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Abstract

We investigate the relationship between two ac-
counts of knowledge and action in the situation
calculus: the Scherl and Levesque (SL) approach
that models knowledge with possible worlds, and
the Demolombe and Pozos Parra (DP) approach
that models knowledge by a set of “knowledge
fluents.” We constructcombined action theo-
ries: basic action theories that encode a corre-
spondence between an SL and a DP theory. We
prove, subject to certain restrictions, that knowl-
edge of fluent literals are provably the same after
a sequence of actions. Moreover, this knowledge
equivalence extends to a rich class of formulae.
These results allow us to translate certain SL the-
ories into equivalent DP theories that avoid the
computational drawbacks of possible world rea-
soning. They also enable us to prove the correct-
ness of the DP treatment of knowledge and action
in terms of a possible world specification.

1 INTRODUCTION

Reasoning aboutsensing as a form of action, for the pur-
pose of planning or high-level agent control, requires the
ability to reason effectively about knowledge. Conceptu-
ally, reasoning about knowledge and action has been ex-
tensively studied and is relatively well understood. For
example, Moore (1985) shows how the situation calculus
can be adapted to knowledge using the accessibility re-
lation over possible worlds (Hintikka, 1962). Scherl and
Levesque (1993) extend Reiter’s theory of action (Reiter,
2001a) to handle knowledge, thus providing a solution to
the frame problem (McCarthy and Hayes, 1969) for knowl-
edge change. A similar approach is explored by Thielscher
(2000), where the fluent calculus is extended to include
knowledge update axioms that model an agent’s changing

knowledge. In (Shapiro et al., 2000), sensing actions are
generalized to manage possibly inaccurate beliefs in the sit-
uation calculus. Reiter (2001b) considers knowledge-based
GOLOG programs with sensing actions. In (Baral and Son,
1997) a high-level action description language is presented
that models sensing actions and a distinction between the
state of the world and the knowledge of the world.

The approaches mentioned above all share a common treat-
ment of knowledge: reasoning about knowledge is under-
stood as reasoning about the accessibility relation over pos-
sible worlds, treated as a fluent that changes due to action.
Computationally, this approach is not so promising. The
difficulty is that determining if a formula is known then
means determining if it is true in all of the currently acces-
sible possible worlds. Withn atomic formulae, this means
that there are potentially2n distinguishable worlds to check
truth in. In other words, model checking of formulae about
knowledge looks as bad as theorem-proving of formulae
without knowledge, and theorem-proving of formulae with
knowledge looks even worse. Therefore, even if we were
to accept that a planner for ordinary actions based on a for-
malism like the situation calculus could be made practical,
the addition of knowledge and sensing, modelled on possi-
ble worlds, raises new concerns.

Consequently, it is not too surprising that many of the at-
tempts to construct planners to effectively manage sensing
actions that we are aware of (e.g., (Bacchus and Petrick,
1998; Peot and Smith, 1992; Etzioni et al., 1997; Weld
et al., 1998; Pryor and Collins, 1996)) have relied either on
variants of STRIPS (Fikes and Nilsson, 1971) or special-
purpose algorithmic treatments of knowledge. The trouble
with these approaches, however, is in separating any for-
mal semantics from the implementation details of the algo-
rithms that the systems are built on. As a result, it is often
quite hard to see how the work relates to a logical specifi-
cation in a more general theory of knowledge and action.

It is possible, however, to formalize a limited concept of
knowledge and sensing in a logical language of action like



the situation calculus without using possible worlds. For
example, Funge (1998) restricts knowledge to be about the
values of real-valued functional fluents (e.g., distance, tem-
perature, height). What is known is characterized not by an
accessibility relation defining possible worlds, but rather
by a set of upper and lower bounds that define intervals
of possible values for these fluents. More qualitatively,
Demolombe and Pozos Parra (2000) characterize knowl-
edge of relational formulae by a set of fluents known true
or known false. Instead of formalizing how the set of ac-
cessible possible worlds changes as the result of action,
they propose to formalize how these “knowledge fluents”
change individually. Both of these approaches are very at-
tractive for two important reasons: first, the effect of sens-
ing actions on knowledge is now very similar in form to
the effect of ordinary actions on other fluents; second, rea-
soning about this type of knowledge change is now com-
putationally no worse than reasoning about ordinary fluent
change.

But what exactly do we give up in these accounts? What
exactly is their relationship to the standard possible world
one? In this paper, we propose a partial answer to these
questions. We considercombined action theories, basic ac-
tion theories that include axioms from both the Scherl and
Levesque (henceforth SL) and the Demolombe and Pozos
Parra (henceforth DP) theories of knowledge and action.
Our combined action theories will encode a correspon-
dence between an SL theory (using possible worlds) and
a DP one (using knowledge fluents). We prove, subject to
certain restrictions, that this correspondence maintains the
property that fluent literals known are provably the same
after a sequence of actions. Moreover, we show that this
knowledge equivalence extends to a rich class of formulae.
These results are important as they allow us to translate cer-
tain SL theories into equivalent DP theories that avoid the
computational drawbacks of possible world reasoning. Un-
fortunately, differences in the expressive nature of the two
approaches mean that this correspondence is not one to one.
Our results do, however, enable us to prove the correctness
of the DP treatment of knowledge and action in terms of
the standard possible world specification.

The rest of the paper is organized as follows. In Section 2
we review the situation calculus and the SL and DP the-
ories of knowledge and action. In Section 3 we introduce
the notion of a combined action theory. In Section 4, we es-
tablish knowledge equivalence of fluent literals for certain
classes of combined action theories and extend these results
to more general first-order formulae. In Section 5 we give a
comprehensive example illustrating our approach. Finally,
in Section 6 we discuss some of the issues and possible
extensions related to our work.

2 BACKGROUND

2.1 SITUATION CALCULUS

The situation calculus (as presented in (Reiter, 2001a)) is a
first-order, many-sorted language (with some second-order
features), specifically designed for modelling dynamically
changing worlds. All changes to the world are the result
of namedactions. A first-order term called asituation is
used to represent a possible world history (a sequence of
actions). A special constant calledS0 indicates theinitial
situation, that is, the situation in which no actions have yet
been performed. There is also a distinguished binary func-
tion symboldosuch thatdo(a, s) denotes the successor sit-
uation resulting from performing actiona in situations.
Actions are denoted by function symbols and may be pa-
rameterized, while situations are first-order terms. Rela-
tions (predicates) with the property that their truth values
can change from situation to situation are referred to as (re-
lational)fluents.1 A fluent is denoted by including a situa-
tion argument as its last argument, indicating the value of
the fluent at that situation.

