 6 milliseconds and 10 machines. Each “row” shows the activity on
one computer. Colors indicate the type of activity (user-level, system-level, garbage-collection, interrupt handler, user-specified
code region, etc.). The left image shows average CPU utilization across all 8 cores using stacked bars in each time interval;
when zooming in each core is presented as a separate horizontal bar, and network messages become visible (yellow lines).

(The data range needs to be recomputed every time filtering
operations are applied.)
5.2. Visualizing OnTime Flight data
In order to provide a comparison with related work, we
reused the dataset from VisReduce [IVM13]: the OnTime
flights database [ont]. The dataset consists of 321 files, each
around 250MB, for a total of 65G uncompressed. There are
159M tuples, with 109 columns each. We distribute the files
in a round-robin fashion on our machines. We experiment
with 5 machines as in [IVM13], with 64 files/machine. We
also experiment with 155 machines, with about 2 files/ma-
chine (3 files on 11 machines). The files on a machine are all
loaded as children of a single ParallelPDS.

Since it is difficult to make a direct comparison, we have
carried several experiments computing the histogram of col-
umn “FlightDate”, summarized in the table below.

Experiment Time (s)
VisReduce [IVM13], 5 servers, cold cache 0.5-5.5
Sketch, 5 servers, cold cache, end-to-end 3.2
Sketch, 5 servers, warm cache, end-to-end 2.5
Sketch, 5 servers, histogram only 0.047
Sketch, 155 servers, warm cache, end-to-end 1.3
Sketch, 155 servers, histogram only 0.09

6. Related Work
Parallel Computation and Visualization. It is challenging
to do justice to the immense amount of work on parallel
visualization and rendering, starting with [PSGL94]. There
are sophisticated parallel rendering and visualization toolk-
its available, for example ParaView [Squ07]. These tend to
have much richer data models and to provide much more
sophisticated functionality than Sketch. The Sketch design
decouples the parallel-execution framework from the actual
data model and rendering.

Sketch is a “sort-middle” rendering pipeline [Cro95], be-

cause the data is arbitrarily partitioned, and the rendering
is computed on the client side from aggregated data sum-
maries. Initial versions of Sketch attempted to do render-
ing sort-last, by overlaying actual bitmaps rendered on a
transparent background. The examples in [BCS13] show
why such an approach is incorrect: overlaying transparent
bitmaps with absolute color values leads to saturated color
values, truncating information; fundamentally this happens
because bitmap overlays do not form a commutative monoid.
Twitter’s Algebird [Bes14] open-source library approaches
the task of (non-interactive) data analytics using algorithmic
tools related to our monoids and linear transformations.

Sketch is to some degree related to Zoomable User In-
terfaces, introduced by the Pad system [PF93]. ZUIs tend
to have multiple distinct semantic layers (e.g. [Ham14] and
[JE10]). The idea of Responsive Design [Ada04] is to adapt
a web site to the screen resolution; Sketch extends this idea
to data visualization (but Sketch is not the first system to pro-
pose this approach).

Polaris [STH08], commercialized under the name
“Tableau” is a successful visualization platform for tabu-
lar data. Sketch is a complement to tools such as Excel or
Tableau, designed to work in the regime where there are
many more data points than pixels on the screen, and data
exceeds the resources available to a single machine.

The MPI Reduce [SOHL⇤96] primitive is strongly related
to the aggregation model of Sketch, but it is a lower-level,
non generic interface, oriented towards numeric data.

Large-scale analytics. The PDS Sketch operation is
functionally equivalent to the Neptune Data Aggregation
Call architecture [CTYS03]. Unlike Neptune, Sketch pro-
vides a stateful object model (the PDS) with distributed
garbage-collection. Our work is also geared towards visu-
alization applications.
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Several systems including Dremel [MGL⇤10] (aka.
BigQuery), PowerDrill [HBB⇤12], Apache Drill [HN13],
Druid [YTL⇤14], and Scuba [AAB⇤13] are oriented towards
efficient execution of aggregated queries and visualization
of large distributed databases. Sketch decouples the aggre-
gation layer from the application, and allows manipulation
of very rich datatypes and displays. In particular, applica-
tions such as ViewCluster show that Sketch is applicable
to rich data types, beyond simple relational data models.
Some of these system do not provide a clear semantics when
results are very large (e.g., Scuba limits results to 100K
rows to “avoid memory issues and rendering problems”, and
Dremel computes Top-K only approximately). The ATLAS
system [CXGH09] targets the large-scale browsing of time-
series data, using prefetching to decrease operation latencies.

