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Abstract
An incomplete understanding of the molecular mechanisms that initiate normal human

labour at term seriously hampers the development of effective ways to predict, prevent and

treat disorders such as preterm labour. Appropriate analysis of large microarray experi-

ments that compare gene expression in non-labouring and labouring gestational tissues is

necessary to help bridge these gaps in our knowledge. In this work, gene expression in 48

(22 labouring, 26 non-labouring) lower-segment myometrial samples collected at Caesar-

ean section were analysed using Illumina HT-12 v4.0 BeadChips. Normalised data were

compared between labouring and non-labouring groups using traditional statistical methods

and a novel network graph approach. We sought technical validation with quantitative real-

time PCR, and biological replication through inverse variance-weighted meta-analysis with

published microarray data. We have extended the list of genes suggested to be associated

with labour: Compared to non-labouring samples, labouring samples showed apparent

higher expression at 960 probes (949 genes) and apparent lower expression at 801 probes

(789 genes) (absolute fold change�1.2, rank product percentage of false positive value

(RP-PFP) <0.05). Although half of the women in the labouring group had received pharma-

ceutical treatment to induce or augment labour, sensitivity analysis suggested that this did

not confound our results. In agreement with previous studies, functional analysis suggested

that labour was characterised by an increase in the expression of inflammatory genes and

network analysis suggested a strong neutrophil signature. Our analysis also suggested that

labour is characterised by a decrease in the expression of muscle-specific processes, which

has not been explicitly discussed previously. We validated these findings through the first for-

mal meta-analysis of raw data from previous experiments and we hypothesise that this repre-

sents a change in the composition of myometrial tissue at labour. Further work will be

necessary to reveal whether these results are solely due to leukocyte infiltration into the myo-

metrium as a mechanism initiating labour, or in addition whether they also represent gene

changes in the myocytes themselves. We have made all our data available at www.ebi.ac.uk/

arrayexpress/ (accession number E-MTAB-3136) to facilitate progression of this work.
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Introduction
The molecular mechanisms that initiate normal human labour at term are still not fully under-
stood. Although research suggests many fetal, maternal and placental inflammatory and endo-
crine factors play a role, the relative importance of each of these and/or their interactions is
unclear [1]. These gaps in our understanding seriously hamper the development of effective
ways to predict, prevent and treat spontaneous preterm labour (PTL) [2]. Given that preterm
birth is the single biggest cause of neonatal mortality and morbidity [3,4], this lack of under-
standing is an important issue. Around 45% of preterm births are preceded by PTL. It is
increasingly clear that PTL is a complex syndrome composed of multiple mechanisms [4]. PTL
might be caused by early activation of the normal mechanisms that initiate labour, or patholog-
ical insults might trigger PTL through different mechanisms. PTL is difficult to predict using
known risk factors such as intrauterine infection, previous preterm birth and maternal smok-
ing [4–6], and biomarkers such as cervical length and cervicovaginal levels of fetal fibronectin
[7,8]. PTL is also difficult to treat once it has begun and current strategies do not substantially
improve neonatal or maternal outcomes [9,10]. Crucially, existing knowledge has also not led
to a substantial improvement in clinical outcomes for women presenting in established PTL,
although prevention of preterm birth with progesterone shows promise [11]. Clearly there are
still large gaps in our knowledge, particularly regarding the complex interactions that may exist
between the molecular pathways identified so far. A better understanding of the molecular
mechanisms of normal labour at term will help inform studies of preterm labour.

Over the past 15 years, several research groups have published microarray data comparing
gene expression in labouring and non-labouring myometrium [12–21]. The myometrium is the
tissue that contracts to expel the baby, so it is arguably the most relevant tissue in which to con-
duct such studies. Although there is some agreement between microarray studies, a clear labour-
associated myometrial gene expression signature has not been identified. This may be partly due
to the small number of samples used in previous studies—a problem that often arises because
human myometrial tissue is relatively inaccessible to study during pregnancy and because
researchers select samples from women with similar base characteristics (such as gestational age,
parity, BMI, maternal age and indication for Caesarean delivery) to reduce non labour-associated
variation between samples. Another possible reason that a clear labour-associated myometrial
gene expression signature has not yet been identified is that each study uses different microarray
platforms, researchers, locations and analysis methods and the data not analysed optimally.

Including more samples and meta-analysing microarray data gathered from different stud-
ies can improve statistical power to detect differentially expressed genes. When studies were
subjected to a meta-analysis, differences between studies (heterogeneity) can be assessed and
studies with higher statistical power have a greater impact on summary statistics. In addition to
traditional statistical approaches, a network clustering approach may also be useful in the iden-
tification of genes and biological processes associated with labour. Such techniques consider
higher-order interactions between genes and/or samples and are particularly useful when
applied to noisy datasets because spurious relationships tend not to influence the shape of the
resultant network graph [22].

