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| INVESTIGATION

Efficient Strategies for Calculating Blockwise
Likelihoods Under the Coalescent

Konrad Lohse,*,1 Martin Chmelik,† Simon H. Martin,‡ and Nicholas H. Barton†

*Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH93FL, United Kingdom, †Institute of Science and
Technology, Am Campus 1, A-3400 Klosterneuburg, Austria, and ‡Zoology Department, University of Cambridge, Cambridge,

United Kingdom

ABSTRACT The inference of demographic history from genome data is hindered by a lack of efficient computational approaches. In
particular, it has proved difficult to exploit the information contained in the distribution of genealogies across the genome. We have
previously shown that the generating function (GF) of genealogies can be used to analytically compute likelihoods of demographic
models from configurations of mutations in short sequence blocks (Lohse et al. 2011). Although the GF has a simple, recursive form, the
size of such likelihood calculations explodes quickly with the number of individuals and applications of this framework have so far been
mainly limited to small samples (pairs and triplets) for which the GF can be written by hand. Here we investigate several strategies for
exploiting the inherent symmetries of the coalescent. In particular, we show that the GF of genealogies can be decomposed into a set of
equivalence classes that allows likelihood calculations from nontrivial samples. Using this strategy, we automated blockwise likelihood
calculations for a general set of demographic scenarios in Mathematica. These histories may involve population size changes, continuous
migration, discrete divergence, and admixture between multiple populations. To give a concrete example, we calculate the likelihood for a
model of isolation with migration (IM), assuming two diploid samples without phase and outgroup information. We demonstrate the new
inference scheme with an analysis of two individual butterfly genomes from the sister species Heliconius melpomene rosina and H. cydno.

KEYWORDS maximum likelihood; population divergence; gene flow; structured coalescent; generating function

GENOMES contain a wealth of information about the
demographic and selective history of populations. How-

ever, efficiently extracting this information tofit explicitmodels
of population history remains a considerable computational
challenge. It is currently not feasible to base demographic
inference on a complete description of the ancestral process
of coalescence and recombination, and so inference methods
generally rely on making simplifying assumptions about re-
combination. In themost extremecase ofmethodsbasedon the
site frequency spectrum (SFS), information contained in the
physical linkage of sites is ignored altogether (Gutenkunst et al.
2009; Excoffier et al. 2013). Because the SFS is a function only
of the expected length of genealogical branches (Griffiths and

Tavaré 1998; Chen 2012), this greatly simplifies likelihood
computations. However, it also sacrifices much of the informa-
tion about past demography (Terhorst and Song 2015). Other
methods approximate recombination along the genome as a
Markov process (Li andDurbin 2011;Harris andNielsen 2013;
Rasmussen et al. 2014). However, this approach is computa-
tionally intensive, limited to simple models (Schiffels and
Durbin 2014) and/or pairwise samples (Li and Durbin 2011;
Mailund et al. 2012), and requires phase information and
well-assembled genomes that are still only available for a
handful of species.

A different class of methods assumes that recombination
can be ignored within sufficiently short blocks of sequence
(Yang 2002; Hey and Nielsen 2004). The benefit of this
“multilocus assumption” is that it gives a tractable framework
for analyzing linked sites and so captures the information
contained in the distribution of genealogical branches.
Multilocus methods are also attractive in practice because
they naturally apply to RAD data or partially assembled ge-
nomes that can now be generated for any species (e.g., Davey
and Blaxter 2011; Hearn et al. 2014).

Copyright © 2016 by the Genetics Society of America
doi: 10.1534/genetics.115.183814
Manuscript received October 15, 2015; accepted for publication December 15, 2015;
published Early Online December 29, 2015.
Available freely online through the author-supported open access option.
Supporting information is available online at www.genetics.org/lookup/suppl/
doi:10.1534/genetics.115.183814/-/DC1.
1Corresponding author: Department of Zoology, University of Cambridge, Cambridge
CB2 3EJ, United Kingdom. E-mail: konrad.lohse@gmail.com

Genetics, Vol. 202, 775–786 February 2016 775

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.183814/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.183814/-/DC1
mailto:konrad.lohse@gmail.com


For small samples, the probability of seeing a particular
configuration of mutations at a locus can be obtained analyt-
ically. For example,Wilkinson-Herbots (2008) andWang and
Hey (2010) derived the distribution of pairwise differences
under amodel of isolationwithmigration (IM) andWilkinson-
Herbots (2012) extended this to a history where migration is
limited to an initial period. Yang (2002) derived the probabil-
ity of mutational configurations under a divergence model for
three populations and a single sample from each and Zhu and
Yang (2012) included migration between the most recently
diverged pair of populations in this model. However, all of
these particular cases can be calculated using a general pro-
cedure based on the generating function for the genealogy
(Lohse et al. 2011). Here we explain how the GF and—from
it—model likelihoods can be efficiently computed for larger
samples than have hitherto been possible.

Assuming an infinite-sites mutation model and an out-
group to polarize mutations, the information in a nonrecom-
bining block of sequence can be summarized as a vector k of
counts of mutations on all possible genealogical branches t :
Both t and k are labeled by the individuals that descend from
them. We have previously shown that the probability of see-
ing a particular configuration of mutations k can be calcu-
lated directly from the Laplace transform or generating
function (GF) of genealogical branches (Lohse et al. 2011).
Given a large sample of unlinked blocks, this gives a frame-
work for computing likelihoods under any demographic
model and sampling scheme. Full details are given in Lohse
et al. (2011). Briefly, the GF is defined as c½v� ¼ E½e2v : t�;
where v is a vector of dummy variables corresponding to t :
Setting the v to zero necessarily gives one, the total proba-
bility; differentiating with respect to vi and setting the v to
zero gives (minus) the expected coalescence time. If we
assume an infinite-sites mutation model, the probability of
seeing kS mutations on a particular branch S is (Lohse et al.
2011, equation 1)

P½kS� ¼ E

"
e2mtSðmtSÞkS

kS!