Domain theories are specified by defining the following ax-
ioms:

• For each actionA, anaction precondition axiomof the
form

Poss(A(~x), s) ≡ ΠA(~x, s).2

• For each fluentF , asuccessor state axiomof the form

F (~x,do(a, s)) ≡ γ+
F (~x, a, s)∨F (~x, s)∧¬γ−F (~x, a, s),

characterizing the conditions under which fluentF is
true at situationdo(a, s) as a function of situations.
γ+

F (similarly γ−F ) describes all the ways of makingF
true (false) in the situationdo(a, s) by executinga in
situations.

• A set of first-order sentences describing the initial sit-
uation that syntactically only mention the situation
termS0.

Together with a set of unique-names axioms for primitive
actions and a set of domain-independent foundational ax-
ioms (formally defining legal situations), this collection of
axioms forms abasic action theory.

1Functional fluentsare also permitted but we will restrict our
attention to relational fluents only.

2Axioms that contain “free” variables can be thought of as be-
ing universally quantified from outside the axiom. Also, for sim-
plicity we will assume thatPoss(A(~x), s) ≡ true for each action
A. We will omit any discussion of thePosspredicate and assume
that actions are always executable.



2.2 AK FLUENT IN THE SITUATION
CALCULUS

The situation calculus formalism in (Reiter, 2001a) does
not distinguish between what is true in a situation and what
is known in a situation. Scherl and Levesque (1993) for-
malize knowledge in the situation calculus by adapting a
standard possible worlds model of knowledge as was done
by Moore (1985). A binary relationK(s′, s) is introduced,
read informally as “s′ is accessible froms,” and treated like
any other fluent (the last argument being the “official” situ-
ation argument).

Informally,K(s′, s) holds when as far as an agent in situ-
ations knows, it could be in situations′. The expression3

KnowsSL(φ, s) is used to state thatφ is known in situation
s, whereφ is a situation calculus formula with a special
situation term “now.” The notationφ[s] is used to indicate
the formula that results from replacingnow in φ by s. The
expressionKnowsSL(φ, s) is then an abbreviation defined
by

KnowsSL(φ, s) def= (∀s′).K(s′, s) ⊃ φ[s′].

As with other relational fluents, theK fluent possibly
changes truth values due to action. The effects that actions
have onK are encoded by defining a successor state axiom
of the form

K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s)∧
∀((a = α1) ⊃ (φ1[s] ≡ φ1[s′]))∧
. . .
∧∀((a = αn) ⊃ (φn[s] ≡ φn[s′])).

Here theαi are knowledge-producingor sensing actions
that inform the agent whether or notφi holds.K is updated
to reflect the situations now considered possible, depending
on the type of action (knowledge-producing or ordinary).

A particular modal logic is modelled by including axioms
that place restrictions on theK accessibility relation. For
instance, the S4 modal logic is modelled by including re-
flexivity and transitivity axioms. Scherl and Levesque also
show that provided these properties hold of theK relation
in initial situations, then theK relation in every situation
resulting from an executable sequence of actions will also
satisfy the same set of properties.

Finally, a basic action theory must include axioms that de-
fine the possible world alternatives forK in the initial situa-
tionS0. These specifications are necessary to define what is
known and what is not known initially. To refer to these ini-
tial alternative situations, we include the expressionInit(s),
to indicate “s is an initial situation.” Formally, we define

3We are freely changing the notation used by Scherl and
Levesque.

Init(s) as the abbreviation

Init(s) def= ¬(∃a, s′) s = do(a, s′).

2.3 KNOWLEDGE FLUENTS IN THE SITUATION
CALCULUS

Demolombe and Pozos Parra (2000) present an alternate
approach to modelling knowledge in the situation calcu-
lus.4 A modal operatorK is introduced and “combined”
syntactically with a non-equality fluent literalP to form a
knowledge fluentKP .5 Informally,KP (s) is a fluent mean-
ing “P is known to be true in situations.” These modal flu-
ents are used to explicitly model knowledge without manip-
ulating possible worlds, but restrict the expressive power of
the representation to knowledge of literals.

For each ordinary fluentF , a pair of modal fluents,KF
andK¬F , are defined. In addition to specifying a standard
successor state axiom forF , successor knowledge state ax-
iomsmust be given for bothKF andK¬F . These axioms
have the same form as regular successor state axioms,

KF (~x,do(a, s)) ≡
γ+

KF (~x, a, s) ∨KF (~x, s) ∧ ¬γ−KF (~x, a, s),
K¬F (~x,do(a, s)) ≡

γ+
K¬F (~x, a, s) ∨K¬F (~x, s) ∧ ¬γ−K¬F (~x, a, s),

but must ensure that knowledge remains consistent. That
is, bothKF (~x, s) andK¬F (~x, s) cannot hold in the same
situations.

Since knowledge fluents are ordinary situation calculus flu-
ents, a basic action theory must include axioms defining
KF andK¬F atS0. These axioms formally define what is
initially known (or not known) about an ordinary fluentF .

3 PROPERTIES OF COMBINED ACTION
THEORIES

As a first step towards relating the two accounts of knowl-
edge, we begin by defining acombined action theory, a
basic action theory that includes axioms for theK fluent,
successor state axioms for ordinary fluents, a set of succes-
sor knowledge state axioms for knowledge fluents, and re-
strictions on the set of initial situationsInit(s). A combined
action theory will be used to encode atranslationbetween

4In (Demolombe and Pozos Parra, 2000),belief is modelled
in a KD axiom system. We are instead modelling knowledge and
have made notational changes to reflect this difference.

5We will use the termfluent literal to refer to a fluentF (~x, s)
or its negation¬F (~x, s), indicating that either form may be
used. Similarly, forKP (~x, s), whereP is a fluent literal (of
F ), we mean the corresponding knowledge fluentKF (~x, s) or
K¬F (~x, s).



the SL and DP axioms by specifying the form of the axioms
we consider and the relationship between the SL and DP
axioms. In this section we concentrate on the translation of
knowledge-producing actions and initial situation axioms,
but describe in general how the effects of ordinary physi-
cal actions are encoded. We will define 5 properties that
any combined action theory must satisfy. In Section 4 we
will considerclassesof combined action theories based on
certain restrictions to the successor state axioms. These re-
strictions will allow us to establish an equivalence between
the SL and DP forms of knowledge.

We will assume that we have a finite number of knowledge-
producing actions,α1, α2, . . . , αm, and a finite number of
physical actions,β1, β2, . . . , βn. We will treat each action
as being distinct, and the physical actions as being distinct
from the knowledge-producing actions.