In this paper, we describe the results of the largest-to-date microarray experiment to com-
pare gene expression in labouring and non-labouring myometrium. We combined statistical
and network clustering approaches to identify genes and biological processes associated with
labour. We also perform the first formal meta-analysis on publically-available sample level
data from similar published microarray experiments. We believe that these approaches will
lead to more accurate and generalizable conclusions that may be useful in helping to under-
stand molecular mechanisms in normal labour at term, and inform studies of preterm labour.
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Methods

Myometrial tissue samples
Biopsy samples of full thickness lower segment specimens of human myometrium were
selected from the Edinburgh Reproductive Tissue Biobank (ERTBB, http://www.crh.ed.ac.uk/
biobank/). All tissue samples were collected during Caesarean section from participant tissue
donors with informed and written consent, according to the ethical approval and governance
granted to the Edinburgh Reproductive Tissues BioBank by the West of Scotland Research Eth-
ics Committee 4 (09/S0704/3). In order to maximise biological replicates on the array, all 22
labouring samples that fulfilled our inclusion criteria and that were stored in the ERTBB as of
August 2012 were selected. In order to minimise inter-group variation in baseline characteris-
tics, a second group of non-labouring samples (n = 26) were selected by matching to labouring
samples on maternal BMI, gestational age, parity and maternal age. We did not exclude smok-
ers (data not available) or women who had received medication to induce labour (n = 11). We
restricted the number of non-labouring samples to 26 so that all samples (n = 48) could fit on
four array chips.

Forty-five of the samples had been transferred into RNAlater1 (Life Technologies, Invitrogen,
Carlsbad, CA, USA) immediately after collection and then stored at -80°C. Three labouring sam-
ples had not been transferred to RNAlater1 before freezing but were also included in the array
analysis in order to maximise the number of labouring samples. We noted that a previous micro-
array experiment has shown that there is no significant difference in quantitative RNA expression
in fresh or frozen myometrial tissue that has or has not been stored in RNAlater1 [23].

RNA preparation
Total RNA was isolated using TRI Reagent1 and the Qiagen RNeasy Lipid Tissue kit protocol
(Qiagen, Valencia, CA, USA). The quantity and quality of RNA was assessed using a Nano-
Drop 1000 (Thermo Scientific, Wilmington, DE, USA). RNA quality was further assessed in
the biotin-labelled samples by the Wellcome Trust Clinical Research Facility, Edinburgh using
a Bioanalyzer 2100 (Agilent Technologies, Wilmington, DE, USA). To prepare samples for the
microarray experiment, 450ng total RNA was amplified and biotin-labelled using the Illu-
mina1 TotalPrepTM RNA Amplification Kit (Ambion, Austin, TX, USA).

Illumina HT-12 v4.0 BeadChip Expression microarray
Samples were split randomly over four Illumina HT-12 v4.0 BeadChips to minimise any effect
of inter-chip variability. One sample was used per well. The chips were imaged using a BeadAr-
ray Reader and raw data were obtained with Illumina BeadStudio software. Raw and processed
data are available at www.ebi.ac.uk/arrayexpress/ under accession number E-MTAB-3136.

Data preprocessing. Raw data were preprocessed using the Lumi package[24–27] in R
version 2.14.1. The data were subjected to Robust Multichip Average (RMA) background cor-
rection before quantile normalisation to remove non-biological systematic variation [28].
Probes were also annotated with gene name, official gene symbol, Unigene ID, Entrez gene ID,
and Gene Ontology (GO) terms according to the Illumina probe ID. Where there were genes
with mean expression values of less than 100 (rounded from the median expression value for
negative control probes) for both labouring and non-labouring groups, we assumed that the
genes were not expressed in the samples. Data for these genes were therefore removed from
further analyses.

Statistical analysis. For each probe, the R package Limma [29] was used to calculate the
fold-change in mean expression between groups and the significance of differential expression
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using a non-parametric Rank Product [30] approach. The Rank Product approach reduces the
chance of false negative results. It is corrected for multiple testing using the percentage of false
positives (PFP) and reported as an RP-PFP value. This value may be considered as roughly
equivalent to a P-value, so genes with an RP-PFP�0.05 and fold change (effect size)>1.2 or
<-1.2 were considered differentially expressed and taken forward for further analysis.

Network graph analysis. Using expression data for the top up- and down-regulated
genes, we created sample-sample and probe-probe network graphs in Biolayout Express3D

[31]. In the sample-sample graph, each ‘node’ (sphere) represents a sample connected to others
by ‘edges’ weighted according to the strength of the sample-sample Pearson’s correlation
coefficient. All correlation values (r) above 0.85 were used to draw a graph of this similarity
matrix. Samples with similar gene expression signatures appear closer (connected) to each
other in the graph, thus creating local structure within the graph. This structure represents
overall similarity between samples, which can be used to explore correlations with clinical dif-
ferences such as membership of the labouring/non-labouring group, body mass index (BMI)
category, nulliparous/multiparous, etc. The Markov Clustering algorithm (MCL) [32,33] was
performed with the inflation value (MCLi) set at 3.0 to give an unbiased assessment of how the
samples cluster. Cluster membership was compared to labour status using a Fisher’s exact or
chi-squared test.

In the probe-probe graph, each node represented a probe connected to others by edges
weighted according to the similarity (above a threshold of r = 0.80) of expression profile, that
is, the degree of co-regulation in all samples. MCL clustering (MCLi = 2.2) was performed to
give an unbiased assessment of how the probes cluster. Average (mean) expression profiles for
each cluster were examined.

Functional analysis. Lists of official gene symbols representing 1) down-regulated genes
(fold change<-1.2 and RP-PFP�0.05) and 2) up-regulated genes (fold change>1.2 and
RP-PFP�0.05) were uploaded to DAVID (The Database for Annotation, Visualization and
Integrated Discovery [34,35]). The lists were assessed for biological process GO (Gene Ontol-
ogy [36]) term enrichment and KEGG (Kyoto Encyclopaedia of Genes and Genomes [37,38])
pathway enrichment. We also looked up certain genes in the primary cell atlas [39] on the
BioGPS website [40] to explore average expression in different human tissues.