#
¼ ð2mÞkS

kS!

 
@ kSc

@vS
kS

!
vS ¼ m: (1)

This calculation extends to the joint probability of muta-
tions P½k�: Using the GF rather than the distribution of
branches itself to compute P½k� is convenient because we
avoid the Felsenstein (1988) integral and because the GF
has a very simple form: going backward in time, the GF is a
recursion over successive events in the history of the sample
(Lohse et al. 2011, equation 4),

c½V� ¼
P

ilic  ½Vi��P
ili   þ

P
jSj¼1vS

�; (2)

where, going backward in time,V denotes the sampling con-
figuration (i.e., the location and state of lineages) before
some event i and Vi the sampling configuration afterward.
Events during this interval occur with a total rate

P
ili: The

numerator is a sum over all the possible events i, each
weighted by its rate li: Equation 2 applies to any history that
consists of independently occurring events. As outlined by
Lohse et al. (2011), the GF for models involving discrete
events (population splits, bottlenecks) can be found by
inverting the GF of the analogous continuous model. In other
words, if we know the GF for a model that assumes an
exponential rate of events at rate L; then taking the inverse
Laplace transform with respect to L gives the GF for any
fixed time of the event.

Inprinciple, theGFrecursionapplies toany sample size and
model and canbeautomatedusing symbolic software (suchas
Mathematica). In practice, however, likelihood calculations
based on the GF have so far been limited to pairs and triplets:
Lohse et al. (2011) computed likelihoods for an IM model
with unidirectional migration for three sampled genomes
and Lohse et al. (2012) and Hearn et al. (2014) derived like-
lihoods for a range of divergence histories for a single ge-
nome from each of three populations with instantaneous
admixture, including the model used by Green et al. (2010)
to infer Neanderthal admixture into modern humans (Lohse
and Frantz 2014).

There are several serious challenges in applying the GF
framework to larger samples of individuals. First, the number
of sample configurations (and hence GF equations) grows
superexponentially with sample size. Thus, the task of solving
the GF and differentiating it to tabulate probabilities for all
possible mutational configurations quickly becomes compu-
tationally prohibitive. Second, models involving reversible-
state transitions, such as two-waymigration or recombination
between loci, include a potentially infinite number of events.
Solving the GF for such cases involves matrix inversions
(Hobolth et al. 2011; Lohse et al. 2011). Third, while as-
suming infinite-sites mutations may be convenient mathe-
matically and realistic for closely related sequences, this
assumption becomes problematic for more distantly related
outgroups that are used to polarize mutations in practice.
Finally, being able to uniquely map mutations onto genea-
logical branches assumes phased data that are rarely avail-
able for diploid organisms, given the limitations of current
sequencing technologies.

In the first part of this article, we discuss each of these
problems in turn and introduce several strategies to rem-
edy the explosion of terms and computation time. These
arguments apply generally, irrespective of the peculiari-
ties of particular demographic models and sampling
schemes, and suggest a computational “pipeline” for like-
lihood calculations for nontrivial samples of individuals
(up to n ¼ 6). The accompanying Mathematica notebook
(File S1) implements this scheme for a wide range of
demographic histories that may involve arbitrary diver-
gence, admixture, and migration between multiple popu-
lations, as well as population size changes. As a concrete
example, we describe likelihood calculations for the two
population IM model for unphased and unpolarized data
from two diploid individuals. We compare the power
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of this scheme to that of minimal samples of a single hap-
loid sequence per population. Finally, to illustrate the new
method, we estimate divergence and migration between
the butterfly species Heliconius melpomene and H. cydno
(Martin et al. 2013).

Models and Methods

Partitioning the GF into equivalence classes

Since the GF is defined in terms of genealogical branches and
each topology is specified by a unique set of branches, an
intuitive strategy for computing likelihoods is to partition the
GF into contributions from different topologies. To condition
on a certain topology, we simply set GF terms that are
incompatible with it to 0 (Lohse et al. 2011). Importantly
however, such incompatible events still contribute to the
total rate

P
ili of events in the denominator of Equation

2. Then, setting all v in the topology-conditioned GF to zero
gives the probability of that particular topology. Although
conditioning on a particular topology gives a GF with a
manageable number of terms, it is clearly not practical to
do this for all possible topologies, given their sheer number
even for moderate n (Table 1).

In the following, we distinguish between ranked and un-
ranked topologies. TheGF is a sumover all possible sequences
of events in the history of a sample; Edwards (1970) called
them “labeled histories.” Considering only coalescence
events, each labeled history corresponds to a ranked topol-
ogy, i.e., a genealogy with unique leaf labels and a known
order of nodes. A fundamental property of the standard co-
alescent, which follows directly from the exchangeability of
genes sampled from the same population, is that all ranked
topologies are equally likely (Kingman 1982; Hudson
1983). In other words, if we could somehow assign each
mutation to a particular coalescence (i.e., internode) inter-
val, we could use a much simpler GF, defined in terms of
the ðn2 1Þ coalescence intervals rather than the 2ðn2 1Þ
branches for inference. This logic underlies demographic
methods that use the branch length information contained
in well-resolved genealogies (e.g., Nee et al. 1995; Pybus
et al. 2002) and coalescent-based derivations of the site
frequency spectrum (Griffiths and Tavaré 1998; Chen
2012).