3.1 REPRESENTATION OF SENSING ACTIONS

A combined action theory will contain a successor state ax-
iom forK that has the standard SL form. The first property
we consider imposes additional restrictions on the form of
the sensory effects that can be modelled. These constraints
will allow us to translate the effects described inK into ap-
propriate successor knowledge state axioms for which we
can establish a knowledge equivalence between the SL and
DP forms of representation. Even with these restrictions,
we will still be able to model a number of interesting sen-
sory effects.

For instance, consider the axiom forK defined by

K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s)∧
ϕ1(a, s, s′) ∧ ϕ2(a, s, s′) ∧ ϕ3(a, s, s′).

Sayϕ1 defines a knowledge-producing actionsense1 as

ϕ1(a, s, s′)
def= a = sense1(x) ⊃ (F (x, s) ≡ F (x, s′)).

Heresense1 is a simple action that unconditionally senses
the truth value of a fluentF for the specifiedx. A more
complex action is given by:

ϕ2(a, s, s′)
def= a = sense2 ⊃ (∀x)(F (x, s) ≡ F (x, s′)).

In this case the actionsense2 has auniversalsensory ef-
fect. The universal quantification ofx results in the un-
conditional sensing ofF for each possible value ofx. One
additional type of sensing action is represented by:

ϕ3(a, s, s′)
def= a = sense3(x) ⊃ ((G(x, s) ≡ G(x, s′))∧

G(x, s) ⊃ (F (x, s) ≡ F (x, s′))).

The actionsense3 has a compound effect: it uncondition-
ally senses the truth value ofG (for the specifiedx) and

alsoconditionallysensesF , providedG is true. In general
this type of sensing allows additional properties about some
set of objects to be sensed, contingent on the truth of some
initial property. Our representation allows finite “chains”
of this type of sensing to be modelled, and also allows sit-
uation independent formulae to be specified as conditions.

Formally, we have the following definition of theK axiom.

Property 1 Let α1, α2, . . . , αm be distinct knowledge-
producing action terms. The successor state axiom for the
K fluent has the form

K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s)∧
ϕ1(a, s, s′) ∧ ϕ2(a, s, s′) ∧ . . . ∧ ϕm(a, s, s′).

For eachϕi let F1, F2, . . . , Fl be distinct fluents so that

ϕi
def= ∀(a = αi(~y) ⊃ ψ1 ∧ ψ2 ∧ . . . ∧ ψl),

ψj
def= (∀~z).Cj(~y, ~z, s) ⊃

Fj(~y, ~z, s) ≡ Fj(~y, ~z, s′).

ψj describes an effect withconditionCj and fluentFj . C1

is a situation independent formula. Forj > 1,Cj is either a
situation independent formula or a conjunction of the form:

Cj−1(~y, ~z, s) ∧ [¬]Fj−1(~y, ~z, s),

whereCj−1 is the condition associated withψj−1.

3.2 SUCCESSOR KNOWLEDGE STATE AXIOMS

For every ordinary fluentF in our SL theory, our combined
action theory will include a pair of DP successor knowl-
edge state axioms forKF,K¬F . The second property we
consider concerns the form of these axioms which encode
all the effects of actions on the agent’s knowledge of the
fluentF . In other words, this encoding specifies the trans-
lation of the SL successor state axioms forK andF into
DP axioms. Since we require a translation that preserves
an equivalence with the effects described by the SL theory,
we must consider two different types of effects: the effects
of physical actions and the effects of knowledge-producing
actions.

For physical actions, the equivalence is achieved by con-
verting ordinary successor state actions into “knowledge
fluent versions,” through syntactic changes to fluent liter-
als. All references toP in γ±F are changed toKP without
changing the underlying structure ofγ±F (i.e., the logical
connectives). In the case of a situation independent for-
mula, the conversion leaves the formula unchanged. (In
Section 4 we will apply this syntactic conversion to re-
stricted successor state axioms.)

For knowledge-producing actions, the equivalence de-
pends on extracting the separate effects of all knowledge-
producing actions on a particular fluent (defined inK) and



packaging them together into the pair of corresponding suc-
cessor knowledge state axioms. The appropriate compo-
nents of theK axiom (i.e., the specific effects that sense
the fluentF ) are incorporated into the successor knowl-
edge state axioms, maintaining the same structure of the
action terms and conditions on conditional effects that are
defined forK. Any explicit quantification becomes implic-
itly quantified in the successor knowledge state axiom.

Consider the actionssense1, sense2, andsense3, defined in
Section 3.1. Assuming no other actions senseF we can
generate the corresponding pair of successor knowledge
state axioms forKF,K¬F :

KF (x,do(a, s)) ≡
(γ+

F )K ∨ ((a = sense1(x) ∨ a = sense2∨
(a = sense3(x) ∧G(x, s))) ∧ F (x, s))∨
KF (x, s) ∧ ¬(γ−F )K ,

K¬F (x,do(a, s)) ≡
(γ−F )K ∨ ((a = sense1(x) ∨ a = sense2∨
(a = sense3(x) ∧G(x, s))) ∧ ¬F (x, s))∨
K¬F (x, s) ∧ ¬(γ+

F )K .

(γ±F is defined in the successor state axiom forF .) Note
that the explicit universal quantification inϕ2 is now ex-
pressed implicitly in the successor knowledge state axioms.

We formally define the translation of successor state ax-
ioms to successor knowledge state axioms as follows.

Property 2 For each ordinary fluentF , the successor
knowledge state axioms for knowledge fluentsKF,K¬F
are of the form

KF (~x,do(a, s)) ≡
γ+

KF (~x, a, s) ∨KF (~x, s) ∧ ¬γ−KF (~x, a, s),
K¬F (~x,do(a, s)) ≡

γ−KF (~x, a, s) ∨K¬F (~x, s) ∧ ¬γ+
KF (~x, a, s),

andγ±KF (~x, a, s) has the form(γ±F )K ∨ ξ±F .

(γ±F )K is structurally identical toγ±F with the exception
that every fluent literalP is syntactically replaced byKP .
ξ±F has the form

∨

〈i,j〉∈SF

(a = αi(~y) ∧Cj(~y, ~z, s) ∧ ±F (~y, ~z, s)),

whereSF is defined for each fluentF as

SF
def= {〈i, j〉 | ϕi has an effectψj with condition
Cj and fluentF (defined in theKaxiom)}.

SF indicates the components of theK axiom that senseF .
α(~y) andCj are structurally identical to those defined in
Property 1. If no knowledge-producing action has an effect
on a fluentF , thenγ±KF reduces to(γ±F )K .