Validation with qRT-PCR
qRT-PCR gene expression assays were chosen to validate some of the specific differences iden-
tified in the microarray (assay IDs and the reasons for choosing specific genes are given in
Table A in S5 File). Quantitative RT-PCR was performed using 45 (20 labouring, 25 non-
labouring) of the original RNA samples used in the microarray experiment. By the time that
qRT-PCR was performed, three of the original samples had degraded in storage (as assessed by
the 260nm/280nm ratio using a NanoDrop 1000 (Thermo Scientific, Wilmington, DE, USA))
and no longer gave adequate quality readings, therefore these samples were excluded from sub-
sequent PCR analysis. Gene expression was determined using the standard curve method, rela-
tive to the reference gene 18S. Pre-designed, inventoried TaqMan gene expression assays
(Applied Biosystems (Life Technologies), Foster City, CA, USA) were used to measure the
expression of ten genes (RBM42, SHROOM4, FABP4, IGFBP5,MYH11, TPM1, IL6, IL8,
MT1E, OXTR). qRT-PCR was performed using an ABI 7900HT (Applied Biosystems, Carls-
bad, US), on 384 well plates. T-tests were used to analyse whether the delta CT values (raw CT
value for the target gene minus the raw CT value for 18S) were significantly different in labour-
ing and non-labouring samples. We also assessed the suitability of 18S as a reference gene by
examining the mean raw CT values in the labouring and non-labouring groups.
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Replication using microarray meta-analysis
In addition to the wet-lab validation of the microarray, we performed a meta-analysis of data
derived from similar microarray studies, including the current study. Further details of the
meta-analysis methods are provided in S1 File. Briefly, we searched the literature for eligible
studies, obtained raw or normalised expression data, pre-processed the data consistently, com-
pared lists of genes showing differential expression according to labour status and performed
fixed effects inverse variance-weighted meta-analysis to compare study-specific standardised
mean differences for certain genes of interest.

Results

RNA quality
Before biotin labelling, RNA samples had a mean 260nm/280nm ratio of 2.07 (standard devia-
tion 0.04), confirming their quality. Fig A in S5 File shows boxplots and intensity plots to visu-
alise the distribution of microarray expression values across all probes and all samples before
and after quantile normalisation. There were no large variations in expression values between
samples and all data were included for further analysis.

Statistical analysis of sample characteristics
Table 1 summarises the characteristics of women in the labouring (n = 22) and non-labouring
(n = 26) groups (more details are provided in Table B in S5 File). Although within-group vari-
ance was reasonably high (as expected in these unselected samples), there were no between-
group differences in mean/median values of parity, maternal age, maternal BMI or gestational
age at delivery, indicating that the groups are well-matched. Four women in the labouring
group and two women in the non-labouring group delivered preterm before 37 weeks (earliest
gestations: labouring group, 33+4 weeks; non-labouring group, 31+2 weeks). Half of the

Table 1. Summary of characteristics of women in the labouring and non-labouring groups.

Labouring group Non-labouring group P-value*

Tissue storage (n) RNA later 19 26 n/a

No RNA later 3 0 n/a

Indication for Caesarean section (n) Fetal distress 3 0 n/a

Failure to progress 11 0 n/a

Breech presentation 3 11 n/a

Obstetric history 0 6 n/a

Other or missing 5 9 n/a

Mean maternal age (95% CI) 32 (29.1–34.4) 32 (30.8–34.6) 0.52

Mean body mass index (kg/m2) (95% CI) 28.0 (24.4–31.6) 28.4 (25.3–31.6) 0.86

Method of induction (n) Prostaglandins 3 0 n/a

Oxytocin 7 0 n/a

Prostaglandins and oxytocin 1 0 n/a

None 11 26 n/a

Mean gestation at delivery (weeks) (95%CI) 40 (39–41) 39 (38–40) 0.15

Preterm (n) 2 4 n/a

Median parity (weeks; interquartile range) 0 (0–1) 0 (0–1) 0.45

Mean cervical dilation (cm) (95% CI) 5.8 (4.3–7.3) n/a n/a

* P-values were calculated using t-tests.

doi:10.1371/journal.pone.0155413.t001
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women in the labouring group had received prostaglandins (n = 3), oxytocin (n = 7) or both
treatments (n = 1) to induce or aid the progression of labour. Fold-changes generated in a sensi-
tivity analysis omitting these women were consistent with those generated in the main analysis
(median absolute difference: 0.005; interquartile range -0.02, 0.03; correlation = 0.84; direction of
effect was the same for 90.1% of probes). We assume, therefore, that any difference in gene
expression between the non-labouring and labouring groups was likely to be primarily the result
of labour status rather than variation in any of the other clinical characteristics measured.

Statistical analysis of differential expression
A complete list of differentially expressed genes with an RP-PFP value<0.05 and an absolute
fold change�1.2 is presented in S2 File. According to these criteria, 960 probes (949 genes)
showed higher expression and 801 probes (789 genes) showed lower expression in labouring
samples compared to non-labouring samples. Fig 1 shows a heatmap of genes with an absolute
fold-change>2 and an RP-PFP of�0.0001. Hierarchical clustering demonstrates that samples
tend to cluster according to labour status.

