
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modeling an Agent's Incomplete Knowledge During Planning and
During Execution

Citation for published version:
Bacchus, F & Petrick, R 1998, Modeling an Agent's Incomplete Knowledge During Planning and During
Execution. in Proceedings of the International Conference on Principles of Knowledge Representation and
Reasoning (KR 1998). pp. 432-443.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR
1998)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/modeling-an-agents-incomplete-knowledge-during-planning-and-during-execution(6bc745f0-0810-4326-bf99-c23fd1c8c33f).html


Modeling an Agent�s Incomplete Knowledge during Planning and
Execution

Fahiem Bacchus
Department of Computer Science

University of Waterloo
Waterloo� Canada N�L �G�
fbacchus�logos�uwaterloo�ca

Ron Petrick
Department of Computer Science

University of Waterloo
Waterloo� Canada N�L �G�
rpapetrick�logos�uwaterloo�ca

Abstract

In many domains agents must be able to gen�
erate plans even when faced with incomplete
knowledge of their environment� We pro�
vide a model to capture the evolution of the
agent	s knowledge as it engages in the activ�
ities of planning 
where the agent must at�
tempt to infer the e�ects of hypothesized ac�
tions� and execution 
where the agent must
update its knowledge to reect the actual ef�
fects of actions�� The e�ects 
on the agent	s
knowledge� of a planned sequence of actions
are very di�erent from the e�ects of an exe�
cuted sequence of actions� and one of the aims
of this work is to clarify this distinction� The
work is also aimed at providing a model that
is not only rigorous but can also be of use in
developing planning systems�

� Introduction

In this paper we address the problem of how agents
who must operate in incompletely known environ�
ments can generate and execute plans� In particular�
we examine the case where an agent has correct but
incomplete knowledge of its environment� A represen�
tation scheme for incomplete knowledge is developed
that is speci�cally oriented towards the development
of actual planning systems� In particular� we focus
on representing and updating the kinds of incomplete
knowledge that would be useful to a planning agent
capable of sensing and manipulating its environment�
and we ensure that the representation can be used in a
straightforward manner in an actual planning system�

When planning� the agent must reason about the ef�
fects of actions� When the agent has complete knowl�
edge of its environment� there is no need to distin�

guish between what the agent knows and what is true
in its environment� Hence� in classical planning sys�
tems there is no explicit separation between the agent	s
knowledge and facts about the world� For example�
when a Strips database is employed to model the
world state it is only implicit that the agent knows
the contents of the database�

When faced with incomplete knowledge� however� we
do require an explicit model of the agent	s knowledge
and the manner in which this knowledge is a�ected
by the actions executed by the agent� In fact� for the
purposes of planning it is the action	s e�ects on the
agent	s knowledge that are most important� at plan
time the agent must know that the plan will achieve its
desired e�ects� and at execution time the agent must
have su�cient knowledge at every step of the plan to
execute it �Lev����

A major complication� when having to reason about
how actions a�ect the agent	s knowledge� arises from
the fact that the plan time e�ects of such actions are
quite di�erent from their execution time e�ects� For
example� say that the agent is operating in the UNIX
domain and that it is considering the action of listing
a directory� At plan time all that it will know is that
after the action it will know all of the �les in the direc�
tory� the actual identity of those �les will not become
known until the action is actually executed�

In many domains generating plans that operate cor�
rectly no matter how the world is con�gured is
impossible�such conditional plans �PS��� PG��� end
up being too large� Instead� the agent must often
commit by actually executing some actions so as to
avoid having to plan for contingencies that never oc�
cur� However� execution also has its pitfalls� as exe�
cuting an action might change the world in such a way
that the agent	s ultimate goal becomes impossible to
achieve�

Understanding how to manage these tradeo�s so that



we can e�ectively interleave planning and execution
remains an important open problem in the area� We
believe that our work makes a contribution to this
problem� In particular� our representation of ac�
tions provides a clear separation between their plan
time and execution time e�ects� We can project the
agent	s knowledge state through both planned actions
sequences and executed action sequences� This pro�
vides useful information about the di�erences between
plan time and execution time and leads to a deeper
understanding of both plan time and execution time
e�ects� It also opens up a wider range of possibilities
for interleaving planning and execution�

The general approach we adopt is much like the tradi�
tional Strips representation� In particular� we use a
collection of databases to represent the agent	s knowl�
edge� However� we provide a formal semantics for the
items in each database� We do this by translating
each of these items into formulas of a modal logic of
knowledge� Actions operate much like Strips actions
do� they modify the contents of the various databases�
Through examples we show that a useful range of ac�
tions can be represented as update operations to these
databases�

Our approach allows us to project the agent	s knowl�
edge through a sequence of planned actions� we sim�
ply apply the actions	 plan time e�ects to the agent	s
initial knowledge state to produce a sequence of inter�
mediate knowledge states� This means that a straight�
forward forward chaining search could in principle be
used to generate plans� We can also project the agent	s
knowledge state through sequences of action execu�
tions� and this means that an plan execution module
can also be supported by our formalism���

In the rest of the paper we will present the method
we use for representing the agent	s knowledge� discuss
how inferences can be made from this knowledge� and
briey discuss how actions are represented and how
they update the agent	s knowledge� Finally� we will
close with some simple examples that show how our
approach models the plan time and execution time ef�
fects of various actions and plans� But �rst we discuss
some related work�

�Some work would have to be done to modify our ap�
proach to support partial order planning or backwards
chaining planning� This should be possible as such plan�
ning technologies were initially developed from �projec�
tive� action semantics like ours� However� such approaches
are not a major interest of ours� as we are pessimistic about
their ultimate future� We are much more optimistic about
the future of forward chaining planners �BK�	� McD�	