3.3 CONSTRAINTS ON INITIAL SITUATIONS

We now consider the three final properties required of
a combined action theory, dealing with initial situations.
First, since we are modelling knowledge we require that
a reflexivity restriction hold of theK fluent. As shown in
(Scherl and Levesque, 1993) we only require that this prop-
erty hold of initial situations for it to hold for all situations.
A consequence of reflexivity, however, is that our initial
knowledge must correspond correctly to the initial values
of ordinary fluents (i.e., the way the real world is initially
configured). Formally, we require the following conditions
hold:

Property 3 (reflexivity ofK)

Σ |= (∀s).Init(s) ⊃ K(s, s),
Σ |= (∀s)(∀~x).Init(s) ⊃

KnowsSL(P (~x,now), s) ⊃ P (~x, s),

for every fluent literalP .

Second, we require a knowledge equivalence for initial sit-
uations to ensure that we begin with literal-based knowl-
edge that is identical in terms of both the SL (usingK and
possible worlds) and DP (using knowledge fluents) forms
of representation. Our goal in Section 4 will be to show that
this equivalence is preserved through action, subject to cer-
tain restrictions that we place on the form of the combined
action theory. Formally, we require the following property:

Property 4 (initial knowledge equivalence)For every flu-
ent literalP ,

Σ |= (∀s)(∀~x).Init(s) ⊃
KnowsSL(P (~x,now), s) ≡ KP (~x, s).

Finally, we require a strong restriction on our initial knowl-
edge to ensure that we can “break apart” any knowledge of
disjunctions to reason about the knowledge of the individ-
ual disjuncts. In general, SL theories can model knowledge
of disjunctions without requiring knowledge of individual
disjuncts.

Example 1 Consider the following axioms:

F (do(a, s)) ≡ F (s),
G(do(a, s)) ≡ G(s),
K(s′′, s) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s)∧

(a = sense⊃ ((F (s) ∨G(s)) ≡ (F (s′) ∨G(s′)))),
(∃s1, s2, s3, s4).K(s1, S0) ∧K(s2, S0) ∧K(s3, S0)∧

K(s4, S0) ∧ F (s1) ∧G(s1) ∧ F (s2) ∧ ¬G(s2)∧
¬F (s3) ∧G(s3) ∧ ¬F (s4) ∧ ¬G(s4).

Initially, nothing is known about the fluentsF and G,
however, in the situationS = do(sense, S0) we have
thatKnowsSL((F (now) ∨ G(now)), S) holds, but neither
KnowsSL(F (now), S) norKnowsSL(G(now), S) hold.



In DP theories, however, the representation is restricted to
knowledge of fluent literals. Thus, we require a disjunc-
tive knowledge restriction to ensure that we can establish
an equivalence of literal-based knowledge that can be pre-
served after a sequence of actions.

Property 5 (initial disjunctive knowledge)For all fluent
literals P1, P2, . . . , Pk that are not complementary,6 and
any ground sequence of actions~A1, ~A2, . . . , ~Ak,

Σ |= (∀s)(∀~x).Init(s) ⊃
KnowsSL(

∨k
i=1 Pi(~x,do( ~Ai, now)), s) ≡∨k

i=1 KnowsSL(Pi(~x,do( ~Ai, now)), s).

This property not only specifies that we can break apart
“immediate” disjunctive knowledge (e.g., formulae such as
KnowsSL(P (now), S0) that includenow but no other ac-
tion terms) but that we can also do the same for knowl-
edge of “future” disjunctions (e.g., formulae such as
KnowsSL(P (do( ~A, now)), S0) that include an action se-
quence~A). It is this second condition that is important
for ensuring a literal-based knowledge equivalence can be
maintained through action. It also means, however, that we
impose strong restrictions on the structure of our initial sit-
uations. This issue will be discussed further in Section 4.4.

The strength of Property 5 allows us to extend it to hold for
all situations, not just initial situations, given a successor
state axiom forK of the form in Property 1.

Theorem 1 Let Σ be a basic action theory that satisfies
Properties 1 and 5. Then Property 5 holds for all situations,
not just Init(s).

Proof (By induction over situations) The base case fol-
lows directly from Property 5. In the induction step we
consider the two types of actions. For physical actions, us-
ing the definitions ofKnowsSL, theK axiom from Prop-
erty 1, and the fact that ifKnowsSL(P (~c, do(A, now)), s)
holds thenKnowsSL(P (~c, now), do(A, s)) holds for alls
andA, the result quickly follows. For sensing actions, the
K axiom specifies that all knowledge-producing effects re-
duce to sensing the truth of individual fluent literals, thus
preserving the required property.�
This property will also be required to extend our equiva-
lence results to more general formulae (see Section 4.3).

3.4 COMBINED ACTION THEORIES

We are now able to give a formal definition of a combined
action theory, based on the properties described in Sec-
tions 3.1–3.3.

6That is, we cannot include bothPi and¬Pi.

Definition 1 A combined action theoryΣ is a basic action
theory that satisfies Properties 1–5.

Note that our definition does not specifically define the
form of the ordinary successor state axioms (with the ex-
ception ofK). It does, however, specify how such axioms
will be converted to successor knowledge state axioms. In
the next section we focus on the restrictions we require of
successor state axioms.

4 KNOWLEDGE EQUIVALENCE IN
COMBINED ACTION THEORIES

In general, our combined action theory alone is not enough
to establish a knowledge equivalence between SL and DP
theories, even with the strong restrictions placed on the ini-
tial situations.

Example 2 Consider the following axioms:

F (do(a, s)) ≡ (a = A ∧ ¬F (s)) ∨ F (s),
¬KnowsSL(F (now), S0),
¬KnowsSL(¬F (now), S0).

In terms of literal-based knowledge, nothing is known
aboutF at S0. However, in the situationS = do(A,S0),
KnowsSL(F (now), S) holds. In this case, knowledge of
F atS does not depend on knowing individual literals (i.e.,
knowingF holds at all possible worlds). Rather, it involves
a property that is true of each possible world, in this case
a “hidden” tautology (i.e.,F ∨ ¬F holds at all possible
worlds).7 It is this general representation of knowledge,
allowable in SL theories, that poses a problem for DP theo-
ries since DP theories are restricted to knowledge of literals
and unable to encode such knowledge.

Thus, to ensure a translation between the SL and DP forms
of knowledge can be achieved, we are faced with the task
of either first removing the hidden logical constraints (such
as tautologies) from a theory and constructing a new, log-
ically equivalent theory, or restricting the form of the the-
ories we consider to avoid such issues entirely. We adopt
the latter approach and consider restrictions to the form of
the successor state axioms that allow us to defineclassesof
combined action theories.