Functional analysis
Table C and D in S5 File present the top five clusters of GO terms for biological processes asso-
ciated with the genes that showed higher and lower expression in labour, respectively. Accord-
ing to this functional analysis, biological processes that are active in labour are those mainly
associated with inflammation, cell movement/migration, response to hormone stimulus, regu-
lation of cell death and angiogenesis. Biological processes that are more active in the non-
labouring myometrium are mainly associated with responses to hormones, muscle develop-
ment, cytoskeleton organisation, ion homeostasis, neuron development and cell adhesion.
KEGG pathways active in labour include NOD-like receptor signalling, MAPK activation and
cytokine-cytokine receptor signalling. These are all important inflammatory pathways. Inter-
estingly pathways less active in labour include vascular smooth muscle contraction and calcium
signalling. However, rather than a change in transcription within myometrial muscle cells, this
may represent a change in the composition (effectively dilution in quantity of muscle cells) of
the myometrial tissue due to leukocyte infiltration at labour[41,42] or possibly the presence of
more blood in labouring samples.

Network graph analysis
In addition to the more traditional statistical analyses described above, we also used a network
graph approach. MCL clustering of these network graphs allowed us to understand the rela-
tionships between samples, genes and labour status at a finer level.

Sample-sample associations. The sample-sample network graph shown in Fig 2 was built
using expression data for the top up- and down-regulated genes (differentially expressed genes
with a RP-PFP value<0.05 and an absolute fold change�1.2). MCL clustering (MCLi = 3.1)
of the graph’s structure highlighted two clusters (Fig 2A). When nodes are coloured according
to labour status (Fig 2B) it is clear that MCL cluster 1 (38 samples) contains all 26 of the non-
labouring samples (with 12 labouring samples included) and MCL cluster 2 (10 samples) con-
tains labouring samples only (Fisher’s exact test P-value = 0.0005). This suggests that the sam-
ples cluster by labour status, and the appearance of labouring samples in both clusters suggests
that labouring samples show more variation than non-labouring samples (an observation born
out at the gene expression level–see below). Colouring the graph by parity (Fig 2C), gestational
age at delivery (Fig 2D) and BMI (Fig 2E) shows that nodes do not tend to cluster according to
these other characteristics (Fisher’s exact test P-value for parity [nulliparous versus
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multiparous]: 0.88; for gestational age [preterm versus term]: 1; for BMI [overweight/obese ver-
sus normal weight]: 0.84). Fig 2F shows the graph coloured according to pharmaceutical treat-
ment the woman had received to induce/augment labour. No non-labouring women received
any treatment and, in agreement with the sensitivity analysis described above, samples do not
cluster according to pharmaceutical treatment within the labouring group (Fisher’s exact test
P-value [any treatment versus no treatment]: 0.06). Samples also do not cluster by maternal
age (Fisher’s exact test P-value [under 36 years versus over 36 years]: 0.05).

Co-expression analysis
In a network graph where each node represents data from a differently expressed transcript
(Fig 3), after applying a correlation threshold of r = 0.8, there were 1,209 nodes connected by
11,030 edges. The graph forms two main components. The larger component is composed of
genes that showed higher expression in labouring compared to non-labouring samples and the
smaller component is composed of genes that showed lower expression in labouring compared
to non-labouring samples. MCL clustering identified 85 distinct clusters of transcripts that
showed similar expression profiles (co-regulation across samples). Average (mean) expression
profiles for interesting clusters are shown in the graphs in Fig 3. Cluster 1 contained 158 tran-
scripts that showed higher expression in labouring samples than non-labouring samples. The
genes are mostly involved in RNA and protein processing (S3 File), which indicates that labour
is associated with increased transcription and translation in myocytes, leukocytes or both. Of
particular interest in this cluster is IL24, which shows very high expression in several labouring
samples and almost no expression in any of the non-labouring samples (Fig B in S5 File). Simi-
larly, Cluster 4 is comprised of 33 genes that show higher expression in labouring samples and
mostly represent early response genes such as ZFP36, EGR1 and ATF3. Again, this suggests
that labour is an active process associated with increased gene expression. The 119 genes in
Cluster 2 also show higher expression in labouring samples. These genes (S3 File) are mostly
involved in inflammatory responses, chemotaxis and cell activation, suggestive of an infiltra-
tion of leukocytes into the myometrial tissue at labour. High expression of genes that are usu-
ally highly expressed in neutrophils such as CXCL2, CD53, CD48, NCF2, NCF4 and LRG1 (S4
File) suggests that these leukocytes are likely to be largely made up of neutrophils. Cluster 3
contains 40 genes that show lower expression in labouring samples than non-labouring sam-
ples. These genes include AHNAK, AHNAK2, RAB11FIP2, PLCL1, SCARA3 and TMEM123,
which are all usually highly expressed in the uterus according to Unigene ESTs counts (http://
www.ncbi.nlm.nih.gov/unigene/). The lower expression of these genes in labouring samples
could be due to a decrease in transcription in the myocytes but a more plausible explanation is
that labouring samples are composed of fewer uterine smooth muscle cells than non-labouring
samples i.e. that the composition of the myometrium changes at labour and uterine smooth
muscle cells are diluted. Similarly, classic markers of muscle tissueMYH11,MYL9 and TAGLN
are all in Cluster 15, which is a cluster of genes that showed lower expression in labour.