��� Related work

The general issue of planning with correct but incom�
plete knowledge has received a great deal of attention
recently� There are many domains that can be usefully
modeled under this paradigm� For example� Etzioni�
Golden and Weld have been engaged in ongoing re�
search into software agents that operate in the UNIX
and Internet environments �EGW��� GW��� EGW���
GEW���� As they point out� these domains are rea�
sonably approximated by the assumption of correct
but incomplete knowledge� The main feature of their
work has been to develop methods for providing such
agents with planning capabilities� exactly the issue we
address here� Their work� particularly their work on
locally closed worlds �EGW��� has been very inuen�
tial in our work�

There are two main di�erences between their work and
that presented here� First� much of their approach is
tied to the technology of partial order planning� We
feel that this often has the detrimental e�ect of making
the semantics of their representations and algorithms
much more di�cult to understand� The projective se�
mantics we use here gives a clearer separation between
the issues that involve the semantics of actions and
the agent	s knowledge and the issues that involve the
implementation and semantics of partial order plan�
ning� The second di�erence is that their work is in�
timately tied to execution time e�ects� For example�
the algorithms they develop for reasoning about locally
closed world conditions �EGW��� assume that the ac�
tions achieving such conditions have been executed�
This means that the planning system they construct
is forced to interleave planning and execution in an
inexible manner� There is limited scope for alterna�
tive ways of interleaving planning and execution� to
deal� e�g�� with domains where executing actions can
produce irreversible changes�

As pointed out by Levesque� there are a number of
subtle issues involved in planning in the face of in�
complete knowledge� In �Lev��� Levesque provides a
formal speci�cation of plan correctness in the face of
incomplete knowledge� He points out that plans have
knowledge preconditions� and that it must be known
at plan time that these conditions will be achieved at
execution time� Although Levesque	s work provides
vital insights into the problem� his work does not di�
rectly address the issue of generating plans� In partic�
ular� his model of actions and knowledge is speci�ed
in the situation calculus� Hence� to reason about the
e�ects of actions one would� in general� have to em�
ploy full �rst�order inference� In our work we have
used some of Levesque	s ideas about plan correctness�



but have focused on more limited representations that
can be implemented more e�ectively in real planning
systems�

� Representing the Agent�s
Knowledge

The �rst issue we address is that of representing the
agent	s knowledge� As mentioned in the introduction
we are assuming that the agent has correct� albeit in�
complete� information about its environment� This
kind of information is conveniently formalized using
a standard modal logic of knowledge 
see �FHMV���
for an introduction��

One of our aims� however� is to develop an approach
that can facilitate the development of e�ective plan�
ning systems� and we do not know� at this time� how
to deal with a fully general logic of knowledge� Instead
we adopt a Strips like approach where by the agent	s
knowledge is represented as a collection of databases
each of which maintains a particular type of knowl�
edge� We formally characterize the agent	s knowl�
edge by providing a translation from the database con�
tents to a set of logical formulas� Thus we utilize the
logic	s semantics as the underlying semantics of our
representation�� We use DB to represent the agent	s
databases� and KB to represent the set of logical for�
mulas that characterize the agent	s knowledge�

In brief� the standard modal logic of knowledge adds a
modal operator K to an ordinary �rst�order language�
extending the language	s syntax by adding the rule�
if � is a formula then so is K
��� Semantically� the
language is interpreted over a collection of worlds W �
each of which is an ordinary �rst�order model� These
worlds are related to each other by an accessibility re�
lation� In this case every world is accessible from every
other world� Any non�modal formula � is interpreted
to be true at a particular world w 
written w j� �� i�
it is true according to the standard rules for interpret�
ing �rst�order formulas� A formula of the formK
�� is
interpreted to be true at w i� � is true at every world
accessible from w� which means that � must be true
at every world in W 
since at every world all worlds
are accessible��

Intuitively� the agent	s knowledge is being modeled by
the set W � The agent does not know which of the
worlds inW is the real world� and considers all of these
worlds to be possible versions of the way the real world
is con�gured� If it does not know whether or not � is
true� then there will be worlds inW where � is true and

�In essence we are simply restricting ourselves to a par�
ticular subset of the logic�

worlds where � is false� Knowing � to be true means
that � is true in every world in W � Our assumption
that the agent	s knowledge is correct is modeled by the
fact that the real world is a member of W � Thus� if
the agent knows �� � is in fact true in the real world�
For convenience� we use the notation w� to represent
the real world� Furthermore� when we write a logical
formula we always interpret it at w�� Thus� a formula
likeK
readable
kr�tex���writable
kr�tex� means that
the agent knows that �le kr�tex is readable 
and by the
semantics of K� kr�tex is in fact readable� and that it
is in fact writable 
but this is not necessarily known
by the agent�� A useful notation is Kwhe
�� which is
de�ned to be the formula K
�� �K
���� either � or
its negation is known to hold�

��� Rigid Terms and Constant Domains of

Discourse

The agent	s knowledge will include atomic facts about
various terms� For example� knowing that the �le
kr�tex is readable might be represented by the atomic
formula K
readable
kr�tex��� where kr�tex is a term
of the language� We also allow functions� For exam�
ple� the agent might know various function values like
K
size
kr�tex� � ������ i�e�� kr�tex is ���� bytes in
length�

Terms composed from functions and constants� like
kr�tex� ����� and size
kr�tex�� pose potential problems
when dealing with knowledge� In particular� the terms
they generate may be rigid or non�rigid� Non�Rigid
terms are terms whose denotation varies from world
to world� while rigid terms have a �xed denotation
across worlds� For example� the agent might not know
the size of the �le kr�tex� so the term size
kr�tex� may
have a di�erent denotation 
i�e�� a di�erent value� in
the di�erent worlds the agent considers possible� On
the other hand a number like ���� would have the same
denotation 
i�e�� the same meaning� in every world�

When terms can be of either type reasoning about facts
like readable
kr�tex� becomes more complex�� For ex�
ample� it is not immediately obvious what it would
mean for the agent to know this fact if the term kr�tex

had potentially a di�erent denotation in every world�
Since there does not seem to be a good reason to have
this level of generality� we impose the restriction that
all constants must be rigid� Thus� a term like kr�tex

will always denote the same object in every world�� On

�See Garson �Gar��
 for a good discussion of these is�
sues�

�There may be many �les in the agents environment
called kr�tex� In practice� we would have to use a distinct
constant for each �le� For example� we could use a unique



the other hand� we allow functions to generate non�
rigid terms� Thus� a term like size
kr�tex� can denote
a di�erent value in di�erent worlds�

Formally� this means that for every constant c in the
language describing any particular planning domain�
the agent	s knowledge 
the set KB� includes the for�
mula�

�x�K
x � c�� 
��

This says that there is a particular object in the real
world such that in every possible world the constant c
denotes that object�

We assume that numeric functions� like ���� or nu�
meric predicates like ��� have their standard inter�
pretation in every world 
hence they also are rigid��

Another complication that we wish to avoid are those
that arise when di�erent worlds w can have di�erent
domains of discourse�� So we restrict our semantics
to only consider models in which all worlds have an
identical domain of discourse��

��� The Databases

We represent the agent	s knowledge by a collection of
four databases� each of which is discussed below�

Kf � The �rst database is much like a standard
Strips database� except that both positive and nega�
tive facts are allowed and we do not apply the closed
world assumption� In particular� Kf can include any
ground literal 
atomic formula or negation of an atomic
formula�� Kf is further restricted so that all the terms
that appear in any literal must be constants� So�
for example� an atomic formula like readable
��
dir���
where the function ���� speci�es the parent directory
of a direction �le� cannot appear in Kf � To include
such information we would have to know the name of
dir	s parent directory�

In addition to literals Kf can also contain speci�ca�
tions of function values� In particular� formulas of the
form f
c�� � � � � cn� � cn��� where f is an n�ary func�
tion and the ci are all constants� This formula speci�
�es that f 	s value on this particular set of arguments
is the constant cn��� In e�ect� our restriction means

identi�er for each �le and have a function name that maps
this identi�er to the �les �common� name� The function
name may thus map many di�erent �les to the same com�
mon name� However� for readability we will continue to use
common names in our examples� leaving it to the reader to
remember that all such names are intended to be unique�

�Again see �Gar��
 for a discussion�
�We have not found that this poses any practical prob�

lems� In particular� this assumption does not mean that
we know the identity of all the objects in the real world�

that function values in Kf are considered to be known
by the agent only if they can be �grounded� out as
constant values�

We specify what the contents of Kf means in terms
of the agent	s knowledge by specifying that for every
formula � � Kf � KB includes the formula�

K
��� 
��

Kw� The second database contains a collection of for�
mulas every instance of which the agent either knows
or knows the negation� In particular� Kw can contain
any formula that is a conjunction of atomic formu�
las� By adding simple ground atomic facts to Kw we
can model the e�ects of sensing actions at plan time�
In particular� at plan time if the agent hypothesizes
executing a sensing action that senses some fact like
readable
kr�tex�� all the agent will know is that after
sensing it will know whether or not this fact is true�
Only at execution time will there be a resolution of
this disjunction�

In a similar manner by adding formulas containing
variables to Kw we can model the plan time e�ects of
actions that generate universal e�ects like local closed
world information �EGW���� For example� the UNIX
�ls dir� command yields local closed world informa�
tion about the contents of directory dir� Yet at plan
time the agent will not know the actual contents of the
directory� The contents will only become known after
the ls action is executed�

We specify what the contents of Kw means in terms
of the agent	s knowledge by specifying that for every
formula �
�x� � Kw 
a conjunction of atomic formulas
in which the variables in �x appear free�� KB includes
the formula

��x�K
�
�x�� �K
��
�x��� 
��

Note that in the case where �x is the empty set 
i�e�� � is
a conjunction of ground atomic formulas�� this reduces
to the formula Kwhe
���

Some predicates� e�g� numeric predicates like � and
equality �� have the same denotation in every world
in W � Such �rigid� predicates are considered to be
implicitly in Kw� For example� x � y and x � y
are implicit members of Kw� The inference algorithm
presented below has access to these implicit members
of Kw�

Kv� The third database is simply a specialized ver�
sion ofKw designed to store information about various
function values the agent will come to know� In par�
ticular� Kv can contain any unnested function term�



For example� f
x� a� would be a legal entry in Kv but
f
g
a�� c� would not be� LikeKw� the entries inKv can
be used to model sensing actions� except in this case
the sensors are returning constants 
e�g�� numbers� not
truth values� The value returned by the sensor will not
be known until execution time� but at plan time the
agent will know that such a value will become known�

For every formula f
�x� � Kv� where �x is the set of
variables appearing in the term� KB includes the for�
mula

��x��v�K
f
�x� � v�� 
��

Formulas of this type are a standard way of specifying
that the agent knows a function value� see� e�g�� �SL����

More general information about knowing function val�
ues can be speci�ed by entries in Kw� For exam�
ple� if we will come to know the sizes of all the
�les in a particular directory dir� we could place
in�dir
x� dir� � size
x� � y in Kw � where in�dir
x� y�
means that x is in directory y� This formula says that
for every �le x that is in directory dir we know all val�
ues of y such that size
x� � y� Of course since size is
a function there is only one such y�

LCW � The fourth database is a database of local
closed world information� The innovative concept of
locally closed worlds comes from the work of Etzioni
et al� �EGW���� LCW represents the execution time
analog ofKw� and basically asserts that the agent	sKf

database contains a complete list of all items satisfying
a particular conjunction of atomic formulas� In most
cases such a list can only be added to the Kf database
by actually executing an action�

LCW can contain formulas of exactly the same form
as Kw� conjunctions of atomic formulas� We spec�
ify the semantics of the LCW database as follows�
Let �
�x� � 	�
�x� � � � � � 	k
�x� be a conjunction
of atomic formulas in which the vector of variables
�x � hx�� � � � � xni appear free� Say that � � LCW ��

Let C � f�c � 	i
�x
�c � � Kf � � � i � kg� C is the set of
tuples of constants explicitly listed in Kf as satisfying
�� For every such formula � � LCW � KB includes the
formula

��x�
�
�c�C

�
x� � c� � � � �� xn � cn� 	 K
��
�x
�c ���


��

For example� if P 
x� � Q
x� y� � LCW � and P 
a��
P 
c�� Q
a� b� and Q
a� c� are all in Kf � 
which means
that the pairs 
a� b�� and 
a� c� are explicitly listed as

�Note that not every variable in �x need appear free in
every literal�

satisfying P 
x� �Q
x� y� in Kf �� then the formula

�x� y��
x � a � y � b� � �
x � a � y � c�

	 K
�
�
P 
x��Q
x� y�

�
�

is in KB� This formula says that the pairs 
a� b� and

a� c� are in fact the only pairs satisfying P 
x��Q
x� y��
Thus it entails� e�g�� that K
�
P 
b� �Q
b� c����

This formula makes explicit the notion utilized by Et�
zioni et al� that if we have local closed world informa�
tion and we don	t have an instance explicitly listed in
the database then we can conclude that the property
does not hold�

��� The semantics of LCW and Kw

We have provided a semantics for the LCW and Kw

databases by translating their contents to modal logic
formulas� In doing this we are using the well under�
stood semantics of the modal logic to provide a �nal
grounding for the entries in these databases� It is use�
ful to point out that when we convert entries in Kw

to formulas of the form ��x�K
�
�x�� � K
��
�x�� this
corresponds to the agent knowing that the set of satis�
fying instances of �
�x� is invariant across worlds� That
is� a tuple of constants �c satis�es �
�x
�c � in the real
world if and only if it satis�es the formula in every
world the agent considers possible�

The presence of such a formula in Kw does not mean�
however� that the agent knows the truth value of
�
�x
�c �� since the action that will resolve this has not
yet been executed� When the formula is in LCW the
action has already been executed and all of the satisfy�
ing instances of � have been added to the agent	s Kf

database by the action� Hence� the agent will know
the truth value of �
�x
�c � for every �c � Thus a typical
action speci�cation will include a plan time addition
to Kw and an execution time addition to LCW �

The concept of locally closed worlds as a generalization
of the closed world assumption is due to Etzioni et al�
who develop the concept in detail in �EGW���� In
our approach� however� we have carefully separated
local closed world information into plan time e�ects
and execution time e�ects� The inference algorithm
developed in �EGW��� is an execution time algorithm
that requires the actions executed to actually add all
of the satisfying instances to the Kf database� At plan
time the satisfying instances are not yet known� yet we
still want to perform �local closed world� reasoning at
plan time� Our approach gives us that ability�



��� The Knowledge State

Given a particular set of these four databases� i�e�� a
particular DB� the agent	s knowledge state is de�ned
by the set of formulas in KB as speci�ed by the for�
mulas ��� above� In particular� the agent	s knowledge
state is characterized by the set of models 
in which
every possible world has the same domain of discourse�
that satisfy all of the formulas in KB�

It can be shown that subject to obvious consistency
requirements any DB speci�es a consistent KB�

Theorem ��� Let DB be any set of these four

databases subject to the two conditions

�� there is no atomic formula 	 with both 	 and �	
in Kf and

�� no function f
c�� � � � � cn� is speci�ed to have two

distinct values in Kf �

Then theKB corresponding toDB is consistent� That

is� KB has a model�

Proof� In general KB will have many models� We
show how an arbitrary model can be constructed�
First� we let the domain of discourse be the set of
all constants appearing in DB� Then we construct a
single �rst�order model w by starting with the set of
ground literals 
and function values� contained in Kf �
Then we add to Kf a set of negative facts su�cient
to satisfy all of the formulas arising from LCW � Let
��x�

V
�c�C �
x� � c� � � � � � xn � cn� 	 K
��
�x
�c ��

be a formula in KB arising from a formula � � LCW �
For every �c 
� C we pick a conjunct of �
�x
�c �� 	i
�x
�c ��
that is not in Kf � one such conjunct must exist by the
de�nition of C� In fact� more than one such conjunct
may exist� in which case we make an arbitrary choice�
We add �	i
�x
�c � to Kf � thus satisfying that negative
instance of �� We do this for every negative instance
of every � � LCW �

Note that since no positive facts are added to Kf � our
additions do not a�ect what we can infer from LCW �

The sets C of satisfying instances do not change��
Hence� the addition of negative facts to Kf in order to
satisfy a formula � � LCW will not a�ect the addi�
tions required to satisfy any other formula �� � LCW �

Clearly� the resulting set of facts in Kf continues to
satisfy the above two conditions� and thus this set of
facts has at least one �rst�order model� We pick an
arbitrary model� w� Finally� we build a model for the
modal logic by setting the collection of models W to
be simply the set fwg� It is not di�cult to see that

this set of worlds W satis�es any formula of the form
��x�K
�
�x�� �K
��
�x�� that could arise from entries
in Kw and Kv�

Corollary ��� If actions are speci�ed as additions

and deletions to these databases and these updates

maintain the obvious consistency conditions� then no

sequence of actions can give rise to an inconsistent

KB�

Intuitively� this theorem says that our representational
formalism remains much like the classical Strips rep�
resentation� In Strips any database is logically consis�
tent and any sequence of actions maintains this con�
sistency� This is true for our representation as well

except we must outlaw obvious inconsistencies�� Like
Strips this has both positive and negative features�
On the positive side� a user of our representation need
not worry about �breaking� the representation by gen�
erating an inconsistent state� On the negative side� the
onus is on the user to build an accurate domain model�
As with Strips the user must ensure that theKB rep�
resented by the databases makes sense in the domain
being modeled� and that the actions update KB in an
sensible manner� For example� as with Strips� if there
are state constraints 
e�g�� the agent can	t be carrying
an object and have its hands empty at the same time��
then the user must ensure that the databases repre�
senting the initial world satis�es those constraints and
that the actions properly update the databases so as
to maintain those constraints�

� Inference from DB

From its collection of databases the agent can infer
various things� An inference procedure is sound if
whenever it infers a formula � from DB we have that
KB j� �� the procedure is complete if KB j� � im�
plies that � can be inferred by the procedure from
DB� Unfortunately� complete inference is impractical�
as the set of things that follow from KB includes all
logical truths 
this is the famous problem of logical
omniscience �Hin�����

Fortunately planning applications typically do not re�
quire particularly complex reasoning� The major re�
quirement is usually to decide whether or not an
atomic formula is true or false at a particular point
in a plan� When dealing with incomplete knowledge
the requirements become more complex� e�g�� we may
need to determine whether or not the agent will Kwhe

some fact at a particular point in a plan� In Table �
we present a simple procedure for answering queries
about atomic formulas from the databases�



Procedure IA
��
Inputs� Either a ground atomic formula containing the terms 
t�� � � � � tk�� or a single term� The terms in � can
contain functions but no variables�
Output� T� F� W� or U subject to the conditions� 
�� T implies KB j� K
��� 
�� F impliesKB j� K
���� 
��
W implies KB j� Kwhe
�� 
know whether� when � is a formula and KB j� �x�K
x � �� when � is a term� and

�� U implies the algorithm is unable to conclude anything about ��

�� Simplify all terms by replacing each ti in � by EvalT
ti��

�� If � is the term t and either 
�� t is a constant or 
�� there exists a t� � Kv and a substitution � such that
t�� � t� then return
W�� Else return
U��

�� If � is of the form t� � t�� then if these two terms are syntactically identical return
T�� Else if t� and t�
are both constants then return
F�� Else return
U��

�� If � � Kf � then return
T��

�� If �� � Kf � then return
F��

�� If there exists a �
�x� � 	�
�x� � � � � � 	k
�x� � LCW and a ground instance of �� �
�x
�a�� such that 
�� �a
are constants appearing in Kf � 
�� 	i
�x
�a� � � for some i� and 
�� IA
	j
�x
�a�� � T for all j 
� i� then
return
F��

�� If there exists a �
�x� � 	�
�x� � � � �� 	k
�x� � Kw and a ground instance of �� �
�x
�a�� such that 
�� �a are
either constants appearing in Kf or terms ti appearing in � for which IA
ti� � W � 
�� 	i
�x
�a� � � for
some i� and 
�� IA
	j
�x
�a�� � T for all j 
� i� then return
W��

 � Else return U�

Procedure EvalT
t�
Inputs� A variable free term�
Output� t� the simplest term known to be equal to t�

�� If t is a constant then return
t��

�� If t � f
t�� � � � � tk� and f
EvalT
ti�� � � � �EvalT
tk�� � c � Kf or we can compute that f
on these arguments is equal to c 
e�g�� when f is an arithmetic function� then return
c�� else
return
f
EvalT
ti�� � � � �EvalT
tk����

Table �� Inference Algorithm

This algorithm can be shown to be sound� Its complex�
ity is dominated by the search for ground instances
of �
�x� in steps � and �� Potentially the number of
ground instances of �
�x� can be exponential in the
number of variables in �x� However� we do not feel that
this will be an issue in practice�

As an example of the operation of IA consider the
query IA
size
kr�tex� � ����� when size
kr�tex� � Kv

is the only entry in any of the databases� In this
case IA will return W� Intuitively� since the agent
will come to know the value of size
kr�tex� it will
also come to know whether or not that size is larger
than ����� First IA tries to reduce the function
term size
kr�tex�� but no reduction is known as this
term is not in Kf � There are no entries in LCW

so the algorithm progresses to step �� The predi�
cate � is rigid and thus � � x � y is an implicit
entry in Kw 
see discussion of Kw above�� Since
size
kr�tex� � Kv� IA
size
kr�tex�� � W and the
ground substitution fx � size
kr�tex�� y � ����g sat�
is�es condition 
��� Under this substitution condition

�� is satis�ed and 
�� is trivially satis�ed as � has no
other conjunctions�

� Representing Actions

The previous sections have provided a mechanism for
representing an agent	s knowledge state in a Strips

like manner as a collection of databases� We have
also provided a mechanism for answering some simple



queries from these databases� In this section we show
how we can model actions in a very Strips like man�
ner as well� In particular� the preconditions of actions
involve testing the contents of the various databases�
and the action e�ects bottom out on a set of adds and
deletes to the databases� This means that starting
at some initial con�guration of the agent	s knowledge
state we can decide what actions can be applied and
we can compute what the agent	s new knowledge state
will be after the action has been applied�

A major theme throughout the paper has been the
separation between plan time and run time� This sep�
aration is maintained in our action descriptions� Every
action has a speci�ed set of plan time e�ects and a set
of run time e�ects� Both plan time and run time ef�
fects are encoded as database updates� This means
that we can compute the plan time e�ects of a se�
quence of actions or track their execution time e�ects
in the same formalism� This will be illustrated by the
examples presented in Section �� but �rst we specify
more formally the representation of actions�

Actions are speci�ed by four components� the param�
eters� the preconditions� the plan time e�ects� and the
run time e�ects�

The action�s parameters� This is simply a set of
variables that can be bound to produce a particular
instance of the action�

The action�s precondition� Since it is the agent
that is executing or planning the actions a decision
on whether or not an action can be executed must
be based on the agent	s knowledge state� the agent
has no direct access to the state of its environment�
To this end it is possible to develop a query language
for querying the status of its databases� However� to
keep things simple we will specify preconditions to be a
conjunctive set of primitive queries� All queries in the
set must evaluate to true to satisfy the precondition�
The primitive queries all utilize the above inference
algorithm and they are listed below� In this listing 	
is any ground atomic formula� and t is any variable
free term�

�� K
	�� true i� IA
	� returns T�

�� K
�	�� true i� IA
	� returns F�

�� Kw
	�� true i� IA
	� returns W� T� or F�

�� Kv
t�� true i� IA
t� returns W�

�� The negation of any of the above four queries�

The action�s plan time e	ects� These are speci�ed
by a list of condition e�ect statements of the form

C 	 E� Each condition C is a conjunctive set of
primitive queries� and each e�ect E is a set of additions
or deletions to the four databases�

The action�s run time e	ects� We assume a sim�
ple interface between the planner and the execution
module� In particular� when an action instance is ex�
ecuted the name of that action is passed to the execu�
tion module along with a list of �run�time� variables
�GW���� The execution module binds the run�time
variables with information it obtains while executing
the action�	 The execution module may generate a
sequence of bindings for the run�time variables� The
e�ects of the action are speci�ed using a list of condi�
tion e�ect statements� C 	 E� as before� For run�time
e�ects� however� C and E may contain any of the run�
time variables� Furthermore� C may contain tests on
the run�time variables� If C 	 E contains a run�time
variable then this condition e�ect statement will be
evaluated once for every distinct binding of the run�
time variables generated by the execution module� On
the other hand� when C 	 E has no runtime variables
it is only executed once�

Additions and deletions to the four databases are spec�
i�ed by formulas like add
Kf �size
kr�tex� � �������
which adds this function value to the Kf database�
We assume that add and delete have been con�gured
so as to maintain the obvious consistency conditions
mentioned in Theorem ���� For example� when we add
the function value to Kf we delete any previous func�
tion values�

� Examples

Our �rst example is that of opening a safe� due orig�
inally 
we believe� to Moore �Moo ��� There are two
actions available� readComb and dialComb� Formal
descriptions of these actions are given in Table �� We
consider two di�erent plans to see if they achieve the
goal of opening the safe�

Consider the situation where the agent	s initial knowl�
edge state I is described by Kf � fhaveComb
safe�g�
i�e�� the object �safe� has a combination lock�
The agent might try dialing a random combina�
tion on the safe� for instance� taking the ac�
tion dialComb
safe� ��������� In I it is easy to
see that IA
haveComb
safe�� � T� Furthermore�
IA
�������� � W since ��������� is a constant 
step �
of the algorithm� and all constants are known� Hence

�The run�time variables are positional just as in a pro�
cedure call� The user has to know what information is re�
turned by the execution module at each position in order
to properly specify the action�



Command Precondition E�ects
readComb
x� K
haveComb
x�� Plan Time�

add
Kv � combo
x��
Run Time�
exec
readComb
x�� !val�

delete
Kv� combo
x��� add
Kf � combo
x� � !val�
dialComb
x� y� K
haveComb
x���

Kv
y�
Plan Time�
K
y � combo
x�� 	 add
Kf � 
open
x���
Run Time�
exec
dialComb
x�� !safeopen�

!safeopen � True	
add
Kf � 
open
x���� add
Kf � 
y � combo
x���

Table �� Open Safe Domain Actions

the agent knows at plan time that the action	s precon�
ditions are satis�ed�

Since the action	s preconditions are satis�ed� the ac�
tion can be simulated
 on I to yield an updated DB�
I�� In this case however I� � I since the action has
no plan time e�ects on I� dialComb has a conditional
plan time e�ect� but in this case IA cannot deduce the
conditionK
y � combo
safe�� from I and so the e�ect
add
Kf � open
safe�� is not activated� Intuitively� the
agent does not know if dialing a random combination
will cause the safe to open�

When we execute the action from the initial state I�
however� we get a di�erent set of e�ects� The com�
bination ������� is passed to the execution module
along with the run time variable !safeopen 
this is
the exec
dialComb
x� y�� !safeopen� component of the
action where x is bound to safe and y is bound to
��������� The execution module will set !safeopen to
True or False dependent on whether or not the ac�
tion succeeded in opening the safe� At run time� if
!safeopen is set to True by the execution module� the
action	s conditional e�ect will be activated resulting
in both open
safe� and combo
safe� � ������� being
added to Kf to create a new state I�� Intuitively� if the
safe opens the agent comes to know it and also comes
to know that the combination dialed was in fact the
right combination� So we see that the act of dialing
a arbitrary combination does not allow the agent to
conclude at plan time that the safe will be opened�
However� at run time the agent may in fact be lucky
and cause the safe to open�

Now consider the action sequence readComb
safe� fol�
lowed by dialComb
safe� combo
safe��� again from ini�
tial state I� The precondition to the �rst action�

	We use the term �simulated� when talking about pro�
jecting the actions e�ects at plan time� and �executed�
when talking about projecting the actions e�ects at run
time�

readComb
safe�� is satis�ed in I� At plan time this
action updates I by adding combo
safe� to Kv� In�
tuitively� this action will cause the agent to come to
know the combination of the safe� Let the updated
state be I��

In I�� K
haveComb
safe�� holds as this fact was not
deleted from Kf � Furthermore� Kv
combo
safe�� also
holds as this term was added to Kv by the previous ac�
tion� Thus� we can conclude that the preconditions of
the second action dialComb
safe� combo
safe�� hold in
I�� When we simulate the action in I� we must deter�
mine if the conditional of dialComb	s plan time e�ect
holds in I�� For this action instance the conditional
is K
combo
safe� � combo
safe��� I� has nothing in
it to allow the inference algorithm to simplify these
terms� but the algorithm is still able to return T as
the two terms are syntactically identical 
step � of the
IA algorithm�� Hence� open
safe� is added to the Kf

database of I �� Intuitively� the agent knows at plan
time that these two actions will open the safe� even
though it does not currently know what combination
will be dialed�

At run time� readComb
safe� has the e�ect of deter�
mining what the actual value of the combination is�
The execution module binds this value to the run time
variable !val� Suppose that this value is �������� Then
combo
safe� � ������� will be added to Kf � In ad�
dition� the term combo
safe� is deleted from Kv�

��

These changes will be made to the initial state I to
yield a new state I �� Now dialComb
safe� combo
safe��
is executed in I�� Prior to passing information to
the execution module we must reduce all terms to
their simplest form using the EvalT algorithm� This
means that the run time call to the execution module
will be exec
dialComb
safe� ��������� !safeopen�� the
second argument of the action combo
safe� will have
been reduced to ������� by the function value added

�
This deletion is not strictly necessary� It �cleans up�
Kv by removing redundant information�



Command E�ects
drink Plan Time�

add
Kf � hydrated�
medicate Plan Time�

K
hydrated� 	 add
Kf ��infected�
K
�hydrated� 	 add
Kf � dead�
�Kw
hydrated� 	 delete
Kf ��dead�
Run Time�
exec
medicate� !alive�

!alive � False	 add
Kf � dead�
!alive � True	 add
Kf ��infected�

stain Plan Time�
add
Kw� blue�� add
Kw� infected�
Run Time�
exec
stain� !stainblue�

delete
Kw� blue�� delete
Kw� infected�
!stainblue � True	 add
Kf � blue�� add
Kf � infected�
!stainblue � False	 add
Kf ��blue�� add
Kf ��infected�

Table �� Medical Domain Actions

by the previous action� This reduction is important�
and is the reason we need a Kv
y� precondition on
the dialComb action� the execution module cannot be
expected to take complex terms whose value is un�
known as arguments� If the execution module is suc�
cessful it will return True in the run time variable
!safeopen� which will cause open
safe� to be added to
Kf in I�� The other addition is redundant as the value
of combo
safe� is already in I ��

Our second example is due to Smith and Weld� Three
actions are available� drink� medicate� and stain� The
goal is to cure a patients	 infection� without killing
them� drink has the e�ect of hydrating the patient�
medicate has the ability to cure the infection� but only
if the patient is hydrated� Otherwise� it kills the pa�
tient� stain can be used to test if the patient is infected�
the stain becomes blue if the patient is infected� These
actions are described in Table �� None of these actions
have preconditions that need to be satis�ed� so we are
only concerned with their e�ects�

Suppose that the agent	s initial knowledge state is de�
scribed by Kf � f�deadg� One possible plan is the
action sequence drink followed by medicate� drink has
the plan time e�ect that the agent knows that the pa�
tient is hydrated� The second action� medicate� has
a conditional plan time e�ect� Since the agent knows
hydrated� it will also come to know �infected� Fur�
thermore� K
hydrated� implies Kw
hydrated� so the
third conditional is not activated� Hence� neither of
these actions removes �dead from Kf � so the agent
also knows the patient will be alive after these two ac�
tions� Thus� the agent is able to construct to plan that
it knows will achieve its goals� Furthermore� it knows
this at plan time�

Another possible plan is to perform the action
medicate without �rst hydrating� Since initially the
agent does not have any knowledge about hydration
the third conditional e�ect is activated and the agent
loses its knowledge that the patient is not dead� So
at plan time the agent can conclude that the medicate
action has an unknown e�ect on dead and hence that
this plan is not safe�

Finally consider the plan stain followed by the con�
ditional action if K
infected� then drink followed by
medicate� The action stain has the plan time e�ect
of adding infected to Kw � In other words� the agent
knows at plan time that after executing stain it will ei�
ther be in a state where it knows infected or it knows
�infected� It is not di�cult to extend the planner
so that at plan time it can add a conditional branch
for any fact in Kw� like infected� Along one of the
branches it adds infected to Kf � assuming infected to
be true� and along the other it adds �infected to Kf

assuming infected to be false� It then proceeds to com�
plete the plan along both branches ensuring that all
branches achieve the goal� At execution time the Kw

fact that conditions any branch will be resolved and
the plan executor will know which branch to take�

In this example� after the stain action one branch will
start in a state where Kf � f�dead� infectedg� In this
state it is not di�cult to see that the actions drink then
medicate achieve the agent	s goal� The other branch
starts in a state where Kf � f�dead��infectedg� No
additional actions are needed along this branch to
achieve the agent	s goal�

So we see that the agent is able to determine at plan
time that the above conditional plan achieves its goal�



Command Precondition E�ects
ls �al z K
readable
z�� Plan Time�

add
Kw� in�dir
x� z��
add
Kw� in�dir
x� z� � readable
x��
add
Kw� in�dir
x� z� � size
x� � y�
Run Time�
exec
ls �al z� !	le� !readable� !size�

add
Kf � in�dir
!	le� z��
!readable 	 add
Kf � readable
!	le��
add
Kf � size
!	le� � !size�

add
LCW � in�dir
x� z��
add
LCW � in�dir
x� z� � readable
x��
add
LCW � in�dir
x� z� � size
x� � y�

gzip x K
readable
x�� Plan Time�
delete
Kv� size
x��
Run Time�
exec
gzip x�

delete
Kf � size
x��� delete
Kv� size
x��

Table �� UNIX Domain Actions

At run time when the stain action is executed� the ex�
ecution module determines if the colour of the stain
is blue and binds the result to the run time vari�
able 
stainblue� The truth value of this variable will
then determine whether or not infected or �infected
is added to Kf � In either case� the plan executor will
have su�cient information to correctly execute the rest
of the conditional plan 
cf� �Lev�����

Notice that at plan time the agent is able to guaran�
tee that the goal of curing the infection is achieved�
by considering the possible consequences of the �rst
action and planning appropriately� But� it is not until
run time that the actual branch of the plan to execute
in order to achieve the goal 
either medicating or doing
nothing� becomes known�

We close the paper with a �nal example taken the
UNIX domain� The actions used in the example are
given in Table ���� This example uses a mechanism
for posting exceptions to Kw and LCW information�
specifying particular instances for which aKw or LCW
formula no longer holds� This mechanism will be ex�
plained in full in a later paper�

Say that in the real world we have readable
��ps��
readable
��ps�� readable
old�� in�dir
��ps� old��
size
��ps� � ��� ���� and in�dir
��ps� new�� The
following conditional plan is intended to achieve
the goal �If the �le ��ps is in directory old and
readable then compress it� and if ��ps is in directory
old and readable compress it�� 
�� ls �al old� 
�� if
in�dir
��ps� old� and readable
��ps� execute gzip ��ps�

�� if in�dir
��ps� old� and readable
��ps� execute

��We have simpli�ed these UNIX actions somewhat for
ease of presentation�

gzip ��ps�

Say that the agent	s initial knowledge state is Kf �
freadable
��ps�� readable
��ps�� readable
old�g� with
all of the other databases empty� Using the above
action speci�cations we can project this conditional
plan forward to determine what the agent	s knowledge
state would be at the various steps of the plan�

From the initial state we can conclude that the pre�
conditions of ls �al old hold� Simulating this ac�
tion we generate the new knowledge state where
Kw � fin�dir
x� old�� in�dir
x� old� � readable
x��
in�dir
x� old� � size
x� � yg� and everything else is
una�ected� From this knowledge state we have that
Kw
in�dir
��ps� old��� and K
readable
��ps��� This
entails that we know whether the branch condition of
step � at this point in the plan� and hence the branch
is legitimate�

Along the false branch we can conclude that
K
�
in�dir
��ps� old�� and K
readable
��ps��� which
is su�cient to show that the �rst goal is achieved on
this branch� Along the true branch� Kf still contains
readable
��ps� which is su�cient to conclude that the
preconditions of gzip ��ps hold�

After simulating this action we obtain a new Kw

in which the entry in�dir
x� old� � size
x� � y has
been replaced by the entry in�dir
x� old� � size
x� �
y � 
x 
� ��ps� to reect the fact that we no longer
know the value of size
��ps�� The mechanism that
handles this update is part of an extension we have
developed to deal with exceptions to Kw 
and LCW �
facts� This mechanism recognizes that the delete spec�
i�ed by gzip � delete
Kv� size
��ps��� should not mean
the simple removal of this item from the Kv database




in this case it is not even present in Kv�� Rather�
in this situation Kw allows us to conclude that we
know this value� and so we must also update Kw� The
mechanism we have developed posts exceptions to Kw

and LCW facts� This allows us to update such facts
without loosing excessive amounts of information 
cf�
�EGW�����

The third step of the plan can be simulated in a similar
manner to show that both of its branches also succeed
in achieving the second goal 
irrespective of the branch
we took for step ���

Turning now to execution time� the e�ects of the �rst
and second steps of the plan are fairly straightfor�
ward� It is the third step that is interesting� At this
stage of execution we would have executed the true
branch of step � and would haveKf � freadable
��ps��
readable
��ps�� readable
old�� in�dir
��ps� old�g� At
execution time a size fact for ��ps would have been
added by step �� but deleted by the execution of gzip �
There are no facts in Kf about the �le ��ps as it was
not found to be in the listed directory� but we will
have that in�dir
x� old� � LCW � Now the inference al�
gorithm can infer that K
�
in�dir
��ps� old��� and the
execution module can correctly realize that it should
execute the false 
null� branch of step �	s conditional�

References

�BK��� F� Bacchus and F� Kabanza� Using tem�
poral logic to control search in a forward
chaining planner� In M� Ghallab and
A� Milani� editors� New Directions in Plan�

ning� pages �������� IOS Press� �����

�EGW��� O� Etzioni� K� Golden� and D� Weld�
Tractable closed�world reasoning with up�
dates� In Proceedings of the International

Conference on Principles of Knowledge

Representation and Reasoning� pages �� �
� �� �����

�EGW��� O� Etzioni� K� Golden� and D� Weld�
Sound and e�cient closed�world reason�
ing for planning� Arti�cial Intelligence�
����� To appear� preprint available at
ftp�cs�washington�edu�

�FHMV��� R� Fagin� J� Y� Halpern� Y� Moses� and
M� Y� Vardi� Reasoning about Knowledge�
MIT Press� Cambridge� Mass�� �����

�Gar��� J� W� Garson� Quanti�cation in modal
logic� In D� Gabbay and F� Guenthner�
editors� Handbook of Philosophical Logic�

Vol� II� pages �������� Reidel� Dordrecht�
Netherlands� �����

�GEW��� K� Golden� O� Etzioni� and D� Weld� Om�
nipotence without omniscience� E�cient
sensor management in planning� In Pro�

ceedings of the AAAI National Conference�
pages ��� ������ �����

�GW��� K� Golden and D� Weld� Representing
sensing actions� The middle ground re�
visited� In Proceedings of the Interna�

tional Conference on Principles of Knowl�

edge Representation and Reasoning� pages
����� �� �����

�Hin��� J� Hintikka� Impossible possible worlds
vindicated� Journal of Philosophical Logic�
������� �� �����

�Lev��� H� Levesque� What is planning in the pre�
sense of sensing" In Proceedings of the

AAAI National Conference� pages �����
����� �����

�McD��� D� McDermott� A heuristic estimator for
means�end analysis in planning� In Pro�

ceedings of the Third International Con�

ference on A�I� Planning Systems� �����

�Moo �� R� C� Moore� A formal theory of knowledge
and action� In J� Hobbs and R� C� Moore�
editors� Formal Theories of the Common�

sense World� pages ������ � Ablex Pub�
lishing Corp�� Norwood� NJ� �� ��

�PG��� L� Pryor and Collins G� Cassandra� Plan�
ning for contingencies� Technical Re�
port ��� Northwestern University� The In�
stitute for the Learning Sciences� June
�����

�PS��� M� Peot and D� Smith� Conditional non�
linear planning� In Proceedings of the First

International Conference on A�I� Planning

Systems� pages � ������ �����

�SL��� R� B� Scherl and H� J� Levesque� The
frame problem and knowledge�producing
actions� In Proceedings of the AAAI Na�

tional Conference� pages � ������ �����


