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Learning Hidden Unit Contributions for
Unsupervised Acoustic Model Adaptation

Pawel Swietojanski, Student Member, IEEE, Jinyu Li, Member, IEEE, and Steve Renals, Fellow, IEEE

Abstract—This work presents a broad study on the adaptation
of neural network acoustic models by means of learning hidden
unit contributions (LHUC) — a method that linearly re-combines
hidden units in a speaker- or environment-dependent manner
using small amounts of unsupervised adaptation data. We also
extend LHUC to a speaker adaptive training (SAT) framework
that leads to a more adaptable DNN acoustic model, working both
in a speaker-dependent and a speaker-independent manner, with-
out the requirements to maintain auxiliary speaker-dependent
feature extractors or to introduce significant speaker-dependent
changes to the DNN structure. Through a series of experiments
on four different speech recognition benchmarks (TED talks,
Switchboard, AMI meetings, and Aurora4) comprising 270 test
speakers, we show that LHUC in both its test-only and SAT
variants results in consistent word error rate reductions ranging
from 5% to 23% relative depending on the task and the degree
of mismatch between training and test data. In addition, we
have investigated the effect of the amount of adaptation data
per speaker, the quality of unsupervised adaptation targets,
the complementarity to other adaptation techniques, one-shot
adaptation, and an extension to adapting DNNs trained in a
sequence discriminative manner.

I. INTRODUCTION AND SUMMARY

PEECH recognition accuracies have improved substan-
S tially over the past several years through the use of (deep)
neural network (DNN) acoustic models. Hinton et al [1] report
word error rate (WER) reductions between 10-32% across a
wide variety of tasks, compared with discriminatively trained
Gaussian mixture model (GMM) based systems. These results
use neural networks as part of both hybrid DNN/HMM (hidden
Markov model) systems [1]-[5] in which the neural network
provides a scaled likelihood estimate to replace the GMM, and
as tandem or bottleneck feature systems [6], [7] in which the
neural network is used as a discriminative feature extractor for
a GMM-based system. For many tasks it has been observed
that GMM-based systems (with tandem or bottleneck features)
that have been adapted to the talker are more accurate than
unadapted hybrid DNN/HMM systems [8]-[10], indicating
that the adaptation of DNN acoustic models is an important
topic that merits investigation.
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Acoustic model adaptation [11] aims to normalise the
mismatch between training and runtime data distributions that
arises owing to the acoustic variability across speakers, as
well as other distortions introduced by the channel or acoustic
environment. In this paper we investigate unsupervised model-
based adaptation of DNN acoustic models to speakers and
to acoustic environments, using a recently introduced method
called Learning Hidden Unit Contributions (LHUC) [12]-
[14]. We present the LHUC approach both in the context
of test-only adaptation, and an extension to speaker-adaptive
training (SAT), referred to as SAT-LHUC [14]. We present an
extensive experimental analysis using four standard corpora:
TED talks [15], AMI [16], Switchboard [17] and Aurora4 [18].
These experiments include: adaptation of both cross-entropy
and sequence trained DNN acoustic models (Sec. VI-A-
VI-C); an analysis in terms of the quality of adaptation
targets, quality of adaptation data and the amount of adap-
tation data (Sec. VI-D); complementarity with feature-space
adaptation techniques based on maximum likelihood linear
regression [19] (Sec. VI-E); and application to combined
speaker and environment adaptation (Sec. VII).

II. REVIEW OF NEURAL NETWORK ACOUSTIC
ADAPTATION

Approaches to the adaptation of neural network acoustic
models can be considered as operating either in the feature
space, or in the model space, or as a hybrid approach in which
speaker-, utterance-, or environment-dependent auxiliary fea-
tures are appended to the standard acoustic features.

The dominant technique for estimating feature space trans-
forms is constrained (feature-space) MLLR, referred to as
CMLLR or fMLLR [19]. fMLLR is an adaptation method
developed for GMM-based acoustic models, in which an
affine transform of the input acoustic features is estimated
by maximising the log-likelihood that the model generates
the adaptation data based on first pass alignments. To use
fMLLR with a DNN-based system, it is first necessary to
train a complete GMM-based system, which is then used to
estimate a single input transform per speaker. The transformed
feature vectors are then used to train a DNN in a speaker
adaptive manner and another set of transforms is estimated
(using the GMM) during evaluation for unseen speakers. This
technique has been shown to be effective in reducing WER
across several different data sets, in both hybrid and tandem
approaches [1], [4], [8], [9], [20]-[23]. Similar techniques have
also been developed to operate directly on neural networks.
The linear input network (LIN) [24], [25] defines an additional



speaker-dependent layer between the input features and the
first hidden layer, and thus has a similar effect to fMLLR.
This technique has been further developed to include the use
of a tied variant of LIN in which each of the input frames is
constrained to have the same linear transform [4], [26]. LIN
and tied-LIN have been mostly used in test-only adaptation
schemes; to make use of fMLLR transforms one needs to
perform SAT training, which can usually better compensate
against variability in acoustic space.