Unfortunately, however, when analyzing sequence data
from sexual organisms, we are generally limited by the num-
ber of mutations on any one genealogical branch and so often
cannot resolve nodes or their order. Although unranked to-
pologies are not equiprobable, even under the standard co-
alescent, their leaf labels are still exchangeable. Therefore,
each unranked, unlabeled topology, or “tree shape” sensu
Felsenstein (1978, 2003), is an equivalence class that defines
a set of identically distributed genealogies (Figure 1). This
means that we need to work out the GF only for one repre-
sentative (random labeling) per equivalence class. The full

GF can then be written as a weighted sum of the GFs for such
class representatives,

c v½ � ¼
X
h

nhc vh

h i
; (3)

where nh denotes the size of equivalence class h andvh ⊂v is
the set of dummy variables that corresponds to the branches
of a single class representative in h. There are necessarily
many fewer equivalence classes than labeled topologies
(Table 1). For example, given a sample of size n ¼ 6 from a
single population, there are 945 unranked topologies, but
only six equivalence classes (Figure 1).

Crucially, the idea of tree shapes as equivalence classes
extends to any demographicmodel and sampling scheme. For
samples from multiple populations, the equivalence classes
are just the permutations of population labels on (unlabeled)
tree shapes. It is straightforward to generate and enumerate
the equivalence classes for any sample (Felsenstein 2003).
For example, for a sample of n ¼ 6 from each of two popu-
lations (three per population), there are 49 equivalence
classes (partially labeled shapes), which can be found by
permuting the two population labels on the unlabeled tree
shapes in Figure 1.

In general, the size of each equivalence class nh is a
function of the number of permutations of individuals on
population labels. For ni individuals from population i,
there are ni! permutations. Since the orientation of nodes
is irrelevant, each symmetric node in the equivalence class
halves the number of unique permutations. Symmetric
nodes are connected to identical subclades; that is, there
exists an isomorphism ensuring that they have the same
topology and the same population labels at the leaves (see
Figure 1),

nh ¼ 1=2ns
Y
i

ni!; (4)

where ns is the number of symmetric nodes. Note also thatP
hnh ¼ ð2n2 3Þ!!; the total number of unranked topologies.
Any tree shape contains at least one further symmetry:

there is at least one node that connects to two leaves. Because
the branches descending from that node have the same length
by definition, we can combinemutations (and hencev terms)
falling on them: e.g., for a triplet genealogy with topology
ða; ðb; cÞÞ; we can combine mutations on branches b and c
without loss of information. The joint probability of seeing
a configuration with kb and kc mutations can be retrieved
from P½kb þ kc� :

P½kb; kc� ¼
1
2

kbþkc
�
kb þ kc

kb

�
P½kb þ kc�: (5)

We previously made use of this in implementing likeli-
hood calculations for triple samples (Lohse et al. 2011).
Although in principle this combinatorial argument extends
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to arbitrary genealogies, we can show that, for larger sam-
ples, computing P½k� frommutational configurations defined
in terms of internode intervals is computationally wasteful
compared to the direct calculation (see Supporting Informa-
tion, File S1).

Approximating models with reversible events

Migration and recombination events are fundamentally dif-
ferent from coalescence and population divergence. Going
backward in time, they do not lead to simpler sample config-
urations. Thus, the GF for models involving migration and/or
recombination isa systemof coupledequations, the solutionof
which involves matrix inversion and higher-order polyno-
mials and quickly becomes infeasible for large n (Hobolth
et al. 2011). As an example, we consider two populations
connected by symmetric migration at rate M ¼ 4Nm: Since
we are often interested in histories with low or moderate
migration in practice, it seems reasonable to consider an ap-
proximate model in which the number of migration events is
limited. Using a Taylor series expansion, the full GF can be
decomposed into histories with 1; 2; . . . ; n migration events
(Lohse et al. 2011). The same argument applies to recombi-
nation between discrete loci and can be used to derive the GF
for the sequential Markov coalescent (McVean and Cardin
2005). It is crucial to distinguish between M terms in the
numerator and denominator. In other words, even if we stop
including sampling configurations involving multiple migra-
tion events, M still contributes to the total rate

P
ili in the

denominator. To see how this works, consider the simplest
case of a pair of genes a and b sampled from two populations
connected by symmetric migration. Following Lohse et al.
(2011), anb denotes the sampling configuration where both
genes are in different populations and a; bn∅ that where they
are in the same population. We modify the GF (Lohse et al.
2011, equation 9) to include an indicator variable g that
counts the number of migration events:

c*½anb� ¼ gM
ðM þ va þ vbÞ

c*½a; bn∅�

c*½a; bn∅� ¼ 1
ð1þM þ va þ vbÞ

�
1þ gMc*½anb��: (6)

Expanding c* in g, the coefficients of g; g2 . . . gMmax corre-
spond to histories with 1; 2; . . . ;Mmax migration events. This

is analogous to conditioning on a particular topology: the
truncated GF does not sum to one (if we set the v to zero),
but rather gives the total probability of seeing no more
than Mmax events. This is convenient because it immedi-
ately gives an estimate of the accuracy of the approxima-
tion. Expanding the solution of Equation 6 around g ¼ 0
gives

c*½anb� ¼
X
i

Mi�ðM þ va þ vbÞð1þM þ va þ vbÞ
�ðiþ1Þ=2:

(7)

TheGFconditional on therebeingatmost onemigrationevent
is

c*½anbjMmax ¼ 1� ¼ M
ðM þ va þ vbÞð1þM þ va þ vbÞ

:

(8)

The error of this approximation is

12c*½anbjMmax� ¼ 1v/0 ¼ M
M þ 1

; (9)

which is just the chance that a migration event occurs before
coalescence (see Figure 2). An analogous expansion for the
pairwise GF for the IMmodel (Lohse et al. 2011, equation 13)
gives

c*½anbjMmax� ¼ 1
2

 
2Me2MT þ 2

1þM
2

2e2ðMþ1ÞTM2

1þM

!
:

(10)

Expressions for the GF conditional on a maximum of
2; 3; . . . ; n migration events and for larger samples can be
found by automating the GF recursion. While these do not
appear to have a simple form, plotting the error against M
and T (Figure 2) shows that for recent divergence (T, 1)
and moderate gene flow (M, 0:5), histories involving
more than two migration events are extremely unlikely
(P, 0:01) and can be ignored to a good approximation.
Considering that for large n, coalescence [at rate nðn21Þ =2]
becomes much more likely than migration (at rate Mn),
this approximation should be relatively robust to sample
size.