Validation with qRT-PCR
For qRT-PCR data analysis, all genes were analysed relative to expression of 18S, which was an
appropriate reference gene because it was not differentially expressed between non-labouring

Fig 1. A heatmap to show how genes and samples cluster based on similar expression levels. The bar at the top indicates the sample
group (pink = labouring, blue = non-labouring). Normalised standardised expression values are indicated on a colour scale with purple indicating
high expression and cyan indicating low expression. The heatmap was created using genes with a non-labour to labour fold change of >2 or <-2
and an RP-PFP�0.0001.

doi:10.1371/journal.pone.0155413.g001
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Fig 2. Sample-sample network graph, in which each node represents a different sample. Edges are coloured to reflect the Pearson correlation that they
represent. Red edges represent a high correlation and blue edges represent a low correlation. The same graph is coloured by A. unbiased MCL cluster
number, B. labour status, C. parity, D. gestational age at delivery, E. body mass index (BMI), and F. pharmaceutical treatment.

doi:10.1371/journal.pone.0155413.g002
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Fig 3. Probe-probe network graph, in which each node represents a different probe.Nodes are coloured according to membership of different
MCL clusters. The graphs show the mean expression profiles of clusters 1,2,3,4 and 15. Samples are plotted on the x-axes: non-labouring samples
are represented by the pink bar and labouring samples are represented by the blue bar. Error bars indicate standard errors.

doi:10.1371/journal.pone.0155413.g003
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and labouring groups (mean CT value plus 95% confidence intervals of labouring group: 11.8
(9.5–14.1), mean CT value plus 95% confidence intervals of non-labouring group: 10.8 (9.2 to
12.4). Log2 ratios of expression in non-labouring and labouring samples calculated using
microarray data were highly correlated with those calculated using qRT-PCR (Pearson’s corre-
lation coefficient r = 0.99; Fig C in S5 File). Both technologies found that Interleukin-8 (IL8),
Interleukin-6 (IL6) and Metallothionein 1E (MT1E) showed higher expression in labour, Oxy-
tocin receptor (OXTR), Myosin heavy chain 11 (MYH11) and Fatty acid binding protein 4
(FABP4) showed lower expression in labour and RNA binding motif protein 42 (RBM42) and
Shroom family member 4 (SHROOM4) were not differentially expressed between groups.
Although microarray and qRT-PCR both found that Insulin-like growth factor binding protein
5 (IGFBP5) showed lower expression at labour, this did not reach statistical significance at
P = 0.05 according to qRT-PCR. Microarray and qRT-PCR results were inconsistent at Tropo-
myosin 1 (TPM1) (Fig C in S5 File).

Replication using meta-analysis of published data
In addition to technical validation of our results using qRT-PCR on the same samples as those
used for the microarray, we were able to replicate some of our results in different samples
through a formal meta-analysis of published data.

The ten eligible studies identified through a literature search for myometrial microarrays
are outlined in Table E in S5 File. Unfortunately, raw data were available for only two:
Bukowski (2006) [14] andWeiner (2010) [15]. These studies were included in a meta-analysis,
along with the microarray study conducted in this paper (referred to as Sharp). This meta-anal-
ysis used 25 samples (13 labouring, 12 non-labouring), plus the 48 used in Sharp, giving a total
of 73 samples (35 labouring, 38 non-labouring).

Each study has a different complement of probes, but 4396 genes were covered on the array
platforms of all three studies. Of these, the number of significantly (RP-PFP<0.05) differen-
tially expressed (absolute fold change of>1.2) genes in Sharp, Weiner and Bukowski, was 1330
(1099 unique), 576 (469 unique) and 192 (192 unique), respectively. 64.4% of the genes identi-
fied in Weiner and 31.8% of the genes identified in Bukowski were also identified in Sharp with
the same direction of effect. 24.0% of the genes identified in Bukowski were also identified in
Weiner with the same direction of effect. Studies did not agree on the direction of effect at
1.3%, 8.9% and 6.3% of identified genes for comparisons between Weiner and Sharp, Bukowski
and Sharp and Weiner and Bukowski, respectively. Only 34 genes were identified as differen-
tially expressed in the same direction in all three studies (Table 2). This low concordance is
partly because lower sample sizes in Weiner and Bukowski mean they have a lower statistical
power to detect differential expression. Accordingly, when just considering direction of effect
and not applying P-value or effect size thresholds we see much higher concordance rates: Of
the 1099 unique genes identified as significantly differentially expressed in Sharp, 94.4% and
64.7% showed the same direction of effect in Weiner and Bukowski, respectively. However, it is
clear that the concordance between Sharp and Weiner is higher than the concordance between
either of those studies with Bukowski. For example, at the most differentially expressed gene in
Sharp (IL8, fold change 9.6), Weiner finds a large fold change in the same direction (24.9) but
Bukowski finds a smaller fold change in the inverse direction (-1.4).