An alternative speaker-adaptive training approach — aux-
iliary features — augments the acoustic feature vectors with
additional speaker-specific features computed for each speaker
at both training and test stages. There has been considerable
recent work exploring the use of i-vectors [27] for this purpose.
I-vectors, which can be regarded as basis vectors which span a
subspace of speaker variability, were first used for adaptation
in a GMM framework by Karafiat et al [28]. Saon et al [29]
used i-vectors to augment the input features of DNN-based
acoustic models, and showed that appending 100-dimensional
i-vectors for each speaker resulted in a 10% relative reduction
in WER on Switchboard (and a 6% reduction when the input
features had been transformed using fMLLR). Gupta et al [30]
obtained similar results, and Karanasou et al [31] presented an
approach in which the i-vectors were factorised into speaker
and environment parts. Miao et al [32] proposed to transform
i-vectors using an auxiliary DNN which produced speaker-
specific transforms of the original feature vectors, similar to
fMLLR. Other examples of auxiliary features include the use
of speaker-specific bottleneck features obtained from a speaker
separation DNN used in a distant speech recognition task [33],
the use of out-of-domain tandem features [23], and speaker
codes [34]-[36] in which a specific set of units for each
speaker is optimised. Speaker codes require speaker adaptive
(re-)training, owing to the additional connection weights be-
tween codes and hidden units.

Model-based adaptation relies on a direct update of DNN
parameters. Liao [37] investigated supervised and unsuper-
vised adaptation of different weight subsets using a few
minutes of adaptation data. On a large net (60M weights), up
to 5% relative improvement was observed for unsupervised
adaptation when all weights were adapted. Yu et al [38] have
explored the use of regularisation for adapting the weights of
a DNN, using the Kullback-Liebler (KL) divergence between
the speaker-independent (SI) and speaker-dependent (SD) out-
put distributions, resulting in a 3% relative improvement on
Switchboard. This approach was also recently used to adapt
all parameters of sequence-trained models [39]. One can also
reduce the number of speaker-specific parameters through a
different forms of factorisation [40], [41]. Ochiai et al [42]
have also explored regularised speaker adaptive training with
a speaker-dependent layer.

Directly adapting the weights of a large DNN results
in extremely large speaker-dependent parameter sets, and a
computationally intensive adaptation process. Smaller subsets
of the DNN weights may be modified, including output layer
biases [43], the bias and slope of hidden units [44] or training
the models with differentiable pooling operators [45], which
are then adapted in SD fashion. Siniscalchi et al [46] also

investigated the use of Hermite polynomial activation func-
tions, whose parameters are estimated in a speaker adaptive
fashion. One can also adapt the top layer in a Bayesian fashion
resulting in a maximum a posteriori (MAP) approach [47],
or address the sparsity of context-dependent tied-states when
few adaptation data-points are available by using multi-task
adaptation, using monophones to adapt the context-dependent
output layer [48], [49]. A similar approach, but using a
hierarchical output layer (tied-states followed by monophones)
rather than multi-task adaptation, has also been proposed [50].

III. LEARNING HIDDEN UNIT CONTRIBUTIONS (LHUC)

A neural network may be viewed as a set of adaptive basis
functions. Under certain assumptions on the family of target
functions f* (as well as on the model structure itself) the
neural network can act as an universal approximator [51]-[53].
That is, given some vector of input random variables x € R?
there exists a neural network f,,(x) : RY — R of the form

n
Fa(x) = rrap(wil x + by

k=1

(D

which can approximate f* with an arbitrarily small error €
with respect to a distance measure such as mean square error
(provided n is sufficiently large):

(%) = fa(x)ll2 < e )

In (1) ¥ : R — R is an element-wise non-linear operation
applied after an affine transformation which forms an adaptive
basis function parametrised by a set of biases by € R and
a weight vectors wj, € R®%. The target approximation may
then be constructed as a linear combination of the basis
functions, each weighted by r, € R. The formulation can
be extended to m-dimensional mappings f7(x) : R — R™
simply by splicing the models in (1) m times. The properties
also hold true when considering deeper (nested) models [51]
(Corollaries 2.6 and 2.7).