Table 1 Fundamental quantities of genealogies for small samples (n)

n Branches Ranked topologies Unranked topologies ECa, 1 population EC, 2 populations No. configb

2n 22 ðn!ðn2 1Þ!Þ
2ðn21Þ ð2n23Þ!! Felsenstein (2003) ð2þ kmÞ2ðn21Þ

3 6 3 3 1 2 625
4 14 18 15 2 6 15,625
6 62 2,700 945 6 49 9,765,625
8 254 1,587,600 135,135 23 560 6,103,515,625
10 1,022 2,571,912,000 34,469,425 98 7,139 3,814,697,265,625

aThe number of equivalence classes.
bThe number of mutational configurations for a sample from two populations with up to km ¼ 3 mutations per branch.
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Unknown phase and root

There are at least two further complications for blockwise
likelihood computations in practice: first, we have so far
assumed that mutations can be polarized without error, i.e.,
that the infinite-sites mutation model holds between in- and
outgroup, which is often unrealistic in practice. Second, given
the current limitations of short read sequencing technology,
genomic data are often unphased and onewould ideally want
to incorporate phase ambiguity explicitly rather than ignore
it (e.g., Lohse and Frantz 2014) or rely on computational
phasing.

Both unknown phase and root can be incorporated via a
simple relabeling of branches. In generating the GF, we
have labeled branches and corresponding v variables by
the tips (leaf nodes) they are connected to. Crucially, the
full GF expressed as a sum over equivalence class repre-
sentatives (Equation 3) still has unique labels for all indi-
viduals. That is, we distinguish genes sampled from the
same population. To incorporate unknown phase, we sim-
ply label leaf nodes by the population they were sampled
from (Figure 3). Because the genealogical branches are
labeled by the set of leaf nodes they are connected to, this
relabeling of leaf nodes defines branch types that corre-
spond to categories of the (joint) SFS. In other words, in
the absence of phase information branch types are defined
by the number of descendants in each population. To see
how this works, consider, for example, two genes from each
of two populations. There are six equivalence classes of
rooted genealogies (Figure 3). Combining branches with
the same population labels gives seven v variables that cor-
respond to site types va; vb; vab; vaa; vbb; vaab; and vabb: In
the absence of root information, we further combine the two
branches on either side of the root. Denoting v variables for

unrooted branches by * and the two sets of individuals they
are connected to, we have v*

fa;abbg; v*
fb;aabg; v

*
fab;abg; and

v*
faa;bbg: The rooted branches contributing to each unrooted

branch are indicated in color in Figure 3. The v  * terms
correspond to the four types of variable sites defined by
the folded SFS for two populations: k*fa;abbg (heterozygous
sites unique to a), k*fb;aabg (heterozygous sites unique to b),
k*fab;abg (heterozygous sites shared by both), and k*faa;bbg
(fixed differences between a and b). Note also that without
the root, the six equivalence classes collapse to two
unrooted equivalence classes (defined by branches t*faa;bbg
and t*fab;abg) (Figure 3).

The combinatorial arguments outlined above extend to
arbitrary sample sizes and numbers of populations. The GFs
for unphaseddata are givenby combiningv variableswith the
same number of descendants in each population. We modify
Equation 3 to write the GF of an unrooted genealogy c½v* �
as a sum over unrooted equivalence classes (denoted h*),
each of which is in turn a sum over rooted equivalence
classes:

Figure 2 The error (Equation 9) in limiting the number of migration
events to Mmax = 1 (solid line), 2 (dashed line), and 4 (dotted line) for a
pairwise sample in the IM model plotted against M for different diver-
gence times T. The results for a model of equilibrium migration without
divergence are shown for comparison (shaded line).

Figure 1 Unranked, unlabeled topologies define equivalence classes of
genealogies. For a sample of n ¼ 6 from a single population there are six
equivalence classes. Their size, i.e., the number of labeled genealogies in
each class (nh), is shown above.
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c v*½ � ¼
X
h*

X
h2h*

nhc vh /vh*
h i

: (11)

We can use this simplified GF and Equation 1 to compute
the probability of blockwise counts of mutation types de-
fined by the joint SFS. We refer to this extension of the joint
SFS to blockwise data as the blockwise site frequency
spectrum (bSFS), following Bunnefeld et al. (2015) who
have used the bSFS to fit bottleneck histories in a single
population.

Limiting the total number of mutational configurations

In principle, we can compute the probability of seeing arbi-
trarily many mutations on a particular branch from Equation
1. In practice, however, the extra information gained by
explicitly distinguishing configurations with large numbers
of mutations (which are very unlikely for short blocks) is
limited, while the computational cost increases. An obvious
strategy is to tabulate exact probabilities only up to a certain
maximum number of mutations km per branch and combine
residual probabilities for configurations involving .   km mu-
tations on one or multiple branches. As described by Lohse
et al. (2011, 2012), the residual probability of seeing .   km
mutations on a particular branch s is given by

P½ks $ km� ¼ c v½ �jvS/02
Xkm
i¼0

P½kS ¼ i�;

i.e., we subtract the sum of exact probabilities for configura-
tions involving up to km mutations from the marginal proba-
bility of seeing branch S.