Big Data Abstractions. The PDS is similar in some
respects to a Spark RDD [ZCF⇤10]; PDSs however are
garbage-collected and memoized, and they offer a narrower
interface, optimized for distributed hierarchical aggregation.
It is unclear how easily an application such as our distributed
profiling tool ViewCluster, which uses very complex data
structures and indexes, can be implemented on top of Spark;
we are not aware of any application of similar complexity
implemented over a big data framework.

The modular architecture of Anvil [MHK09] is similar to
the various implementations of the PDS interface in our dis-
tributed objects. Several systems are stateful; for example:
Grappa [NHM⇤14] keeps state local and delegates compu-
tation to remote locations, but the computational model is
quite different; [FMKP14] is geared towards batch process-
ing, and Piccolo [PL10] uses a distributed key-value store.

[EF10] presents a theory of aggregated information visu-
alization. The idea of restricting visualizations to aggregates
for large data is proposed by imMens [LJH13]; imMens
precomputes cubes for faster rendering. The Nanocubes
project [LKS13] adopts this approach for visualizing spa-
tiotemporal data sets. DICE [KJTN14] also tackles inter-
active cube browsing of large relational datasets prefetch-
ing (similar to ATLAS) and sampling are used to decrease
user-perceived latencies. VisReduce [IVM13] also uses a
system architecture for computing user-defined aggrega-
tion functions, as well as incremental renderings. MapRe-
duce [DG04] is adapted for complex big-data rendering
in [VBS⇤11], foregoing interactive response. [BCS13] iden-
tifies several problems with traditional visualizations, but
proposes heuristic solutions. Sketch uses the screen resolu-
tion to select rendering precision by restricting errors bars
to be below one pixel in size, computes CDFs as histograms
with pixel-sized bins, computes NextK based on the number
of displayed rows, and scrolls quickly through sorted views
using approximate quantiles, all new ideas.

Incremental Visualizations. A fair amount of work fo-
cuses on incremental visualizations. Early work [HHW97]
synthesizes incremental queries on a database. [FPDS12]
evaluates user interfaces for incremental visualizations;

Tempe [Mic] uses a generic query language; [CGQ14]
uses special user annotations on data; Stat! [BCD⇤13] uses
a programmable streaming engine. The problem of dis-
tributed aggregation is one of the core problems of sensor
networks [RV06]. Sketch is built on top of a distributed,
garbage-collected partitioned object model, and is not tied
to a database. It would be an interesting exercise to adapt the
Sketch model to incremental visualizations.

Sampling. There is also a large amount of work on
sampling-based data visualization; recent work related to big
data is BlinkDB [AMP⇤13] and [YCZ14]. These techniques
could further accelerate the Sketch Spreadsheet.

Application Specific Visualization. Splunk [spl] is a
log-analysis system for distributed logs, related to our log-
browser spplication; it has a similar query architecture,
where the “search head” corresponds to our client, and the
“indexers (search peers)” correspond to the Sketch servers.
Sketch seems to provide better scalability than Splunk, but
could certainly benefit from the rich set of log-parsing
heuristics and tools. IBM BigSheets [big14] also provides
a spreadsheet user interface for big-data manipulation.

The Fay log-analysis system [UEPPB11] is related to
ViewCluster; however, our viewer is optimized for brows-
ing, and not for analytics.

Data virtualization [Stu09] is a well-known technique for
building large spreadsheets, and closely related to paginated
queries in databases and to the display of results in search
engines. The architecture of search engines also relies on ag-
gregation trees. All these influenced the Sketch spreadsheet.

7. Conclusions
The core observation driving this work is that visualizations
render data with precision necessarily bounded by the screen
resolution. To render a large dataset on a small screen one
has to aggregate information in some way. We answered the
question: “What if aggregation is the only operation that can
be applied to a large dataset?” (Any sequence of Map, Zip
and Sketch operations is equivalent to just a Sketch.)

To answer this question we constructed a generic frame-
work for building distributed aggregation and used it to build
two useful and complex data visualization applications: a
spreadsheet, and a tool for debugging distributed applica-
tion performance. The aggregation interface endows these
application with desirable properties, such as simple paral-
lelization, low-bandwidth requirements and natural scalabil-
ity, which we have quantified up to 1240 cores.

We described Partitioned Data Sets, or PDSs, a distributed
stateful object architecture for building distributed aggrega-
tion networks. PDS objects hide the complexity of program-
ming distributed systems from clients. An interesting benefit
of the narrow PDS API is that it forces developers to code
their application using early data reduction, guiding them to-
wards efficient solutions.
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