4.1 CONTEXT FREE THEORIES

The first class of combined action theories we investigate
is formed by restricting our successor state axioms to be
context free:

7Note that our disjunctive knowledge restriction does not for-
bid this.



Definition 2 (following (Lin and Reiter, 1997)) A succes-
sor state axiom for a fluentF is context freeiff it has the
form

F (~x,do(a, s)) ≡ γ+
F (~x, a) ∨ F (~x, s) ∧ ¬γ−F (~x, a),

whereγ+
F (~x, a) andγ−F (~x, a) are situation independent for-

mulae whose free variables are among those in~x, a.

Definition 3 A context free combined action theoryΣ is
a combined action theory with the property that successor
state axioms for ordinary fluentsF are context free (i.e.,
γ+

F andγ−F are situation independent).

A context free successor state axiom for a fluentF pro-
hibits any references to fluents inγ±F . Even with these re-
strictions, axioms of this form are common. Quantification
is still permitted, provided the scope of the quantifiers only
range over the situation independent formulae. By requir-
ing successor state axioms be context free, however, we
are also placing restrictions on the form of the successor
knowledge state axioms (at least the part determined by the
effects of physical actions on a fluent). In this case, the
physical effect portion ofγ±KF (i.e., (γ±F )K ) will also be
context free and, in fact, identical toγ±F .

For instance, consider the following context free successor
state axiom for an ordinary fluentbroken:

broken(x,do(a, s)) ≡ (a = drop(x) ∧ fragile(x))∨
broken(x, s) ∧ ¬(a = repair(x)).

Assuming that no actions also sensebroken, Definition 3
allows us to generate a corresponding pair of succes-
sor knowledge state axioms based solely on the defini-
tion of γ±broken given above. The resulting axioms for
Kbroken,K¬broken(following the form specified in Defi-
nition 1) are also context free:

Kbroken(x,do(a, s)) ≡ (a = drop(x) ∧ fragile(x))∨
Kbroken(x, s) ∧ ¬(a = repair(x)),

K¬broken(x,do(a, s)) ≡ a = repair(x)∨
K¬broken(x) ∧ ¬(a = drop(x) ∧ fragile(x)).

These restrictions enable us to establish our first equiva-
lence result between the SL and DP definitions of knowl-
edge, not just for initial situations, but for every situation:

Theorem 2 Let Σ be a context free combined action the-
ory. Then for any fluent literalP ,

Σ |= (∀s)(∀~x).KnowsSL(P (~x,now), s) ≡ KP (~x, s).

Proof (By induction over situations) The base case fol-
lows directly from Definition 1. In the induction step we
consider sensing and physical actions separately. For sens-
ing actions, the basic argument follows from the form of

the successor state and successor knowledge state axioms:
successor state axioms leave the truth of all ordinary fluents
unchanged and the translation in Definition 1 ensures that
the corresponding components of the successor state and
successor knowledge state axiom will necessarily hold in
both axioms if they hold in one axiom. Reflexivity and the
definition ofKnowsSL ensures we can establish the truth of
fluents in the “real” situation. For physical actions, we use
the property thatΣ |= (∀s).KnowsSL(ψ, s) ≡ ψ, whenψ
is situation independent. Since(γ±F )K andγ±F are identical
situation independent formulae, and the induction assump-
tion lets us convert between SL and DP knowledge for flu-
ent literals, the result quickly follows from the correspon-
dence between the successor state and successor knowl-
edge state axioms.�
This result means that as far as knowledge of fluent literals
is concerned, the SL and DP accounts are identical and will
remain identical after any executable sequence of actions.
In practical terms this means that we can exchange an SL
theory based on possible worlds for a corresponding DP
theory based on knowledge fluents (e.g., the DP axioms for
Kbroken,K¬brokenreplace the SL axioms forbrokenand
K), provided we can accept the limitation of literal-based
knowledge.

4.2 LITERAL-BASED THEORIES

We now consider a much more expressive class of com-
bined action theories, formed by extending our successor
state axioms to include fluent literals.

Our definition of a literal-based combined action theory
forcesγ±F to be described in a disjunctive normal form, sub-
ject to certain restrictions. As with the context free case,
quantifiers are allowed, provided their scope only ranges
over the situation independent formulae. (An exception is
made for variables~y that appear as parameters to the ac-
tion.) Additional restrictions ensure that no problematic
logical constraints (such as tautologies) arise.

Definition 4 A literal-based combined action theoryΣ is
a combined action theory where the successor state axioms
for ordinary fluentsF have the property that

γ±F (~x, a, s) def=
∨k

i=1 πi(~x, a, s).

For eachπi, letP1, P2, . . . , Pl be fluent literals,ψi a situa-
tion independent formula,βi a physical action term, and~yi

a vector of variables (possibly empty) so that

πi(~x, a, s)
def= (∃~yi).a = βi(~x, ~yi) ∧ ψi(~x, ~yi, a)∧

P1(~x, ~yi, s) ∧ P2(~x, ~yi, s) ∧ . . . ∧ Pl(~x, ~yi, s),

where~yi must be a parameter ofβi, and¬F (similarly F )
can’t be mentioned inγ+

F (similarly γ−F ). We also require



the following property hold of everyπi, πj , i 6= j: for every
substitutionσ of ~x, a, ~yi, ~yj so that

Σ |= (βi(~x, ~yi) = βj(~x, ~yj) ∧ ψi(~x, ~yi) ∧ ψj(~x, ~yj))σ,

then for all fluent literalsP in πi andR in πj , (i) if πi is in
γ+

F andπj is in γ−F : Pσ cannot unify withRσ, otherwise
(ii) Pσ cannot unify with¬Rσ.

In practice, these constraints are conservative, yet many of
the successor state axioms that occur in the literature can be
converted to this form. For instance, consider the following
successor state axiom for a fluentholding:

holding(x,do(a, s)) ≡ (a = pickup(x)∨
(∃y).a = pickup(y) ∧ in(x, y, s))∨
holding(x, s) ∧ ¬(a = dropall).

Following our definition, successor knowledge state ax-
ioms must encode knowledge fluent versions of the ordi-
nary successor state axioms. References to fluent literals
P in γ±F are syntactically replaced by references toKP in
(γ±F )K . For theholdingexample, assuming no actions also
senseholding, we have the following successor knowledge
state axioms:

Kholding(x,do(a, s)) ≡ (a = pickup(x)∨
(∃y).a = pickup(y) ∧Kin(x, y, s))∨
Kholding(x, s) ∧ ¬(a = dropall),

K¬holding(x,do(a, s)) ≡ a = dropall∨
K¬holding(x, s) ∧ ¬(a = pickup(x)∨
(∃y).a = pickup(y) ∧Kin(x, y, s)).