Assuming thatwewant to distinguish between all 2ðn2 1Þ
branches in a given equivalence class and use a global km for
all branches, there are ðkm þ 2Þ possible mutation counts per
branch (including those with no mutations or .   km muta-
tions on a branch), which gives ðkm þ 2Þ2ðn21Þ mutational
configurations in total. For example, for n ¼ 6 and km ¼ 3
there are 9,765,625 mutational configurations per equiva-
lence class (Table 1). Although this may seem daunting, most
of these configurations are extremely unlikely, so a substan-
tial computational saving can be made by choosing branch-
specific km: We have implemented functions in Mathematica
to tabulate P½k� for an arbitrary vector of km (File S1).

The bSFS with km ¼ 0 constitutes an interesting special
case: it defines mutational configurations by the joint pres-
ence and/or absence of SFS types in a block, irrespective of
their number. In the limit of very long blocks, i.e., if we as-
sume an unlimited supply of mutations, this converges to the
topological probabilities of equivalence classes that can be
obtained directly from the partitioned GF by setting all
v/0: We can think of this set of probabilities as the “topol-
ogy spectrum.” For a sample of three genes from each of two
populations this consists of 49 equivalence classes, which re-
duce to 11 unrooted topologies (Figure 4). Under the IM
model with unidirectional migration, the GF of each class is
solvable using Mathematica (File S2). The most likely topol-
ogy is reciprocal monophyly, i.e.,

��ða; aÞ; aÞ�; �ðb; bÞ; bÞ���.
As expected, its probability decreases with M and increases
with T (Figure 4).

Data availability

File S1 is a Mathematica notebook that contains the code to
generate the GF and tabulate likelihoods under arbitrary de-
mographic models. File S2 contains the code used for the anal-
yses of the IM model, including the analyses of the Heliconius
data and the power test. File S3 contains the processed
input data for Heliconius and the python script used; raw se-
quence data are published by Martin et al. (2013) and avail-
able from www.datadryad.com DOI: 10.5061/dryad.dk712.

Results

Thevarious combinatorial strategies for simplifying likelihood
calculations based on theGF outlined above suggest a general
“pipeline,” each component of which can be automated:

1. Generate all equivalence classes h and enumerate their
sizes nh for a given sampling scheme.

2. Generate and solve the GF conditional on one representa-
tive of each h.

3. Take the inverse Laplace transform with respect to the
time parameters of discrete events (e.g., divergence, ad-
mixture, bottlenecks). These processes are initially mod-
eled as occurring with a continuous rate.

4. Relabel v variables to combine branches and equivalence
classes that are indistinguishable in the absence of root
and/or phase information.

5. Find a sensible km for each mutation type from the data.

Figure 3 For a sample of two sequences (a diploid genome) from each of
two populations (a and b), there are six classes of equivalent, rooted
genealogies (left); their sizes nh are shown above. Without root informa-
tion, these collapse to two unrooted genealogies (right). Without phase
information, there are four mutation types that map to specific branches
in the rooted genealogy: heterozygous sites unique to one sample (t*fa;abbg
and t*fb;aabg; red and blue, respectively), shared heterozygous sites (t*fab;abg;
green), and fixed, homozygous differences (t*faa;bbg; black).
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6. Tabulate probabilities for all mutational configurations in
each equivalence class.

In the accompanying Mathematica notebook we have
implemented this pipeline as a set of general functions. These
can be used to automatically generate, solve, and simplify the
GF (steps 1–3), and—from this—tabulate P½k�; the likelihood
of a large range of demographic models (involving population
divergence, admixture, and bottlenecks) (step 6). In principle,
this automation works for arbitrary sample sizes. In practice,
however, the inversion step (step 3) and the tabulation of prob-
abilities (step 6) become infeasible for n. 6:

Togive a concrete example,wederive theGF for amodel of
isolation at time T (scaled in 2Ne generations) with migration
at rateM ¼ 4Nemmigrants per generation (IM) between two
populations (labeled a and b). We further assume that mi-
gration is unidirectional, i.e., from a to b forward in time, and
that both populations and their common ancestral popula-
tion are of the same effective size (we later relax this assump-
tion when analyzing data). As above, we consider the special

case of a single diploid sample per population without root
and phase information. We first derive some basic properties
of unrooted genealogies under this model. We then investi-
gate the power of likelihood calculations based on the bSFS.
Finally, we apply this likelihood calculation to genome data
from two species of Heliconius butterflies.

The distribution of unrooted branches under the
IM model

We can find the expected length of any branch (or combina-
tion of branches) S from the GF as E½tS� ¼ 2@c½v�=@vSjv/0
(Lohse et al. 2011). The expressions for the expected lengths
of rooted branches are cumbersome (File S2). Surprisingly,
however, the expected lengths of the four unrooted branches
t*faa;bbg; t

*
fab;abg; t

*
fa;abbg; and t*fb;aabg; each of which is a sum over

the underlying rooted branches (Figure 3), have a relatively
simple form (Figure 5):

Similarly, the probability of the two unrooted topologies re-
duces to

p
h
t*faa;bbg

i
¼ 4eð2þMÞT þ 2M

3ð2þMÞ
p
h
t*fab;abg

i
¼ 12 p

h
t*faa;bbg

i
:

(13)

We can recover the full distribution of rooted branches
from the GF by taking the inverse Laplace transform (using
Mathematica) with respect to the corresponding v  *: While
this does not yield simple expressions (File S2), examining
Figure 6 illustrates that much of the information about pop-
ulation history is contained in the shape of the branch
length distribution rather than its expectation (Figure 5).
For example, the length of branches carrying fixed differ-
ences t*faa;bbg has a multimodal distribution with discontinu-
ities at T and the relative size of the first mode strongly
dependent on M.

Figure 4 The topology spectrum for a sample of n ¼ 6 from a two-
population IM model with asymmetric migration and T ¼ 1:5 (in 2Ne
generations). The probabilities of all 11 unrooted topologies are plotted
againstM. The probability of the most likely topology of reciprocal mono-
phyly

��
a; ða; aÞ�; �b; ðb;bÞ�� is shown as a dashed line.

E
h
t*faa;bbg

i
¼

e2ð2þMÞT
�
26eTM22 24eð1=2Þð4þMÞTð1þMÞ þ 2ð1þMÞ þ eð2þMÞT þ �24þ 24M þ 7M2 þM3

��
3Mð1þMÞð2þMÞ

E
h
t*fab;abg

i
¼ 2

�
2e2ð2þMÞT þM

�
3ð2þMÞ

E
h
t*fa;abbg

i
¼

4e2ð2þMÞT
�
3eTM2 12M2 6eð1=2Þð4þMÞTð1þMÞ þ eð2þMÞT�9þ 7M þ 7M2

��
3Mð1þMÞð2þMÞ

E
h
t*fb;aabg

i
¼ 4

�
32 e2ð2þMÞT þM

�
3ð2þMÞ :

(12)
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Power analysis

We compared the power to detect postdivergence gene flow
between two different blockwise likelihood calculations:
the bSFS for a diploid genome per population (n ¼ 4) and
a minimal sample of a single haploid sequence (n ¼ 2) per
population. As a proxy for power, we computed the expected
difference in support (E½DlnL�) between the IM model and a
null model of strict divergence without gene flow and arbi-
trarily assumed data sets of 100 blocks. However, since we
are assuming that blocks are unlinked, i.e., statistically in-
dependent, E½DlnL� scales linearly with the number of
blocks.

Figure 7 shows the power to detect gene flow for a rela-
tively old split (T ¼ 1:5) and sampling blockswith an average
of u ¼ 4Nem ¼ 1:5 heterozygous sites within each species.
Without gene flow, this corresponds to a total number of
5.2 mutations per block on average (using Equation 12 and
E½ST� ¼ u=2

P
E½t   *�). Unsurprisingly, sampling a diploid se-

quence from each population gives greater power to detect
gene flow than pairwise samples (compare black and blue
lines in Figure 7). However, contrasting this with the power
of a simpler likelihood calculation for n ¼ 4 that is based only
on the total number of mutations ST in each block (gray line
in Figure 7) illustrates that the additional information does
not stem from the increase in sample size per se, but rather
from the addition of topology information. Perhaps counter-
intuitively, we find that there is less information in the distri-
bution of ST for larger samples than in pairwise samples. This
clearly shows that most information about postdivergence
gene flow is contained in the topology, i.e., being able to
assign mutations to specific branches. Similarly, adding root
information almost doubles power (green lines in Figure 7).

In comparison, the threshold km has relatively little effect
on power. In other words, for realistically short blocks, most
of the information is contained in the joint presence and
absence of mutation types (regardless of their number).

Heliconius analysis

To illustrate likelihood calculation based on the bSFS, we
estimated divergence and gene flow between two species of
Heliconius butterflies. The sister species H. cydno and
H. melpomene rosina occur in sympatry in parts of Central
and South America, are known to hybridize in the wild at a
low rate (Mallet et al. 2007), and have previously been shown
to have experienced postdivergence gene flow (Martin et al.
2013). We sampled 225-bp blocks of intergenic, autosomal
sequence for one individual genome of each species from the
area of sympatry in Panama (chi565 and ro2071). These data
are part of a larger resequencing study involving high-coverage
genomes for four individuals of eachH. cydno andH. m. rosina
species as well as an allopatric population of H. melpomene
from French Guiana (Martin et al. 2013). We excluded CpG
islands and sites with low-quality (GQ , 30 and MQ , 30),
excessively low (,10) or high (.200) coverage and consid-
ered only sites that passed these filtering criteria in all
individuals.

We partitioned the intergenic sequence into blocks of
225 bp length. To allow some sites to violate our filtering
criteria in each block while keeping the block length post-
filtering fixed, we sampled the first 150 bases passing
filtering in each block (blocks with fewer remaining sites
were excluded from the analysis). A total of 6.3% of blocks
violated the four-gamete criterion (i.e., contained both
fixed differences and shared heterozygous sites) and were
removed. This sampling and filtering strategy yielded
161,726 blocks with an average per site heterozygosity of
0.017 and 0.015 in H. m. rosina and H. cydno, respectively
(Figure 8). Summarizing the data by counting the four
mutation types in each block gave a total of 2337 unique
mutational configurations, 1743 of which occurred more
than once.

Figure 5 The expected length of unrooted genealogical branches (Equa-
tion 12) for a sample of n ¼ 4 under the IM model of two populations
(a and b) with asymmetric migration and population divergence time
T ¼ 1:5 (in 2Ne generations). Colors correspond to those in Figure 3.

Figure 6 The length distribution of unrooted genealogical branches for a
sample of n ¼ 4 under the IM model of two populations (a and b) with
asymmetric migration and population divergence at T ¼ 1:5 (in 2Ne

generations).
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We initially used all blocks (regardless of linkage) to obtain
point estimates of parameters under three models: (i) strict
isolationwithoutmigration, (ii) isolationwithmigration from
H. cydno into H. m. rosina (IMc/m), and (iii) isolation with
migration from H. m. rosina into H. cydno (IMm/c). In all
cases, we assumed that the common ancestral population
shared its Ne with one descendant species while the other
descendant was assumed to have a different Ne: To keep
computation times manageable, we did not consider more
complex histories involving bidirectional gene flow or three
Ne parameters.

