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Jamming and Attraction of Interacting Run-and-Tumble Random Walkers

A. B. Slowman, M. R. Evans, and R. A. Blythe
SUPA, School of Physics and Astronomy, University of Edinburgh,

Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
(Dated: 5th May 2016)

We study a model of bacterial dynamics where two interacting random walkers perform run-and-
tumble motion on a one-dimensional lattice under mutual exclusion and find an exact expression
for the probability distribution in the steady state. This stationary distribution has a rich structure
comprising three components: a jammed component, where the particles are adjacent and block
each other; an attractive component, where the probability distribution for the distance between
particles decays exponentially; and an extended component in which the distance between particles
is uniformly distributed. The attraction between the particles is sufficiently strong that even in the
limit where continuous space is recovered for a finite system, the two walkers spend a finite fraction
of time in a jammed configuration. Our results potentially provide a route to understanding the
motility-induced phase separation characteristic of active matter from a microscopic perspective.

PACS numbers: 05.40.-a; 87.10.Ca; 87.10.Mn

Self-propelled particles consume energy in order to
generate persistent motion and typically self-organize
into complex structures [1]. These particles may be nat-
urally occurring, for example, birds that flock [2], or syn-
thetic, such as photoactivated colloids that form ‘living
crystals’ [3]. It has become apparent that the physics
of such active constituents may be far richer than tradi-
tional passive, equilibrium matter.

The key distinction between passive and active par-
ticles at the microscopic level is that the equations of
motion for the latter break time-reversal symmetry (also
known as detailed balance). For example, the continual
consumption of energy implies that individual collisions
do not need to conserve energy or momentum. At the
macroscopic scale, a robust finding is that self-propelled
particles exhibit motility-induced phase separation [4]:
that is, a tendency to cluster as a consequence of the
particle velocity decreasing as the local particle density
increases. The propensity for clusters to form is of great
interest from a fundamental perspective, and has given
rise to a variety of theoretical and computational studies
[5–11]. Moreover, clustering may have practical impli-
cations: for example, bacteria are commonly found in
aggregates called biofilms which are important sources of
human infection [12, 13] and contamination in the food
industry [14].

Although various theoretical approaches have success-
fully reproduced some of the macroscopic properties of
clustering, most insights have arisen by coarse-graining
over microscopic degrees of freedom to a greater or lesser
degree (see e.g. [15–18] and also [1, 4, 19, 20] for re-
views). This coarse-graining step leaves one unable to
pinpoint the precise origin of these phenomena. Specifi-
cally, although self-propulsion must mediate an effective
attraction between otherwise repulsive particles [21], no
systematic method for determining the exact form of this
emergent attraction from the underlying microscopic dy-
namics exists. Such a method would pave the way to-
wards a deeper understanding of the mechanism behind

motility-induced phase separation. Recent theoretical in-
vestigations have used a microscopic approach to gener-
ate effective interactions, but they have been of an ap-
proximate nature [22, 23]. It thus remains of paramount
importance to establish exact results that shed light on
the path from the microscopic breaking of detailed bal-
ance to the emergence of effective attractions.

In this work, we determine the exact analytical form of
the effective pair potential that emerges between a pair
of self-propelled particles undergoing the run-and-tumble
dynamics that characterizes certain bacterial species (no-
tably Escherichia coli [24, 25]). In its most idealized
form [26], run-and-tumble motion consists of a series of
straight-line runs at velocity v, interspersed by tumble
events that occur as a Poisson process with rate α and
which instantly randomize a particle’s direction of mo-
tion. Although in general the run velocity v may depend
on the local density of bacteria or the concentration of
various chemical species in the environment [17, 26–28],
and time is spent tumbling without moving [24], we con-
sider the simplest case where the velocity v is constant
and the motion is in one dimension. Thus when a tumble
occurs with rate α, a velocity +v or −v is immediately
adopted with equal probability.