The results of a formal random-effects inverse-variance-weighted meta-analysis on the
expression of neutrophil and smooth muscle myofilament markers [43] in each study are
shown in Fig 4. In general, studies agreed on the direction of the changes and heterogeneity
(which was assessed using Tau2 and significance of the Chi2 statistic) was low (Table F in S5
File). This suggests that, in all three studies, there is evidence that labouring samples contain
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more neutrophils and relatively fewer smooth muscle cells than non-labouring samples. Fig D
in S5 File shows the results of a meta-analysis on the expression of the ten genes that were
selected for validation by qRT-PCR. All studies agree on the direction of the change in expres-
sion between non-labouring and labouring samples, except for at IL6, IL8 andMT1E, where
Sharp andWeiner agree that these genes show higher expression at labour, but Bukowski does
not. Interestingly, although the differential expression of TPM1 seen in the Sharp microarray
data could not be validated with qRT-PCR, the Sharp, Weiner and Bukowski microarray data
all agree that TPM1 shows lower expression in labouring compared to non-labouring samples.

Discussion
In our array analysis, which is over 20% larger in terms of sample size than any of those in the
published literature, the myometrial transcriptome of labouring women differed considerably

Table 2. Fold changes for genes agreed to be significantly differentially expressed in the same direction by eachmeta-analysed study.

Gene ID Gene name Sharp Weiner Bukowski

CCL2 Chemokine (C-C motif) ligand 2 4.01 3.41 1.32

S100A8 S100 calcium binding protein A8 3.33 3.58 1.27

PRG2 Proteoglycan 2 2.14 1.62 4.24

SPP1 Secreted phosphoprotein 1 2.00 1.88 1.71

PLA2G2A Phospholipase A2, group IIA (platelets, synovial fluid) 1.64 2.71 1.49

COL1A2 Collagen, type I, alpha 2 -1.2 -1.48 -1.22

PRSS23 Protease, serine, 23 -1.21 -1.61 -1.36

TMEM59 Transmembrane protein 59 -1.21 -1.42 -1.82

AP3S1 Adaptor-related protein complex 3, sigma 1 subunit -1.24 -1.26 -1.91

ATP2B4 Atpase, Ca++ transporting, plasma membrane 4 -1.24 -1.44 -1.70

GAS1 Growth arrest-specific 1 -1.26 -1.42 -1.39

ISCU Iron-sulfur cluster scaffold homolog -1.26 -1.23 -1.67

LAMA2 Laminin, alpha 2 -1.26 -1.65 -1.87

PRKAR1A Protein kinase, camp-dependent, regulatory, type I, alpha -1.28 -1.30 -2.27

CAV1 Caveolin 1, caveolae protein, 22kda -1.29 -1.28 -1.45

AHNAK2 AHNAK nucleoprotein 2 -1.32 -1.55 -1.54

MFAP5 Microfibrillar associated protein 5 -1.32 -1.44 -2.05

RNASE1 Ribonuclease, rnase A family, 1 (pancreatic) -1.32 -1.25 -1.35

TMEM123 Transmembrane protein 123 -1.34 -1.22 -1.96

ALDH1A2 Aldehyde dehydrogenase 1 family, member A2 -1.35 -1.88 -1.49

METTL7A Methyltransferase like 7A -1.4 -1.57 -2.26

RASSF2 Ras association (ralgds/AF-6) domain family member 2 -1.41 -1.58 -2.00

CALD1 Caldesmon 1 -1.44 -1.32 -1.5

FHL1 Four and a half LIM domains 1 -1.44 -1.46 -1.34

TUBB2A Tubulin, beta 2A -1.44 -1.23 -1.6

VCL Vinculin -1.44 -1.22 -1.52

PARVA Parvin, alpha -1.46 -1.31 -1.23

TPM1 Tropomyosin 1 (alpha) -1.47 -1.22 -1.20

TCEAL1 Transcription elongation factor A (SII)-like 1 -1.51 -1.44 -1.63

NR2F2 Nuclear receptor subfamily 2, group F, member 2 -1.52 -1.46 -1.87

SYNM Synemin, intermediate filament protein -1.52 -1.32 -1.89

DAAM1 Dishevelled associated activator of morphogenesis 1 -1.54 -1.86 -2.80

TCEAL4 Transcription elongation factor A (SII)-like 4 -1.63 -1.38 -1.28

SVIL Supervillin -1.86 -1.38 -1.85

doi:10.1371/journal.pone.0155413.t002
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Fig 4. Forest plots to illustrate the standardised mean difference between labouring and non-labouring groups in Sharp, Weiner and
Bukowski. Summary statistics, indicated by the blue diamond, were calculated via inverse variance weighted meta-analysis. The array platform used
by Bukowski did not cover all selected genes, so Bukowski could not be included in all meta-analyses.

doi:10.1371/journal.pone.0155413.g004
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from that of non-labouring women. 1,761 genes were differentially expressed between the non-
labouring and labouring groups, which is considerably more than identified by previous micro-
array experiments of this kind which have been less powered to detect differential expression
due to using smaller sample sizes and have used smaller array platforms with less coverage of
the transcriptome [15,17]. Network graph analysis showed that in terms of overall gene expres-
sion, non-labouring samples were very similar to each other and in general different from
labouring samples. This suggests that non-labouring women have a similar myometrial gene
expression profile to each other, but this changes at labour, and variation between labouring
women might be explained by variation in the stage of labour. We did not attempt to formally
validate this hypothesis in our study, given a lack of consensus as to how labour progress
should be measured. It is worth noting that there was considerable heterogeneity amongst the
labouring samples with some not differing greatly from the non-labouring samples, whilst oth-
ers show considerable differences. This heterogeneity undermines a purely statistical approach
to the analysis of these data as comparisons are performed across the group, thereby reducing
the overall fold differences in expression when some labouring samples show little overall
change.