This translation allows our equivalence result for context
free theories to be extended to literal-based theories as well.

Theorem 3 Let Σ be a literal-based combined action the-
ory. Then for any fluent literalP ,

Σ |= (∀s)(∀~x).KnowsSL(P (~x,now), s) ≡ KP (~x, s).

Proof (By induction over situations) The base case fol-
lows directly from Definition 1. In the induction step, con-
sider two types of actions. For sensing actions, the proof is
the same as in Theorem 2. For physical actions, in the if di-
rection we repeatedly choose disjunctions of fluent literals
from the successor state axiom that must be known. Our
restrictions in Definition 4 allow us to apply Theorem 1
to break apart this knowledge into component parts. This
process terminates with the fluents in some component of
the axiom being known individually. Using the form of the
corresponding successor knowledge state axioms and the
induction assumption we are able to establish the result.
In the only-if direction, the induction assumption applied
to the appropriate components of the successor knowledge
state axioms relates the knowledge fluents to SL knowl-
edge. The result then follows by considering the form of
the successor state axiom and its corresponding translation
described in Definition 1.�

4.3 EXTENDING KNOWLEDGE EQUIVALENCE
TO FIRST-ORDER FORMULAE

Up to this point we have only established a knowledge
equivalence between SL and DP theories for fluent liter-
als. We now seek to extend that equivalence to account for
more general first-order formulae. We begin by defining
the expressionKnowsDP (φ, s), to indicate thatφ is known
(in the DP sense) in situations:

Definition 5 LetF be a fluent and letφ andψ be first-order
formulae that don’t mentionK or any knowledge fluents
KF,K¬F . Then

1. KnowsDP (φ, s) def= φ, if φ is situation independent,

2. KnowsDP (F (~x), s) def= KF (~x, s),
3. KnowsDP (¬F (~x), s) def= K¬F (~x, s),
4. KnowsDP (¬¬φ, s) def= KnowsDP (φ, s),
5. KnowsDP (φ ∧ ψ, s) def=

KnowsDP (φ, s) ∧ KnowsDP (ψ, s),
6. KnowsDP (¬(φ ∧ ψ), s) def=

KnowsDP (¬φ, s) ∨ KnowsDP (¬ψ, s),
7. KnowsDP ((∀~x).φ, s) def= (∀~x).KnowsDP (φ, s),
8. KnowsDP (¬(∀~x).φ, s) def= (∃~x).KnowsDP (¬φ, s).

Using Definition 5 we can now refer to DP knowledge be-
yond that of simple knowledge fluents. Since our definition
of KnowsSL can already be applied to such general formu-
lae, a reasonable question to ask is whether our equivalence
results can also be extended to a more general class of for-
mulae. We offer a partial answer to this question. First, we
extend our results to disjunctive formulae:

Lemma 1 Let Σ be a context free or literal-based com-
bined action theory. Letφ be a disjunction of non-
complementary ground fluent literals. Then

Σ |= (∀s).KnowsSL(φ, s) ≡ KnowsDP (φ, s).

Proof Let φ be a disjunction of the ground fluent literals
P1, P2, . . . , Pk and lets be any situation. By Theorem 1:
Σ |= KnowsSL(φ, s) ≡ ∨k

i=1 KnowsSL(Pi(~ci, now), s).
SinceΣ is a context free (similarly, literal-based) combined
action theory, by Theorem 2 (similarly, Theorem 3):
Σ |= ∨k

i=1 KnowsSL(Pi(~ci, now), s) ≡∨k
i=1 KnowsDP (Pi(~ci, now), s).

Now, by applying Definition 5 we obtain the desired result:
Σ |= ∨k

i=1 KnowsDP (Pi(~ci, now), s) ≡ KnowsDP (φ, s).
�
Although Lemma 1 requires that a disjunctive formula be
free of tautologies (in order to make use of our disjunctive
knowledge restriction), we can use this lemma to establish
the following general equivalence:



Theorem 4 Let Σ be a context free or literal-based com-
bined action theory. Letφ be any ground, quantifier-free
first-order formula withoutK or any knowledge fluents.
Then, there is a logically equivalent formulaφ′ such that

Σ |= (∀s).KnowsSL(φ′, s) ≡ KnowsDP (φ′, s).

Proof Theφ′ in question will be the conjunction of the
non-tautologous prime implicates ofφ. Thus,|= φ ≡ φ′.
Denote the prime implicates byπ1, π2, . . . , πk and lets be
any situation. Since:
Σ |= KnowsSL(

∧k
i=1 πi, s) ≡

∧k
i=1 KnowsSL(πi, s)

(a property ofKnowsSL), the clausal form of the prime
implicates allows us to apply Lemma 1 so that we have:
Σ |= ∧k

i=1 KnowsSL(πi, s) ≡
∧k

i=1 KnowsDP (πi, s).
Now, applying Definition 5 establishes the result:
Σ |= ∧k

i=1 KnowsDP (πi, s) ≡ KnowsDP (
∧k

i=1 πi, s).
�
This theorem illustrates that our equivalence results can be
extended to the class of ground, quantifier-free formulae.
In particular, a sentence can be formulated in such a way
that it is known in the SL sense (with possible worlds) iff
it is known in the DP sense (with knowledge fluents). Fur-
thermore, we believe that this equivalence can be extended
to include formulae containing quantifiers. For instance,
the techniques used in (Levesque, 1998) could be adopted
to deal with such formulae, by restricting them to be in a
normal form.

While Theorem 4 does not allow quantification in general,
provided we ensure that the scope of quantifiers range only
over situation independent formulae (i.e., “closed” situa-
tion independent formulae) we can consider a simple ex-
tension to our equivalence results:

Corollary 1 Let Σ be a context free or literal-based com-
bined action theory. Letφ be any first-order sentence, with-
out K or any knowledge fluents, whose quantifiers only
range over situation independent formulae. Then, there is
a logically equivalent formulaφ′ such that

Σ |= (∀s).KnowsSL(φ′, s) ≡ KnowsDP (φ′, s).