We also introduce a hard-core exclusion interaction be-
tween the particles: when two particles collide, this inter-
action causes the particles to remain stationary until one
of them reverses its velocity (occurring at rate ω = α/2).
It is this specific aspect of the dynamics that breaks de-
tailed balance: energy is not conserved in these collisions.

Our main result is an exact expression for the steady-
state probability distribution of this pair of run-and-
tumble particles on a periodic lattice, which we can then
interpret as an effective pair potential. The distribution
has a surprisingly rich structure, and comprises a jammed
component in which the particles are facing each other on
neighboring lattice sites, an attractive component charac-
terized by an exponential decay over a finite separation
length and an extended component in which all micro-
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FIG. 1. Simulation of Model System: A space-time plot
(time in the vertical direction) of a simulation of two run-and-
tumble random particles on a one-dimensional ring of 100 sites
in the low tumble-rate regime with particles reversing their di-
rection after traversing 100 lattice sites on average. The full
and dotted trajectories each represent an individual particle.

scopic configurations are equally likely. Most remarkably,
in a system of finite length, the particles spend a finite
fraction of their time in a jammed configuration even if
the lattice spacing of the discrete model is taken to zero,
in which limit the lattice model recovers run-and-tumble
dynamics in continuous space and time. Moreover, the
dynamics in the steady state exhibit some intriguing first-
passage properties, extending what has been established
for individual non-interacting run-and-tumble particles
[29, 30].

Let us define our lattice-based model of two run-and-
tumble particles in one dimension (see [31, 32] for re-
lated models). The particles occupy sites of a periodic
one-dimensional lattice of L sites and each has an orien-
tation σi = ± indicating its direction of motion. Due to
the translational invariance of the system, a microscopic
configuration is fully specified by 1 ≤ n < L, the distance
between the two particles in units of the lattice spacing,
and the two particle velocities, σ1 and σ2. A right-moving
particle (σi = +) hops one site to the right with rate γ;
likewise, a left-moving particle (σi = −) hops with rate
γ to the left. The exception is when the target site is oc-
cupied by another particle, in which case hopping is not
allowed: this implements the hard-core exclusion inter-
action. Particles may also reverse their velocity at rate
ω = α/2, where α is the tumbling rate described above.
By rescaling time, we can take γ = 1 without loss of gen-
erality. Fig. 1 illustrates the two-particle dynamics for
the case where ω � γ.

We now present exact expressions for the steady state
probability Pσ1 σ2

(n) of finding the two particles with ve-
locities σ1,σ2 and separated by n sites. These read

P++(n) =
1

Z

[
p(z)(zn + zL−n) + q(z)

]
(1)

P+−(n) =
1

Z

[
p′(z)(zn − zL−n) + q(z) + δn,1∆(z)

]
(2)

where

z = 1 + ω −
√
ω(2 + ω) (3)

p(z) = 1− z2 (4)

p′(z) =
1− z
1 + z

p(z) = (1− z)2 (5)

q(z) = (1− z)2(1− zL) (6)

∆(z) = 2(1 + z)(z − zL) (7)

Z = 4[∆(z) + (L− 1)q(z)] . (8)

The symmetries of the model imply that P++(n) =
P−−(n) and P+−(n) = P−+(L−n), leaving only P++(n)
and P+−(n) independent. These exact expressions are
obtained by solving the master equation for the station-
ary probability distribution using a generating function
approach (see below and Appendix A). Note that the key
parameter z lies in the range 0 < z < 1, hence p(z), p′(z),
q(z) and ∆(z) are all positive.

Equations (1) and (2) reveal that the stationary dis-
tribution is a sum of three distinct components which we
now explicitly identify. At large separations n, L−n� 1,
we have a uniform particle distribution ∝ q(z), indepen-
dent of n as for regular diffusion. This component of
the distribution fills the whole of phase space, and we
refer to it as extended. At intermediate separations, the
probability distribution for the separation between par-
ticles decays exponentially as zn with a characteristic
lengthscale ξ = 1/| ln(z)|. By analogy with quantum me-
chanical wavefunctions with exponentially-decaying am-
plitudes, we can think of this attractive component as a
bound state. Finally, there is a contribution from the
jammed configurations that have particles facing each
other on adjacent sites (n = 1).