We maximize lnL under each model. using Nelder–Mead
simplex optimization implemented in the Mathematica func-
tion NMaximize. Confidence intervals (C.I.) for parameter
estimates were obtained from 100 parametric bootstrap rep-
licates. We used ms (Hudson 2002) to simulate 0.3 Mb of
contiguous sequence for each of the 20Heliconius autosomes,
assuming a per site recombination rate of 1:83 1029 (Jiggins
et al. 2005) and the best-fitting IM history. We partitioned
each simulated data set into 150-bp blocks and estimated
95% (C.I.) as two standard deviations of estimates across
bootstrap replicates (see Discussion).

We find strong support for a model of isolation with
migration from H. cydno into H. m. rosina (IMc/m) (Table
2) with a larger Ne in H. cydno. This model fits significantly
better than simpler nested models of strict divergence or an
IM model with a single Ne (Table 2). Our results agree with
earlier genomic analyses of these species that showed
support for postdivergence gene flow based on D statistics
(Martin et al. 2013), IMa analyses based on smaller numbers
of loci (Kronforst et al. 2013), and genome-wide SNP fre-
quencies analyzed using approximate Bayesian computation.
Asymmetrical migration from H. cydno into H. m. rosina has
also been reported previously and could be explained by the

fact that F1 hybrids resembleH. m. rosinamore closely due to
dominance relationships among wing-patterning alleles, pos-
sibly making F1’s more attractive to H. m. rosina (Kronforst
et al. 2006; Martin et al. 2015).

We applied a recent direct, genome-wide estimate of the
mutation rate for H. melpomene of 2:93 1029 per site and
generation (Keightley et al. 2015) to convert parameter esti-
mates into absolute values. Assuming that synonymous
coding sites are evolving neutrally, we used the ratio of
divergence between H. m. rosina and the more distantly re-
lated “silvaniform” clade of Heliconius at synonymous coding
sites and the intergenic sites our analysis is based on to esti-
mate the selective constraint on the latter. This gives an
“effective mutation” rate of m ¼ 1:931029 (Martin et al.
2015). Applying this corrected rate to our estimate of u and
assuming four generations per year, we obtain an Ne estimate
of 1:103 106 for H. m. rosina and the common ancestral
population and 2:853 106 for H. cydno. We estimate species
divergence to have occurred�0.91–1.18 MYA. Note that this
is more recent than previous estimates of 1.5 MY that were
obtained using approximate Bayesian computation and a
different calibration based on mitochondrial genealogies
(Kronforst et al. 2013; Martin et al. 2015).

Discussion

Irrespective of any particular demographic history, the possi-
ble genealogies of a sample can be partitioned into a set of
equivalence classes, which are given by permuting population
labels on tree shapes. We show how this fundamental sym-
metry of the coalescent can be exploited when computing
likelihoods from blockwise mutational configurations. We
have implemented this combinatorial partitioning in Mathe-
matica to automatically generate and solve the GF of the
genealogy and, from this, compute likelihoods for a wide

Figure 7 The power (E½DlnL�) to distinguish between an IM model and a
null model of strict divergence (T ¼ 1:5) from 100 unlinked blocks of
length u ¼ 1:5 for different sample sizes and data summaries: the total
number of mutations in a sample of n ¼ 2 (black) and n ¼ 4 (gray) and
the bSFS for unphased data for two diploids (n ¼ 4) with root (green) and
without root (blue). Dotted, dashed, and solid lines correspond to differ-
ent maximum numbers of mutations per branch type, km ¼ 0; 1, and 3,
respectively.

Figure 8 The folded SFS has four site types: (i and ii) heterozygous sites
unique to either H. m. melpomene (i) or H. cydno (ii), (iii) heterozygous
sites shared by both species, and (iv) fixed differences. Solid bars show the
observed genome-wide SFS, and shaded bars show the expectation un-
der the IM history estimated from the bSFS (Table 2) (Equation 9).
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range of demographic models (File S2). Given a particular
sample of genomes, we first generate a set of equivalence
classes of genealogies and condition the recursion for the GF
(Lohse et al. 2011) on a single representative from each class.
This combinatorial strategy brings a huge computational sav-
ing. Importantly however, it does not sacrifice any information.
In contrast, approximating the GF for models that include re-
versible events in particular migration involves a trade-off be-
tween computational efficiency and accuracy. For example,
given our high estimates for unidirectional M for Heliconius
(Table 2), it would have been unrealistic to fit a history of
bidirectional migration to these data without allowing for
multiple migration events in each genealogy (Figure 2).

Although these approachesmake it possible to solve theGF
for surprisingly large samples and biologically interesting
models, the number of mutational configurations (which
explodes with the number of sampled genomes) remains a
fundamental limitation of such likelihood calculations in
practice. Given outgroup and phase, the full information is
contained in a vast table ofmutational configurations that are
defined in terms of the 2ðn2 1Þ branches of each equivalence
class. For samples from two populations, the number of
mutational configurations we need to calculate is the prod-
uct of the last two columns of Table 1. For example, given a
sample of three haploid genomes per population and
allowing for up to km ¼ 3 mutations per branch, there
are 493 9; 765; 625 ¼ 478; 515; 625 possible mutational
configurations, an unrealistic number of probabilities to
calculate.