Proof Putφ into a conjunctive normal form, keeping any
situation independent formula closed. Break apart the con-
junctions into knowledge of the component parts. Since
Σ |= (∀s).KnowsSL(ψ, s) ≡ ψ, whenψ is a situation
independent formula (a property ofKnowsSL), the result
quickly follows from Theorem 4 and Definition 5.�

4.4 DISJUNCTIVE KNOWLEDGE AND INITIAL
SITUATIONS

Our definition of a combined action theory enforces a
strong property on disjunctive knowledge, namely that dis-
junctions (both immediate and future) can be broken apart

into knowledge of the individual disjuncts. Moreover, pro-
vided that this property holds in all initial situations, it will
also hold in all subsequent situations, independent of the
combined action theory. But what exactly does this prop-
erty tell us about the structure ofS0 and other initial situa-
tions? Is such a strong property necessary?

We begin by considering a much less restrictive property
about disjunctive knowledge:

Definition 6 Let Σ be a basic action theory. A situations
is said to satisfy theweak disjunctive knowledge property
if for all fluent literalsP1, P2, . . . , Pk that are not comple-
mentary,

Σ |= (∀~x).KnowsSL(
∨k

i=1 Pi(~x,now), s) ≡∨k
i=1 KnowsSL(Pi(~x,now), s).

With this weaker form of disjunctive knowledge we no
longer require constraints on “future” disjunctions, just im-
mediate ones. It turns out that for the class of context free
theories such a property is sufficient to maintain our equiv-
alence results.

Theorem 5 Let Σ be defined as in Definition 3 with the
(strong) disjunctive knowledge property replaced with the
weak disjunctive knowledge property on initial situations.
Then, (i) the weak disjunctive knowledge property holds
for all situations, and (ii) the equivalence results of Sec-
tions 4.1 and 4.3 extend toΣ.

Proof The proof of (i) is straight-forward by induction
over situations, using the form of the translation in Defini-
tion 1 when we have context free successor state axioms,
and the property thatΣ |= (∀s).KnowsSL(ψ, s) ≡ ψ,
whenψ is situation independent. For (ii), the proofs carry
over from Sections 4.1 and 4.3 with all references to Theo-
rem 1 replaced with references to Theorem 5(i).�
Thus, for context free theories at least we need only be
concerned about immediate disjunctions in the initial sit-
uation (i.e., those that only mentionnow and no other ac-
tion terms). This weaker notion of disjunctive knowledge,
however, is not necessarily preserved if we consider non-
context free theories, even literal-based ones.

Example 3 Consider the following axioms:

F (do(a, s)) ≡ (a = A ∧G(s)) ∨ F (s),
G(do(a, s)) ≡ G(s),
(∃s1, s2, s3, s4).K(s1, S0) ∧K(s2, S0) ∧K(s3, S0)∧

K(s4, S0) ∧ F (s1) ∧G(s1) ∧ F (s2) ∧ ¬G(s2)∧
¬F (s3) ∧G(s3) ∧ ¬F (s4) ∧ ¬G(s4).

Nothing is known initially aboutF andG. (The specifi-
cation of initial situations means that the weak disjunctive



knowledge property holds ofS0.) In the situationS =
do(A,S0), however, we have thatKnowsSL((F (now) ∨
¬G(now)), S) holds, but neitherKnowsSL(F (now), S)
norKnowsSL(¬G(now), S) hold.

Thus, by considering even slightly more complex successor
state axioms the weaker notion of disjunctive knowledge
can quickly fail. Since we require such a property hold in
order to establish our equivalence results, this motivates the
need for our stronger restriction.

What this property doesnot provide, however, is an
efficient method of detecting all the necessary condi-
tions that must hold of an initial situation. In con-
structing an SL theory one must potentially consider dis-
junctions that arise fromany sequence of actions and
make sure that the appropriate knowledge is encoded
in the initial situations. For instance, in Example 3
we would require thatKnowsSL(F (do(A, now)), S0) or
KnowsSL(¬G(do(A, now)), S0) hold ofS0.

4.5 NON-EQUIVALENCE OF SL AND DP
THEORIES

While we have been able to correlate the SL and DP ap-
proaches for an expressive class of theories, the equiva-
lence of SL and DP theories is not one-to-one. Clearly,
there exist SL theories without equivalent DP formulations
(e.g., Example 1). The converse is also true. Depending
on the form of the successor knowledge state axioms, DP
theories can be modelled so that knowledge fluents evolve
independent of ordinary fluents. Consequently, we can con-
struct DP theories that manipulate knowledge in a way that
cannot be easily reproduced in a standard SL theory.

Example 4 Consider the following axioms:

F (do(a, s)) ≡ F (s),
KF (do(a, s)) ≡ KF (s) ∧ ¬(a = forget),
K¬F (do(a, s)) ≡ K¬F (s) ∧ ¬(a = forget),
KF (S0).

In the situationS = do(forget, S0), both ¬KF (S) and
¬K¬F (S) hold. Thus,forget produces aknowledge re-
ducingeffect without changing any ordinary fluents. Such
an action cannot be modelled directly in a standard SL the-
ory (see the theorems concerningmemoryin (Scherl and
Levesque, 1993)).

To make our equivalence more encompassing, one possibil-
ity is to extend the SL theory. For instance, a richer repre-
sentation that allows actions such asforget to be modelled
at the possible world level could provide a closer corre-
spondence to the DP theory. We are currently investigating
such an approach as well as alternate theories that could
subsume the SL approach altogether (see Section 6).

5 AN EXAMPLE

One of our main objectives has been to provide a means of
translating certain SL theories into equivalent DP theories
that avoid the use of possible worlds. We now illustrate
our approach with an example from theUNIX domain that
involves both ordinary and knowledge-producing actions.

Consider the followingUNIX-style domain involving two
fluents, indir and readable, and two actions,ls and mv.
The fluentindir(f, d, s) can be understood as “filef is in
directoryd in situations.” The fluent readable(f, s) in-
dicates that “filef is readable in situations.” The action
mv(f, d′, d) is an ordinary (physical) action that has the ef-
fect of moving filef from directoryd′ to directoryd. The
actionls(d) is a knowledge-producing action that provides
information about the files in directoryd. We encode the
successor state axioms in our SL theory as follows:

indir(f, d, do(a, s)) ≡
((∃d′).a = mv(f, d′, d) ∧ d 6= d′ ∧ indir(f, d′, s))∨
indir(f, d, s) ∧ ¬((∃d′).a = mv(f, d, d′) ∧ d 6= d′),

readable(f, do(a, s)) ≡ readable(f, s),

K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s)∧
(∃d).(a = ls(d) ⊃

(∀f) (indir(f, d, s) ≡ indir(f, d, s′))∧
(∀f) (indir(f, d, s) ⊃

(readable(f, s) ≡ readable(f, s′)))).