Although the steady state is inherently nonequilib-
rium, we may nevertheless recast Eqs. (1) and (2) in the
form of effective pair potentials Vσ1σ2

(n) = − lnPσ1σ2
(n)

by analogy with the Boltzmann distribution P ∝ e−V :
these are plotted in Fig. 2. Three distinct pieces of the
potentials corresponding to the three components of the
particle distribution are evident. At large separations,
n, L − n � 1, the effective potentials are constant. At
intermediate separations, the potentials are linear and
attractive. Finally, there is a nearest-neighbour (n = 1)
delta function attractive potential. This attraction is
very strong when the reversal rate ω is small.

The origin and physics of the different components of
the stationary distribution can be understood from lim-
iting cases. When velocity reversal is rapid, ω → ∞, we
anticipate that standard diffusion should be recovered,
as memory of a particle’s velocity is erased between each
hop. Summing over all four velocity states we obtain the
total probability that the two particles are a distance n
apart, which in the limit ω � 1 becomes

P (n) ∼ 1

L− 1

[
1 +

1

2ω

(
δn,1 + δn,L−1 − 2

L−1

)
+O

(
1
ω2

)]
.

(9)
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FIG. 2. Effective pair potentials, defined by the loga-
rithms of the probability distributions, P++(n) and P+−(n),
for the case of L = 100 lattice sites and velocity reversal
rate ω = 0.01. These distributions have three components:
jammed (indicated), attractive (linear piece at intermediate
separations) and extended (constant piece at large separa-
tions).

At leading order, only the extended component survives,
and we thus identify repeated velocity reversal as the
physical origin of this contribution to the stationary dis-
tribution. The jammed component provides the leading
correction, whilst the attractive component does not en-
ter at order O(1/ω).

For the opposite limit, ω → 0, the limiting forms of (1)
and (2) are

P++(n) =
1

4(L− 1)
and P+−(n) =

1

4
δn,1 , (10)

with corrections of order Lω, implying that expressions
(10) are valid when ω � 1/L. In this regime, particles
hop many times between velocity reversals, and so in this
limit we expect the stationary distribution in each veloc-
ity sector to approximate that which would be reached in
the absence of any tumbling. For the case where parti-
cles are approaching (+−), the particles quickly (on the
timescale of tumbling) reach the jammed configuration,
n = 1. When they exit this state into one where both
particles have the same velocity (e.g., ++), fluctuations
in the distance traveled by each particle, generated by
the stochastic particle hopping dynamics, cause the dis-
tribution of the relative coordinate to broaden. When
this tumble rate is low, the distribution broadens to fill
the entire system, thereby generating a uniform distribu-
tion, but one that is crucially distinct from the extended
component that arises from velocity reversals. This pic-
ture of the dynamics is corroborated by the space-time
plots shown in Fig. 1. At higher tumble rates, the broad-
ening of the distribution is curtailed on the timescale of
tumbling, and is later restarted from the jammed config-
uration n = 1. This process is similar to that of diffusion
(here, of the particle separation) with stochastic reset-
ting (to the jammed configuration), which generates the
exponentially-decaying attractive component of the dis-
tribution [33]. One can thus think of this component as

an echo of the jammed configuration.
Finally, and most interestingly, we examine the scal-

ing limit ω → 0, L → ∞ with ωL held fixed, in which
run-and-tumble dynamics in continuous space and time
is recovered. To see why, we introduce the physical
system size ` and reinstate the run rate γ which had
previously set the unit of time. Then, the mean run
velocity is v = γ`/L, and the velocity reversal rate
ω = α/2γ = α`/2Lv, where α is the tumble rate de-
scribed in the introduction. Substituting into (1) and
(2), and introducing the continuous spatial separation
x = n`/L, yields the exact expressions

P++(x) =
α+ 2vδ(x) + 2vδ(`− x)

4(α`+ 4v)
(11)

P+−(x) =
α+ 4vδ(x)

4(α`+ 4v)
(12)

in the limit L → ∞ [34]. In contrast to the other two
limits considered so far, all three components of the sta-
tionary distribution survive in the scaling limit. The ex-
tended and attractive components are present in the ++
and −− sectors, Eq. (11). In particular, the lengthscale
ξ ' 1/(2ω)1/2 of the exponential decay corresponds to
a microscopically large number of lattice sites of order√
L. This is however small on the macroscopic scale,

where each unit of length comprises ∼ L lattice sites:
thus the attraction is confined to a fraction ∼ 1/

√
L of

the total system. At the same time, the amplitude of
this exponential decay diverges as

√
L, and hence this

component is manifested as the delta function appearing
in (11)—this delta function thus represents an attractive
state in which particles move together with zero separa-
tion. Meanwhile, the extended and jammed components
appear in (12), where here the delta function has its ori-
gins in the Kronecker delta that appears in (2) and rep-
resents a jammed configuration. From (12), we see that
the particles spend a fraction v/(α`+ 4v) of time in each
of the two symmetrically-related jammed configurations
and from (11) that a fraction v/(2(α` + 4v)) is spent in
each of the four attractive states with zero separation.
Thus the total fraction of time spent in a state in which
particles are adjacent (x = 0 or `) is 4v/(α`+ 4v).

We can also determine some features of the dynamics
in the scaling limit. In particular, the mean time spent in
an adjacent state after a collision can be worked out from
the fact that this state is left after exactly 2k velocity re-
versal events (k = 1, 2, . . .) with probability 2−k. This
is because particles are necessarily in the jammed state
when they collide: the first reversal always causes the
particles to both move at speed v whilst remaining adja-
cent, and the next reversal either causes the particles to
move apart or to re-enter a jammed configuration, each
with equal probability. Since the total velocity reversal
rate is 2ω = α, it follows that the mean time between
reversals is 1/α, and the mean time spent in an adjacent
state is 4/α. Comparing this with the above result for
the total fraction of the time spent in such a state, we
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deduce that the mean time between entering and leav-
ing a non-adjacent state is `/v (a result confirmed with
an explicit first-passage time calculation in Appendix B).
Intriguingly, this result is independent of the tumble rate
α, despite the fact that particles must typically tumble
over this lifetime: otherwise, the time spent in this state
would be close to its minimum value `/2v.

We now outline the derivation of Eqs. (1) and (2). We
start with the set of master equations governing the time
evolution of the probabilities in the four velocity sectors:

Ṗ++(n) = P++(n− 1)In>1 + P++(n+ 1)IL−n>1

+ ω[P+−(n) + P−+(n)]

− P++(n)[2ω + In>1 + IL−n>1] (13)

Ṗ+−(n) = 2P+−(n+ 1)IL−n>1 + ω[P++(n) + P−−(n)]

− P+−(n)[2ω + 2In>1] (14)

along with counterparts for P−+(n) and P−−(n) which
follow from the symmetries P−−(n) = P++(n) and
P−+(n) = P+−(L − n). In these equations the indi-
cator Ik>1 = 1 if k > 1 and is zero otherwise. One
can, of course, check that Eqs. (1) and (2), supple-
mented with (3)–(8), give the stationary solution of these
equations. To actually construct the stationary solu-
tion, we introduce the generating functions Gσ1σ2

(x) =∑L−1
n=1 x

nPσ1σ2
(n). Packaging these generating func-

tions into a vector G(x), and performing the appropri-
ate summations, we obtain a linear system A(x)G(x) =
b(x) where the elements of b do not involve the func-
tions Gσ1σ2

(x). Then, it remains to evaluate G(x) =
A−1(x)b(x).

In order to obtain (1) and (2) one must invert G(x).
However, one still needs to fix P++(1) and P+−(1) , which
are not a priori known. These constants are fixed by not-
ing that A−1(x) has poles at x = 1, x = z and x = 1/z,
where z and 1/z are the two roots of the symmetric poly-
nomial x2− 2(1 +ω)x+ 1 = 0. This implies an apparent
divergence in the generating functions Gσ1σ2

(x) which is
inconsistent with the fact that these functions are poly-
nomials of degree L − 1 and finite for all x. Therefore,
the poles in A−1(x) must be canceled by zeros in the
numerator b(x). This nontrivial pole-zero cancelation
implies one relation between the two constants, P++(1)
and P+−(1). The other required relation is given by
the normalization of probability. Fixing the constants
(see Appendix A for details), one finds that the poles
of A−1(x) at x = 1, z and 1/z correspond to a constant
term and terms in zn and z−n in Pσ1σ2(n), respectively,
as in Eqs. (1) and (2).

We conclude by considering how knowledge of an ex-
act pair potential may bear on generalizations to many-
body and higher-dimensional systems. We discuss the
many-body case first. In Fig. 3 we compare simulations
of hard-core particles in one dimension that hop with
equal probability to the left or the right in each timestep
(left panel) with the run-and-tumble dynamics that is the
focus of this work (right panel). The former dynamics
is a diffusion process satisfying detailed balance, which

FIG. 3. Space-time plots (time in the vertical direction) of 60
hard-core particles undergoing symmetric random walks (left)
and run-and-tumble motion (right) on a lattice of 300 sites.
The initial condition and the particle hop rate is the same in
both cases. In the run-and-tumble dynamics, ω = 0.01. The
clustering of particles induced by the nonequilibrium run-and-
tumble dynamics is clearly evident (see also [31, 32]).

relaxes to a homogeneous steady state where all config-
urations are equally likely. Strikingly, breaking detailed
balance by introducing run-and-tumble dynamics causes
an inhomogeneous steady state with multiple clusters to
appear (see also [31, 32]). Our calculations suggest that
the jamming and attraction of pairs of particles may be
responsible for this effect. An important open question
is whether an effective many-body potential, obtained
by treating a summation of the pair potentials presented
here as an ansatz, correctly predicts the physics of the
many-body state.

In principle, it should also be possible to generalize the
exact calculation of the pair potential to two or more di-
mensions. In particular, in two dimensions, a pair of dif-
fusing particles (of finite size) will eventually collide with
each other [35]. By analogy with the one-dimensional
problem here, we expect the jammed state to be present
for a finite fraction of the time, and for a jammed state
‘echo’ to give rise to an attractive interaction. The form
of the corresponding potential might provide insight into
whether one expects dense clusters to coarsen indefinitely
leading to phase separation which, for active particles
with direct repulsive interactions, experiments and sim-
ulations have been unable to observe directly due to the
slow dynamics of aggregation [8, 32, 36] .

Finally, the significance of the jamming and attrac-
tion established here in a simple model could be deter-
mined by investigating the effect of additional features of
bacterial dynamics on the pair potential such as a finite
tumbling duration [24], variable run velocity in response
to chemical potentials [27, 28] or hydrodynamic inter-
actions between particles [37]. Testing our predictions
directly might be possible if micro-channel experiments
confining a single run-and-tumble bacterium to one di-
mension whilst retaining its bulk motility pattern were
extended to two interacting bacteria [38]. Of course, the
greatest insights of all would come from exact solutions
of the many-body problem in arbitrary dimensions. This,
however, remains a theoretical challenge.
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Appendix A: Derivation of the stationary
distribution

In the main text, the master equations for P++(n) and
P−−(n) were given as

Ṗ++(n) = P++(n− 1)In>1 + P++(n+ 1)IL−n>1

+ ω[P+−(n) + P−+(n)]

− P++(n)[2ω + In>1 + IL−n>1] (A1)

Ṗ+−(n) = 2P+−(n+ 1)IL−n>1 + ω[P++(n) + P−−(n)]

− P+−(n)[2ω + 2In>1] . (A2)

Introducing the generating function Gσ1σ2
(x) =∑L−1

n=1 x
nPσ1σ2(n) we find

Ġ++(x) = (x+ x−1 − 2[1 + ω])G++(x)

− (1− x)(1− xL−1)P++(1)

+ ω[G+−(x) +G−+(x)] (A3)

Ġ+−(x) = 2(x−1 − [1 + ω])G+−(x)

− 2(1− x)P+−(1)

+ ω[G++(x) +G−−(x)] (A4)

where we have used the fact that P++(L− 1) = P++(1).
More generally, the symmetries P++(n) = P−−(n) =
P++(L − n) and P+−(n) = P−+(L − n) in the sta-
tionary probability distribution translate to symmetries
G++(x) = G−−(x) = xLG++(x−1) and G+−(x) =
xLG−+(x−1) in the stationary values of their generating
functions. By exploiting these symmetries, we find from
(A3) and (A4) that the stationary generating functions
must be the solution of the linear system

 µ(x) + ν(x) ω ω
ω ν(x) 0
ω 0 µ(x)

 G++(x)
G+−(x)
G−+(x)

 =

(1− x)

 (1− xL−1)P++(1)
P+−(1)

−xL−1P+−(1)

 (A5)

where µ(x) = x − (1 + ω) and ν(x) = x−1 − (1 + ω) =
µ(1/x). The inverse of the matrix appearing on the left-

hand side of this expression is

x2

(1 + ω)(x− z)(x− 1
z )(1− x)(x− 1)

× µν −µω −νω
−µω µ(µ+ ν)− ω2 ω2

−νω ω2 ν(µ+ ν)− ω2

 , (A6)

where z and 1/z are the two roots of x2 − 2(1 + ω)x+ 1
and recalling that µ and ν are functions of x.

This yields, for example,

G++(x) =
x2

(1 + ω)(x− 1)(x− z)(x− 1
z )
×{

µ(x)ν(x)[1− xL−1]P++(1)+

ω[ν(x)xL−1 − µ(x)]P+−(1)
}
. (A7)

For general values of P++(1) and P+−(1), this gives an
infinite series in x. However, it must terminate at or-
der xL−1, due to the original definition of the generating
function. In particular, this implies that G++(x) should
not diverge in the limits x→ 1, x→ z or x→ 1/z. Since
ν(1) = µ(1), we already have that the x = 1 pole is can-
celed by a zero in the numerator. For this also to be the
case at x = z, we must have

µ(z)ν(z)P++(1)− ωµ(z)P+−(1) =

zL−1 [µ(z)ν(z)P++(1)− ων(z)P+−(1)] . (A8)

Since µ(x) = ν(1/x), we find that the pole at x = 1/z is
also canceled if this relation holds. Furthermore, using
the fact that µ(z) = −ν(z) = 1

2 (z − 1/z) and that ω =

(z − 1)2/2z, one can determine that

P++(1)

P+−(1)
=

1 + zL−1

1− zL−1
(1− z)2
1− z2 . (A9)

To actually invert the generating function, we first note
that

G++(x) =
x

1 + ω

xJ(x)

(x− 1)(x− z)(x− 1
z )

+ xLH++(x)

(A10)
where

J(x) = µ(x)ν(x)P++(1)− ωµ(x)P+−(1) (A11)

and H++(x) is some power series in x. Now P++(n)
is given by the coefficient of the xn term in G++(x).
Since n < L, it follows that none of the terms in H++(x)
contribute to the P++(n) of interest. In other words,
to access P++(n), we read off the coefficient of xn in
the first term of (A10). Since the combination xJ(x) is
quadratic, and the denominator is cubic, we can apply a
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partial fraction decomposition to find

G++(x) =
x

1 + ω

[
J(1)

(1− z)( 1
z − 1)(1− x)

+

1

(z − 1)( 1
z − z)

(
zJ(1/z)

1− zx +
J(z)

1− x/z

)]
+ xLH++(x)

(A12)

Now, from (A8) and the fact that µ(x) = ν(1/x) it follows
that J(z) = zL−1J(1/z). This implies that we can write

G++(x) =
x

1 + ω

[
J(1)

(1− z)( 1
z − 1)(1− x)

+

J(1/z)

(z − 1)( 1
z − z)

(
z

1− zx +
zL−1

1− x/z

)]
+ xLH++(x)

(A13)

which has the structure

G++(x) = x

[
a(z)

1− x +
b(z)z

1− zx +
b(z)zL−1

1− x/z

]
+ xLH++(x)

(A14)
where

a(z) =
J(1)

(1 + ω)( 1
z − 1)(1− z) (A15)

=
(1− z)2(1− zL)

(1 + z)(1 + z2)(1− zL−1)
P+−(1) (A16)

and

b(z) =
J(1/z)

(1 + ω)(z − 1)( 1
z − z)

(A17)

=
1− z

(1 + z2)(1− zL−1)
P+−(1) . (A18)

Here we have used (A9) to express everything in terms
of a single unknown constant P+−(1) that will be fixed
by normalization. Taking

P+−(1) =
(1 + z)(1 + z2)(1− zL−1)

Z
(A19)

and reading off the coefficient of zn in (A14) yields

P++(n) =
1

Z

[
q(z) + p(z)(zn + zL−n)

]
(A20)

where the functions p(z) = Zb(z) and q(z) = Za(z) have
the functional forms that are given in the main text.

The inversion of G+−(x) proceeds similarly, with a
subtlety arising from the jamming occurring in this sec-
tor. Here we find that

G+−(x) = − x

1 + ω

xK(x)

(x− 1)(x− z)(x− 1
z )

+

xµ(x)P+−(1)

(1 + ω)(x− 1)
+ xLH+−(x) (A21)

where

K(x) = ω[µ(x)P++(1) + ωP+−(1)] , (A22)

and again the combination xK(x) is quadratic in x. The
additional term that appears in the generating function
would be cubic in x if it were brought over a common
denominator: this would not then be amenable to a par-
tial fraction decomposition. The significance of the extra
term is that it can ascribe an anomalously large weight
to the jammed configurate.

To see this we perform the partial fraction decomposi-
tion, which gives analogously to (A12),

G+−(x) =
x

1 + ω

[(
(1 + ω)P+−(1)− K(1)

(1− z)( 1
z − 1)

− xP+−(1)

)
1

1− x+

1

(1− z)( 1
z − z)

(
zK(1/z)

1− zx +
K(z)

1− x/z

)]
+ xLH+−(x) . (A23)

Using (A8), along with the facts that µ(x) = ν(1/x) and
µ(z) = −ν(z), one can show that K(z) = −zL−1K(1/z).
This implies that G+−(x) has the structure

G+−(x) =

x

[
a′(z) + c′(z)− xc′(z)

1− x +
b′(z)z

1− zx −
b′(z)zL−1

1− x/z

]
+ xLH++(x) (A24)

where

a′(z) = P+−(1)− K(1)

(1 + ω)(1− z)( 1
z − 1)

− P+−(1)

1 + ω

(A25)

= a(z) (A26)

b′(z) =
1

1 + ω

K(1/z)

(1− z)( 1
z − z)

(A27)

=
(1− z)2

(1 + z)(1 + z2)(1− zL−1)
P+−(1) (A28)

c′(z) =
P+−(1)

1 + ω
=

2z

1 + z2
P+−(1) . (A29)
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Substituting in (A19) and reading off the coefficient of
xn in (A24) finally yields

P+−(n) =
1

Z

[
p′(z)(zn − zL−n) + q(z) + δn,1∆(z)

]
(A30)

where p′(z) = Zb′(z), q(z) = Za(z) and ∆(z) = Zc′(z)
once again have the functional forms that are given in the
main text. Expressions for P−−(n) and P−+(n) follow
from the symmetries P−−(n) = P++(n) and P−+(n) =
P+−(L− n).