DNN training results in the hidden units learning a joint
representation of the target function and becoming specialised
and complementary to each other. Generalisation corresponds
to the learned combination of basis functions continuing to
approximate the target function when applied to unseen test
data. This interpretation motivates the idea of using LHUC-—
Learning Hidden Unit Contributions — for test-set adaptation.
In LHUC the network’s basis functions, previously estimated
using a large amount of training data, are kept fixed. Adap-
tation involves modifying the combination of hidden units in
order to minimise the adaptation loss based on the adaptation
data. Fig. 1 illustrates this approach for a regression problem,
where the adaptation is performed by linear re-combination of
basis functions changing only the r parameters from eq. (1).

The key idea of LHUC is to explicitly parametrise the
amplitudes of each hidden unit (either in fully-connected
and convolutional layers after max-pooling), using a speaker-
dependent amplitude function. Let hé’s denote the j-th hidden

unit activation (basis) in layer [, and let ré’s € R denote the
s-th speaker-dependent amplitude function:

= E(rl®) oy (whlx + ). 3)
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Fig. 1. Example illustration of how LHUC performs adaptation (best viewed in
color). Top: A “bump” model (eq. 1) with two hidden units can approximate
“bump” functions. Middle: To learn function f2 given training data f
(middle), we splice two “bump” functions together (4 hidden units, one
input/output) to learn an approximation of function f1. Bottom: LHUC
adaptation of the model optimised to f; and adapted to f2 using LHUC scaling
parameters. Image reproduced from [14].

The amplitude is modelled using a function £ : R — RT
— typically a sigmoid with range (0,2) [13], but an identity
function could be used [54]. Wé» is the jth column of the
corresponding weight matrix W', b\ denotes the bias, ¢ is the
hidden unit activation function (unless stated otherwise, this is
assumed to be sigmoid), and o denotes a Hadamard product'.
& constrains the range of the hidden unit amplitude scaling
(compare with Fig. 1) hence directly affecting the adaptation
transform capacity — this may be desirable when adapting with
potentially noisy unsupervised targets (see Sec. VI-A). LHUC
adaptation progresses by setting the speaker-specific amplitude
parameters ré’s using gradient descent with targets provided by
the adaptation data.

The idea of directly learning hidden unit amplitudes was
proposed in the context of an adaptive learning rate schedule
by Trentin [55], and was later applied to supervised speaker
adaptation by Abdel-Hamid and Jiang [12]. The approach
was extended to unsupervised adaptation, non-sigmoid non-
linearities, and large vocabulary speech recognition by Swi-
etojanski and Renals [13]. Other adaptive transfer function
methods for speaker adaptation have also been proposed [44],
[46], as have “basis” techniques [56]-[58]. However, the basis
in the latter works involved re-tuning parallel models on pre-
defined clusters (gender, speaker, environment) in a supervised
manner; the adaptation then relied on learning linear combi-
nation coefficients for those sub-models on adaptation data.

! Although the equations are given in scalar form, we have used Hadamard
product notation to emphasise the operation that would be performed once
expanded to full-rank matrices.
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Fig. 2. A 4-hidden-unit model trained to f1(a) and f1(b)) for an SI
approach (top) and an adapted representation (middle) keeping the resulting
basis functions fixed (bottom). (Best viewed in color.)

IV. SPEAKER ADAPTIVE TRAINING LHUC (SAT-LHUC)

When LHUC is applied as a test-only adaptation it assumes
that the set of speaker-independent basis functions estimated
on the training data provides a good starting point for further
tuning to the underlying data distribution of the adaptation data
(Fig. 1). However, one can derive a counter-example where this
assumption fails: the top plot of Fig. 2 shows example training
data uniformly drawn from two competing distributions f1(a)
and f1(b) where the linear recombination of the resulting
basis in the average model (Fig 2 bottom), provides a poor
approximation of adaptation data.

This motivates combining LHUC with speaker adaptive
training (SAT) [59] in which the hidden units are trained
to capture both good average representations and speaker-
specific representations, by estimating speaker-specific hidden
unit amplitudes for each training speaker. This is visualised
in Fig. 3 where, given the prior knowledge of which data-
point comes from which distribution, we estimate a set of
parallel LHUC transforms (one per distribution) as well as one
extra transform which is responsible for modelling average
properties. The top of Fig. 3 shows the same experiment as
in Fig 2 but with three LHUC transforms — one can see that
the 4-hidden-unit MLP in this scenario was able to capture
each of the underlying distributions as well as the average
aspect well, given the LHUC transform. At the same time, the
resulting basis functions (Fig 3, bottom) are a better starting
point for the adaptation (Fig. 3, middle).