Our successor state axiom forK encodes two types of
knowledge-producing effects forls. First, it encodes a uni-
versal effect: ls senses the filesf that are in directoryd
(i.e., allf that satisfyindir(f, d, s)). It also encodes a type
of conditional sensing effect: besides sensing the contents
of the directory,ls also senses the readabilityof the files
that are in directoryd (i.e., readable(f, s) for all f such
that indir(f, d, s) is true). Using Definitions 1 and 4, we
can translate the SL axioms into corresponding DP axioms:

Kindir(f, d, do(a, s)) ≡
((∃d′).a = mv(f, d′, d) ∧ d 6= d′ ∧Kindir(f, d′, s))∨
(a = ls(d) ∧ indir(f, d, s))∨
Kindir(f, d, s) ∧ ¬((∃d′).a = mv(f, d, d′) ∧ d 6= d′),

K¬indir(f, d, do(a, s)) ≡
((∃d′).a = mv(f, d, d′) ∧ d 6= d′)∨
(a = ls(d) ∧ ¬indir(f, d, s)) ∨K¬indir(f, d, s)∧
¬((∃d′).a = mv(f, d′, d) ∧ d 6= d′ ∧Kindir(f, d′, s)).

Kreadable(f, do(a, s)) ≡
((∃d).a = ls(d) ∧ indir(f, d, s) ∧ readable(f, s))∨
Kreadable(f, s),

K¬readable(f, do(a, s)) ≡
((∃d).a = ls(d) ∧ indir(f, d, s) ∧ ¬readable(f, s))∨
K¬readable(f, s).



In the translation, the knowledge-producing effects ofls
are distributed from theK successor state axiom into the
appropriate DP successor knowledge state axioms: the uni-
versal effect intoKindir,K¬indir and the conditional effect
intoKreadable,K¬readable. The explicit universal quan-
tification in theK axiom is now expressed implicitly in the
knowledge successor state axioms. The successor state ax-
iom for indir is converted to its knowledge fluent version
and also included in the axioms forKindir,K¬indir.

We must also ensure that we have an initial knowledge
equivalence for fluent literals. For instance, suppose noth-
ing is known initially about the location of a filekr.tex. We
have the following SL and DP axioms:

(∀d).¬KnowsSL(indir(kr.tex, d, now), S0)∧
¬KnowsSL(¬indir(kr.tex, d, now), S0),

(∀d).¬Kindir(kr.tex, d, S0) ∧ ¬K¬indir(kr.tex, d, S0).

Using the DP theory we can now reason about
knowledge change as updates to the knowledge
fluents. For example, consider the situation
S1 = do(mv(kr.tex, tmp, papers), S0). By the suc-
cessor state axiom forK¬indir, it will be the case
that K¬indir(kr.tex, tmp, S1) holds. However, it will
also be the case that¬Kindir(kr.tex, papers, S1) and
¬K¬indir(kr.tex, papers, S1) hold since initially it is not
known whetherkr.tex is in directory tmp. If we then
consider the situationS2 = do(ls(papers), S1) then either
Kindir(kr.tex, papers, S2) or K¬indir(kr.tex, papers, S2)
will hold (i.e., the agent will know whetherkr.tex
is in directory papers), depending on whether
kr.tex is actually in directory papers or not.
If Kindir(kr.tex, papers, S1) holds, then either
Kreadable(kr.tex, S1) or K¬readable(kr.tex, S1) will
also hold (i.e., the agent will know whetherkr.tex is
readable).

Moreover, our equivalence results ensure that the DP
knowledge fluents can also be understood in terms of
the SL theory. For instance, by Theorem 3 we will
have that KnowsSL(¬indir(kr.tex, tmp, now), S1) holds.
Also, both¬KnowsSL(indir(kr.tex, papers, now), S1), and
¬KnowsSL(¬indir(kr.tex, papers, now), S1) will hold.

6 DISCUSSION

In this paper we provide a means of translating certain
types of SL theories into corresponding DP theories that
avoid the use of possible worlds. As a result, reasoning
about knowledge change reduces to reasoning about or-
dinary fluent change. Withn atomic formulae, determin-
ing the truth of a formula reduces from checking2n possi-
ble worlds to checking the truth of3n fluents in the worst
case. Moreover, we can make use of standard tools such

as regression for addressing issues like the projection prob-
lem (Demolombe and Pozos Parra, 2000; Reiter, 2001a).
From a practical standpoint, we believe our approach will
lead to more efficient implementations of systems for high-
level agent control or planning. Furthermore, we believe
that the tradeoffs in expressiveness do not detract from the
advantages of modelling certain types of problems at the
knowledge level instead of the possible world level. In-
deed, recent results in knowledge-based planning (Petrick
and Bacchus, 2002) lend support to the viability of such an
approach.

Our results can also be extended in a number of ways. Even
with our current restrictions, we are still able to model pow-
erful (and interesting) types of sensing, such as actions with
universal sensory effects or a form of conditional sensing
that allows fluents to be sensed, contingent on the truth
of other fluents. We are exploring extensions to our com-
bined action theories to model more comprehensive classes
of sensing. For instance, our strong restrictions on disjunc-
tive knowledge should allow us to extend our sensing to
more general formulae. Likewise, a much more expressive
class of physical effects could be modelled in our represen-
tation by considering less restrictive forms of quantifica-
tion in successor state axioms. Such an addition, however,
will require a strengthening of our disjunctive knowledge
restriction, in particular, to include knowledge of existen-
tially quantified formulae.

We also seek to extend our knowledge equivalence results
to formulae with unrestricted quantification. This would
allow us equate knowledge of formulae containingK or
KP (i.e., introspective formulae), currently restricted by
our representation. The techniques of (Levesque, 1998),
including the normal form proposed by Levesque, could be
adapted for this purpose. We are also looking at the pos-
sibility of modelling knowledge reducing actions such as
forget (see Section 4.5) in our combined action theories to
take advantage of the flexibility of the DP approach and to
extend our correspondence with it. An interesting discus-
sion of some of the issues concerned with “forgetting” is
presented in (Lin and Reiter, 1994).

We are also able to relax some of our assumptions. We
have ignored any discussion of action preconditions, how-
ever, a simple extension to allow knowledge-based action
preconditions, for instance, could be made. We could also
drop our restriction that ordinary actions be distinct from
knowledge-producing actions, allowing actions to have
both physical and sensory effects. Finally, we are also in-
vestigating the addition of functional fluents to the repre-
sentation. These and other related issues will be discussed
further in (Petrick, 2003).
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