Traditional statistical analysis combined with functional analysis suggested that the labour-
ing myometrium expresses genes involved in inflammation, cell movement/migration and
pathways such as Nod-like receptor signalling and cytokine-cytokine receptor signalling. Path-
ways identified here as associated with labour are downstream to pathways to NF-kappa B
(NF-κB) activation or involved in cross talk with these pathways. These observations are in
agreement with the results of previous human microarray studies [15,17,44–46] and might
provide further evidence to support the hypothesis that the initiation of parturition is associ-
ated with inflammatory processes. Through the network graph approach we inferred that there
was a strong neutrophil expression signature in the labouring samples. A meta-analysis includ-
ing two previous myometrial microarrays conducted on small numbers of samples showed that
neutrophil markers also tended to be more highly expressed in the labouring samples. These
findings confirm and extend previous research that has demonstrated (using immunohis-
tochemistry) an influx of leukocytes into the uterine tissue at labour. Studies conducted more
than 10 years ago suggested that neutrophils, macrophages and T cells are attracted by
increased tissue expression of chemokines and cell adhesion molecules [47,48] to invade the
myometrium, cervix and fetal membranes at parturition [41,42], although in our recent mouse
study, neutrophil depletion did not avert preterm parturition [49]. The increase in leukocyte
density, in part, leads to increased cytokine expression in the myometrium and cervix [41,50].
These cytokines attract yet more leukocytes [51], but also have a pronounced effect on the
reproductive tissues, including remodelling of the cervix [52] and stimulating myometrial con-
traction through prostaglandin synthesis and via direct TLR-4 mediated effects [53–59]. Pros-
taglandins mediate inflammation and some have a direct contractile effect on myometrial
myocytes [60–63]. However, functional analysis suggested that non-labouring samples highly
express genes involved in muscle-specific processes and pathways such as muscle development,
smooth muscle contraction and calcium signalling. This observation of an apparent down-reg-
ulation of muscle-specific processes at labour was surprising and, to our knowledge, has not
been discussed explicitly before. However we hypothesise that this may reflect known changes
in composition of the myometrial tissue at labour rather than a change in transcription of mus-
cle-specific genes. Indeed, network graph analysis helped us identify that non-muscle specific
genes that are usually highly expressed in the uterus were also expressed at lower levels in
labouring samples compared to non-labouring samples. Leukocyte infiltration may ‘dilute’ the
smooth muscle cell contribution to myometrial tissue gene expression at labour. We initially
considered trying to adjust for this dilution effect (for example, by normalising gene expression
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values to the expression of leukocyte markers) but we did not, as we believe that such an adjust-
ment would be unlikely to be useful or reliable in noisy human data. It is of particular interest
that, as we showed in our meta-analysis, the finding of increased neutrophil and decreased
muscle cell expression signatures at labour replicates in data from similar microarray experi-
ments and is also in agreement with the results of a recent RNA-Seq experiment [64].

This finding has important implications for the interpretation of similar analyses of gene
expression–i.e. it may not be possible to simply say that a gene is ‘up-regulated’ or ‘down-regu-
lated’ in myometrial tissue when in fact transcription of the gene may not change but the tran-
script may be in relative abundance/scarcity due to differences in tissue composition.

The main strengths of our study are its sample size (the largest to date) and the comprehen-
sive methods used to analyse the data. In studies of parturition, gene expression is likely to
show a particularly high degree of variation between individuals. This is not only due to genetic
and environmental effects, but also because the time to the onset of spontaneous labour in
non-labouring samples is unknown [14]. The large sample size used in this study helps to
reduce some of this confounding by increasing the power of the study to detect real changes in
gene expression. We selected to maximise the number of samples in the experiment, rather
than minimise inter-woman variation. Therefore, there was a high degree of variation within
(but not between) each group on BMI, maternal age, gestational age, parity and stage of labour
(in the labouring group, assessed by cervical dilation). Although the ideal experimental design
would control for these characteristics in this way, perhaps excluding gestational age [15],
there is little evidence to suggest that the molecular mechanisms initiating parturition are
affected by these factors. Therefore, we believe that prioritising maximal sample number over
minimising inter-woman variability is an appropriate strategy. Indeed, MCL clustering of a
sample-sample network graph of our data suggested that samples cluster according to labour
status but none of the other maternal characteristics on which we had data. We were particu-
larly surprised to find that labouring samples did not cluster according to gestational age, as a
previous microarray experiment had suggested that term labour and PTL were driven by differ-
ent molecular mechanisms [15]. However, only three of our labouring samples were preterm
so our results do not necessarily suggest that this is not the case.