The examples presented in Figs. 2 and 3 could be solved
by breaking the symmetry through rebalancing the number
of training data-points for each function, resulting in less
trivial and hence more adaptable basis functions in the average
model. However, as we will show experimentally later, similar
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Fig. 3. Learned solutions using three different SAT-LHUC transforms and
shared basis functions: LHUC-0 learns to provide a good average fit to both
distributions f1(a) and f1(b)) at the same time, while LHUC-a and LHUC-b
are tasked to fit either f1(a) or f1(b), respectively. The bottom plot shows
the resulting basis functions (activations of 4 hidden units) of the SAT-LHUC
training approach - one can observe SAT-LHUC provides a richer set of basis
function which can fit the data well on average, and can also capture some
underlying characteristics necessary to reconstruct target training data — using
different LHUC transforms, this property is also visualised in the middle plot.
(Best viewed in color.)

effects are also present in high-dimensional speech data, and
SAT-LHUC training allows more tunable canonical acoustic
models to be built, that can be better tailored to particular
speakers through adaptation.

Test-only adaptation for SAT-LHUC remains the same as
for LHUC- the set of speaker-dependent LHUC parameters
05 yue = {ré‘s} is inserted for each test speaker and their
values optimised from unsupervised adaptation data. We also
use a set of LHUC transforms 07 ;;;o, where s = 1...5,
for the training speakers which are jointly optimised with the
speaker-independent parameters fg; = {W! b'}. There is
an additional speaker-independent LHUC transform, denoted
by 69y, which allows the model to be used in speaker-
independent fashion, for example, to produce first pass adap-
tation targets. This joint learning process of hidden units with
speaker-dependent LHUC scalers is important, as it results in
a more tunable canonical acoustic model that can be better
adjusted to unseen speakers at test time, as we have illustrated
in Fig. 3 and demonstrated on adaptation tasks in the following
sections.

To perform SAT training with LHUC, we use the negative log
likelihood and maximise the posterior probability of obtaining
the correct context-dependent tied-state c¢; given observation
vector X; at time t:

Lsar(0s1,05p) = = Y _log P(ci|x}; 051507 p0) ()
teD

where s denotes the sth speaker, m; € {0, s} selects the SI

s=1

. 1
i 0s1,00r0c)

Fig. 4. Schematic of SAT-LHUC training, with a data point from speaker s =
1. Dashed line indicates an alternative route through the SI LHUC transform.

or SD LHUC transforms from 0sp € {09 p0s-- 05 guot
based on a Bernoulli distribution:
k: ~ Bernoulli(«y) 5)
if k; =0
me=4" (©6)
0 if k't =1

where v is a hyper-parameter specifying the probability the
given example is treated as SI. The SI/SD split (determined by
equations (5) and (6)) can be performed at speaker, utterance
or frame level. We further investigate this aspect in section
VI-B. The SAT-LHUC model structure is depicted in Fig 4;
notice the alternative routes of forward and backward passes
for different speakers.

Denote by 0Lsar/ 8h§’s the error back-propagated to the
Jth unit at the [th layer (eq. (3)). To back propagate through
the transform one needs to element-wise multiply it by the
transform itself, as follows:

OLsar

a»CSAT o
()wl.
J

l,s
on!

§0r). (7)

To obtain the gradient with respect to r;’s:

OLsar

l,s
3rj

l,s
&CSIAST o ag(ijs ) o wé ®)
Oh; or;
When performing mini-batch SAT training one needs to ex-
plicitly take account of the fact that different data-points may
flow through different transforms: hence the resulting gradient
for ré-’s for the sth speaker is the sum of the partial gradients
belonging to speaker s:

OLsar
5‘7‘5’5 B Z

t,mi=s

OLsar

)
l,s
On;

- 9
o oY O

or 0 in case no data-points for sth speaker in the given mini-
batch were selected. All adaptation methods studied in this
paper require first-pass decoding to obtain adaptation targets
to either estimate fMLLR transforms for unseen test speakers
or to perform DNN speaker-dependent parameter update.