The blockwise site frequency spectrum

Our initial motivation for studying the bSFS was to deal with
unphased data in practice. TheGFof the bSFS can be obtained
from the full GF simply by combining branches with equiv-
alent leaf labels. As well as being a lossless summary of
blockwise data (in the absence of phase information), the
bSFS is a promising summary in general for several reasons.
First, it is extremely compact compared to the full set of
(phased) mutational configurations. Unlike the latter, the
size of the bSFS does not depend on the number of equiv-
alence classes (which explodes with n, Table 1), but only on
n. Given a sample of ni individuals from population i and
assuming a global maximum number of mutations km for
all mutation types, the (unfolded) bSFS comprises a maxi-

mum of
��Q

iðni þ 1Þ�2 2
�ðkmþ2Þ mutational configurations.

For a sample of three haploid genomes from each of two

populations and km ¼ 3; the bSFS has 75 ¼ 16; 807 entries.
Second, because equivalence classes of genealogies are de-
fined by the presence and absence of SFS types, much of the
topology information contained in the full data should still be
captured in the bSFS. Finally, and perhaps surprisingly, at
least for the IM model the expressions for the total length
of branches contributing to unphased and unpolarized muta-
tion types (Equations 12 and 13) aremuch simpler than those
for the underlying rooted branches, which suggests that it
may be possible to find general results.

Despite the strategies developed here, it is clear that full-
likelihood calculationswill rarely be feasible for samples .   6
given the rapid increase in the number of equivalence classes.
However, a separation of timescales exists formanymodels of
geographic and genetic structure (Wakeley 1998, 2009), and
so full-likelihood solutions for moderate (n, 6) samples may
be sufficient for computing likelihoods for much larger sam-
ples if these contribute mainly very short branches with no
mutations in the initial scattering phase during which line-
ages from the same population either coalesce or trace back
to unsampled demes.

Dealing with linkage

A key assumption of the blockwise likelihood calculations is
that there isnorecombinationwithin sequenceblocksand that
different blocks are independent of each other. This latter
assumption is especially problematicwhenweanalyzewhole-
genome data. If we divide the genome into blocks that are
small enough for recombination within them to be negligible,
our method gives an unbiased estimate of the likelihood of a
demographic model. However, the accuracy of the model fit
will be grossly overestimated ifwe simplymultiply likelihoods
across blocks, because adjacent blocks are strongly correlated.
Ignoring this correlation amounts to a composite-likelihood
calculation.

A common practice (e.g., Wang and Hey 2010; Excoffier
et al. 2013; Lohse and Frantz 2014) is to assume a “safe
distance” at which blocks (or SNPs) are statistically indepen-
dent. This is equivalent to a rescaling of the lnL: suppose that
we multiply likelihoods across every kth block, k being cho-
sen large enough that blocks are uncorrelated. This proce-
dure is valid starting at any block and so can be repeated k
times, such that the whole genome is included in the analysis.
Taking the average across all k analyses is equivalent to sim-
ply multiplying the likelihoods across all blocks and then di-
viding the total lnL by k. However, because it is not clear how
to choose k, this procedure is quite arbitrary. On the one

Table 2 Maximum-likelihood estimates of divergence and migration between H. m. rosina and H. cydno

u (Ne) uC (Ne) T (t) M

IM estimatesa 1.25 3.24 1.90 1.50
Scaled IM estimatesb 1.10 (1.02–1.18) 2.85 (2.55–3.23) 1.04 (0.91–1.18) MY (1.32–1.68)
Expected estimatesc 1.22 3.53 1.97 1.40

aUnder the best model IMc/m: uC is the scaled mutation rate in H. cydno.
bNe in 3 106 individuals, t in MY, 95% C.I. in parentheses.
cMean across parametric bootstrap replicates.
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hand, successive blocks or SNPs are not completely corre-
lated, suggesting that this considerably underestimates the
accuracy of estimates. On the other hand, however, theremay
be weak, long-range correlations, due to a small fraction of
long regions that coalesced recently, and these may increase
the variance of parameter estimates.

The safest way to account for LD is via a parametric
bootstrap. Although computationally intensive, this has
the added benefit that it also checks whether parameter
estimates are biased (due to the assumption of no recom-
bination within blocks). It is reassuring that in the case of
the Heliconius data, we find that the biases in parameter
estimates are very small indeed (last row in Table 2). We
note that the confidence intervals for the Heliconius esti-
mates we derived from the bootstrap are conservative,
given the current limitations of coalescent simulators.
Given the limited length of continuous recombining se-
quence that can be simulated, the simulated data sets
were over four times smaller than the real data set. An
interesting alternative to full parametric bootstrap, which
we hope to implement in the future, is to use the variance
of the gradient of lnL across bootstrap replicates to adjust
the Fisher information matrix (Godambe 1960; Coffman
et al. 2015).

An advantage of direct-likelihood calculations is that one
can easily check the absolute fit of the data to a model by
asking how well the observed frequency of mutational con-
figurations or some summary such as the SFS is predicted by
the model. For example, the IM history we estimated for the
two Heliconius species fits the observed genome-wide SFS
reasonably well (Figure 8). The fact that we slightly under-
estimate the heterozygosity in H. cydno may suggest that
some process (e.g., demographic change after divergence or
admixture from an unsampled ghost population/species) is
not captured by our model.

In general, the GF framework makes it possible to derive
the distribution of any summary statistic that can be defined
as a combination of genealogical branches and understand
its properties under simple demographic models and small
n. Although explicit calculations based on such summaries
are not feasible for large n, summary statistics such as the
bSFS may still have wide applicability for fitting complex
models and analyzing larger samples of individuals, for
example using approximate-likelihood methods, or simply
as a way to visualize how genealogies vary along the
genome.
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