This highlights another strength of our study, which is that we combined traditional statisti-
cal and novel network graph approaches to offer new insights into variation in gene expression
signatures. The network graph approach is more robust to inter-individual heterogeneity and
better able to identify broad differences in expression between groups. Additionally, we con-
ducted a formal meta-analysis to study the myometrial transcriptome at labour, which allowed
us to compare our results to those of similar microarray studies and further increased the statis-
tical power, reliability and generalizability of results. It was disappointing that of the ten studies
eligible for our meta-analysis [12–21], only two [14,15] had made their data available in an
online repository. Including more studies with larger sample sizes would have improved the
power of our meta-analysis. Nevertheless, this is the first time raw, complete microarray data
to study parturition has been formally meta-analysed. Although there is one published meta-
analysis of microarray data to study parturition [65], this study, which was published in 2007,
did not use raw data. Instead, the authors combined lists of genes reported to be differentially
expressed in five human studies of myometrial gene expression in pregnancy, term and pre-
term labour. The authors found that the remodelling and maturation processes associated with
pregnancy last the full course of gestation, but genetic regulation of the onset of parturition was
less well characterised. However, use of published gene lists rather than raw microarray data
ignores information on genes showing lower levels of differential expression and does not
account for the different methods used to generate and analyse the data.
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Our own analysis showed that there is low concordance between microarray studies in
terms of lists of “significant” genes, even when the data has been pre-processed and analysed in
the same way, but this is partly because different array platforms have a different complement
of probes. It was more informative to conduct a formal meta-analysis at selected genes using
individual sample data. As discussed above, this revealed that studies did agree that labour is
associated with higher expression of genes involved in inflammatory processes (particularly
neutrophil markers) and lower expression of genes involved in muscle-specific processes. This
was also echoed by a recent RNA-Seq experiment that compared gene expression in a small
number of non-labouring and labouring women [64]. Overall, this experiment showed high
concordance with our own microarray experiment: Of genes identified by the RNA-Seq experi-
ment as showing higher or lower expression in labour compared to non-labour, 51.8% and
57.3% were also identified as showing significantly higher or lower (respectively) expression in
our microarray experiment, whereas none were identified as showing significant differential
expression in the opposite direction. The list of genes agreed to show higher expression in
labour includes IL6,MT1E, IL24, LRG1 and CXCL2, and the list agreed to show lower expres-
sion in labour includes OXTR, IGFBP5, AHNAK, RAB11FIP2, TMEM123 and PLCL1. This
provides further verification that our results replicate using not only different samples but also
a different technology [64].

As with all microarray studies of human tissue collected opportunistically, there are some
limitations that should be considered when interpreting the results. Firstly, the qRT-PCR vali-
dation of the microarray results was conducted on the same samples used in the array. More
reliable validation could have been achieved using samples from different women, but this was
impossible due to lack of availability of such samples. The large number of samples used in this
study means this is less of a limitation than it is for smaller microarray experiments, and we
have compared our results to those of published experiments that used different samples. Sec-
ondly, the non-labouring samples were collected during elective Caesarean section that was
sometimes performed because the woman had previously delivered via Caesarean section due
to an underlying uterine pathology. Additionally, the labouring samples were collected during
emergency Caesarean section, performed for reasons such as breech presentation, failure to
progress in labour and fetal distress. Therefore, many of the women in the study cannot be con-
sidered physiologically ‘normal’, which raises the question of whether or not the results can be
generalised to a normal population. Thirdly, many of the women had undergone treatment
with Syntocinon (oxytocin), prostaglandins or both to induce or augment labour. It is unclear
how these treatments might effect global gene expression in the myometrium, but they are
likely to contribute to the upregulation of genes with an inflammatory role. However, in a sen-
sitivity analysis, our main results were consistent with those generated when omitting women
who had undergone any pharmaceutical treatment, suggesting that pharmaceutical treatment
is not a large confounding factor. This was supported by our sample-sample network graph,
which suggested that labouring samples did not cluster differently according to treatment.
Fourthly, tissue was collected from the upper flap of the lower transverse incision through the
uterine wall, which is the most convenient location at the time of Caesarean. However, the
upper segment is known to show increased contractility relative to the lower segment
[14,66,67], making it arguably a more appropriate tissue to study. Furthermore, previous stud-
ies have shown significant differences in gene expression and molecular pathways associated
with the initiation of labour between the upper and lower uterine segments [14,68], so the
results of this study cannot necessarily be assumed to be relevant to the molecular events taking
place throughout the whole organ [69]. Finally, compared to RNA-Seq, microarray technology
covers less of the transcriptome. It is also less able to detect low abundance transcripts, unable
to differentiate isoforms and identify genetic variants and is prone to technical issues related to
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probe performance [70]. However, microarray is less expensive and still currently the most
commonly used technology to study the transcriptome. It is encouraging to note that there is a
high degree of concordance between our findings and those generated using RNA-Seq [64].

In conclusion, a combination of statistical and network graph approaches has extended the
list of genes associated with labour and provided further support that labour appears to be
characterised by an apparent increase in the expression of inflammatory genes. Our study also
identified an apparent decrease in the expression of muscle-specific processes in human lower
segment myometrium. These findings are likely to be related to a change in the composition of
the myometrial tissue at labour due to the known leukocyte infiltration at this time. Further
work will be necessary to reveal whether these results are solely due to leukocyte infiltration
into the myometrium as a mechanism initiating labour, or whether they represent gene
changes in the myocytes themselves. Both the large sample size and the meta-analysis with pre-
vious studies improve the reliability and generalizability of our results. Appropriate analysis of
high throughput studies such as this will be essential for improving our understanding of the
molecular mechanisms underlying parturition, and will provide a basis for understanding dif-
ferences between normal and dysfunctional labour, including PTL. In order to facilitate future
work, we have made our data publically available (at www.ebi.ac.uk/arrayexpress/ under acces-
sion number E-MTAB-3136), and we would urge other researchers to do the same.
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