Appendix B: First-passage time calculation of the
mean time spent in a nonadjacant state

Our aim here is to calculate the mean time T̄d that
the particles spend in a nonadjacant state (i.e., one with
separation x > 0) after it is entered. Here we work di-
rectly in the scaling limit of the model where particles
move ballistically with velocity v and tumble at rate α.
Recall that tumbling leads to a velocity reversal with
probability 1

2 . More generally we are interested in the

mean first-passage time T̄A(x) for two particles that are
approaching with separation x and closing speed 2v to
reach the state of zero separation. Then, T̄d = T̄A(L).

A differential equation that this quantity must satisfy
is obtained by considering what happens in a short time
interval δt when the particles are approaching with sepa-
ration x. With probability e−αδt the particles run with-
out either reversing its velocity. If this happens, the par-
ticle separation decreases to x − 2vδt. Alternatively, a
velocity reversal occurs at a time δt′ which is distributed
as αe−αδt

′
. When this happens, a state in which the two

particles are moving in the same direction with constant
separation x − 2τδt′. By introducing the mean time for
two particles following each other at separation x to meet
as T̄F (x), we have

T̄A(x) = e−αδt
[
δt+ T̄A(x− 2vδt)

]
+∫ δt

0

d(δt′)αe−αδt
′ [
δt′ + T̄F (x− 2vδt′)

]
. (B1)

Taylor expanding the right-hand side, and dropping
terms of order (δt)2 and higher, we find

T̄A(x) = T̄A(x)+[
1− 2v

d

dx
T̄A(x) + α

(
T̄F (x)− T̄A(x)

)]
δt . (B2)

Now, while particles are following each other at the same
velocity, they maintain their separation until one of them
reverses its velocity. The mean time until this happens is
1
α , at which time the particles with equal probability ei-
ther start approaching each other at separation x or start
receding from each other at separation x. By symmetry,

this latter state is the same as approaching at separation
L− x, and so

T̄F (x) =
1

2τ
+

1

2

[
T̄A(x) + T̄A(L− x)

]
. (B3)

Now, substituting this into (B2) we arrive at

d

dx
T̄A(x) =

1

v
+

α

4v

[
T̄A(L− x)− T̄A(x)

]
. (B4)

To solve this equation we introduce the decomposition

T̄A(x) = F (x) +G(x) (B5)

where F (L−x) = F (x) and G(L−x) = −G(x). That is,

F (x) =
1

2

[
T̄A(x) + T̄A(L− x)

]
(B6)

G(x) =
1

2

[
T̄A(x)− T̄A(L− x)

]
. (B7)

Then

dF

dx
=

1

2

[
d

dx
T̄A(x)− d

dx
T̄A(L− x)

]
= − α

2v
G(x) (B8)

dG

dx
=

1

2

[
d

dx
T̄A(x) +

d

dx
T̄A(L− x)

]
=

1

v
. (B9)

Hence,

G(x) = G0 +
x

v
(B10)

=⇒ F (x) = F0 −
τG0x

v
− αx2

4v2
. (B11)

The constant G0 is fixed by the symmetry G(L − x) =
−G(x), that is

G0 +
L− x
v

= −G0 −
x

v
=⇒ G0 = − L

2v
. (B12)

We then find that F (x) = F (L− x) for any value of the
constant F0, since

F (x) = F0 +
α(L− x)

4v2
. (B13)

The remaining constant F0 is fixed using the boundary
condition at zero separation, T̄A(0) = 0. This implies
that

T̄A(x) =
x

v
+
αx(L− x)

4v2
. (B14)

In particular, mean time between entering and exiting a
nonadjacent state is

T̄d = T̄A(L) =
L

v
, (B15)

thereby confirming the tumble-rate independence that
was obtained by alternative means in the main text.
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