TABLE I
CORPUS STATISTICS RELATED TO SAT AND ADAPTATION. IN
PARENTHESES WE GIVE THE ACTUAL NUMBER OF SPEAKERS.

Training Test
Corpora #Clusters | Time (h) || #Clusters | Time (h)
Aurora4 83 (83) 15 8 (8) 8.8
AMI 547 (155) 80 135 (36) 17.5
TED 788 (788) 143 39 (39) 9.0
SWBD | 4804 (4000) | 283 80 (80) 36

V. EXPERIMENTAL SETUPS

We experimentally investigated LHUC and SAT-LHUC us-
ing four different corpora: the TED talks corpus [15] fol-
lowing the IWSLT evaluation protocol (www.iwslt.org); the
Switchboard corpus of conversational telephone speech [17]
(Idc.upenn.edu); the AMI meetings corpus [16], [60] (corpus.
amiproject.org); and the Aurora4 corpus of read speech with
artificially corrupted acoustic environments [18] (catalog.elra.
info). Unless explicitly stated otherwise, the models share
similar structure across the tasks — DNNs with 6 hidden
layers (2,048 units in each) using a sigmoid non-linearity.
The output logistic regression layer models the distribution
of context-dependent clustered tied states [5]. The features
are presented in 11 (£5) frame long context windows. All
the adaptation experiments, unless explicitly stated otherwise,
were performed unsupervised.

Below, we briefly describe each of the above corpora and its
specific experimental configurations. The collective summary
of adaptation-related statistics for each corpora is given in
Table I. Note that we adapt to the headset or the side of
a conversation, rather than the actual speaker (unless stated
otherwise). As a result, the actual number of clusters (or
estimated transforms) during training may differ from the
number of physical speakers in the data.

TED: We carried out experiments using a corpus of public-
ity available TED talks (www.ted.com) following the IWSLT
ASR evaluation protocol [61] (iwslt.org). The training data
consisted of 143 hours of speech (813 talks) and the systems
follow our previously described recipe [9]. In this work
however, compared to our previous works [9], [13], [45], our
systems employ more accurate language models developed
for our IWSLT-2014 systems [62]: in particular, the final
reported results use a 4-gram language model estimated from
751 million words. The baseline TED acoustic models are
trained on unadapted PLP features with first and second order
time derivatives. We present results on four predefined IWSLT
test sets: dev2010, tst2010, tst2011 and tst2013
containing 8, 11, 8 and 28 ten-minute talks respectively. We
use tst2010 and/or tst2013 to perform more detailed
analyses. A collective summary of results on all TED test-
sets is reported in Sec. VI-F.

AMI: We follow the Kaldi GMM recipe described in [63]
and use acoustics from either Individual Headset Microphone
(IHM) or Single Distant Microphone (SDM). In addition to
cepstral features, we also trained a separate set of models
using 40 mel-filter-bank (FBANK) features for which fMLLR
transforms cannot be easily obtained (though not impossi-

ble [64]), and for which LHUC offers an interesting adaptation
alternative. We also evaluated the effectiveness of LHUC and
SAT-LHUC applied to convolutional networks [8], [65], [66],
trained as described in [67] but with 300 convolutional filters.
We decoded with a pruned 3-gram language model estimated
from 800k words of AMI training transcripts interpolated
with an LM trained on Fisher conversational telephone speech
transcripts (1M words).

Switchboard: We use the Kaldi GMM recipe [68], [69],
using Switchboard—1 Release 2 (LDC97S62). Our baseline un-
adapted acoustic models were trained on LDA/MLLT features.
The results are reported on the full Hub5 00 set (LDC2002S09)
to which we will refer as eval2000. The eval2000
contains two types of data, Switchboard (SWBD) — which
is better matched to the training data — and CallHome English
(CHE). Our reported results use 3-gram LMs estimated from
Switchboard and Fisher data.

Aurora4: The Aurora 4 task is a small scale, medium
vocabulary noise and channel ASR robustness task based
on the Wall Street Journal corpus [18]. We train our ASR
models using the multi-condition training set. One half of the
training utterances were recorded using a primary Sennheiser
microphone, and the other half was collected using one of 18
other secondary microphones. The multi-condition set contains
noisy utterances corrupted with one of six different noise types
(airport, babble, car, restaurant, street traffic and train station)
at 10-20 dB SNR. The standard Aurora 4 test set (eval92)
consists of 330 utterances, which are used in 14 test conditions
(4620 utterances in total). The same six noise types used
during training are used to create noisy test utterances with
SNRs ranging from 5-15dB SNR, resulting in a total of 14
test sets. These test sets are commonly grouped into 4 subsets
— clean (group A, 1 test case), noisy (group B, 6 test cases),
clean with channel distortion (group C, 1 test case) and noisy
with channel distortion (group D, 6 test cases). We decode
with the standard task’s 5k words bigram LM.

VI. RESULTS
A. LHUC hyperparameters

Our initial study concerned the hyper-parameters used with
LHUC adaptation. First, we used the TED talks to investigate
how the word error rate (WER) is affected by adapting
different layers in the model using LHUC transforms. The
results, graphed in Fig. 5 (a), indicated that adapting only
the bottom layer brings the largest drop in WER; however,
adapting more layers further improves the accuracy for both
LHUC and SAT-LHUC approaches (adapting the other way
round — starting from the top layer — is much less effective
[13]). Since obtaining the gradients for the r parameters
at each layer is inexpensive compared to the overall back-
propagation, and we want to adapt at least the bottom layer,
we apply LHUC to each layer for the rest of this work.

Fig. 5 (b) shows WERs for the number of adaptation
iterations. The results indicate that one sweep over the adap-
tation data (in this case tst2010) is sufficient and, more
importantly, the model does not overfit when adapting with
more iterations (despite the adaptation objective consistently



TABLE II
WER(%) FOR DIFFERENT RE-PARAMETRISATION FUNCTIONS FOR LHUC
TRANSFORMS ON TED 751201 0. UNADAPTED BASELINE WER IS 15.0%.

r | 2/(1+exp(—r)) | exp(r) | max(0,r)
23 | 2.8 127 | 127

improving — Fig. 5 (¢)). This suggests that it is not necessary
to carefully regularise the model — for example, by Kullback-
Leibler divergence training [38] which is usually required
when adapting the weights of one or more layers in a network.

Finally, we explored how the form of the LHUC re-
parametrisation function ¢ affects the WER and frame error
rate (FER) (Fig. 5 (c¢) and Table II). For test-only adapta-
tion only a small WER difference (0.1% absolute) is ob-
served, regardless of the large difference in frame accura-
cies. This supports our previous observation that LHUC is
robust against over-fitting. For SAT-LHUC training, a less
constrained parametrisation was found to give better WERs
for the SI model. Based on our control experiments, during
SAT-LHUC training, setting £ to be the identity function
(linear 1) gave similar results to &£(r) = max(0,7) and
&(r) = exp(r) and all were better than re-parametrising with
&(r) = 2/(1+ exp(—r)). This is expected as for full training
the last approach constrains the range of back-propagated
gradients. From now on, if not stated otherwise, we will use
&(r) = exp(r) in the remainder of this paper.

We adapt our all models with the learning rate set to 0.8
(regardless of £(-)) and the basic training of both the SI
and the SAT-LHUC models was performed with the initial
learning rate set to 0.08 and was later adjusted according to
the newbob learning scheme [70].

B. SAT-LHUC

As described in section IV, SAT-LHUC training aims to
regularise the hidden unit feature receptors so that they capture
not just the average characteristics of training data, but also
specific features of the different distributions the data was
drawn from (for example, different training speakers). As a
result, the model can be better tailored to unseen speakers by
putting more importance to those units that were useful for
training speakers with similar characteristics.

Prior to SAT-LHUC training we need to decide on how
and which data should be used to estimate speaker-dependent
and speaker-independent transforms. In this work we train
SAT-LHUC models with frame-level [14], segment-level and
speaker-level clusters. For speaker- and segment-level trans-
forms we decide which speakers or segments are going to
be treated as SI or SD prior to training. For the frame-level
SAT-LHUC approach, the SI/SD decisions are made separately
for each data-point during training. In either scenario we en-
sure that the overall SD/SI ratio determined by ~ parameter is
satisfied. The WER results for each of these three approaches
(v = 0.5) are reported in Table III. Speaker-level SAT-LHUC
training provides the highest WERs for both SI and SD
decodes. Segment-level and frame-level SAT-LHUC training
result in similar WERs for SI decodes, with a small advantage
(0.1% abs.) for the frame-level approach after adaptation.

TABLE III
WER(%) FOR DIFFERENT SAMPLING STRATEGIES AND SAT-LHUC
TRAINING (TED 15T12013)

WER (%) for sampling strategies

Model | Baseline || Per Speaker | Per Segment | Per Frame
SI 22.1 23.0 22.0 22.0
SD 19.1 18.6 18.1 18.0

Fig. 6 gives more insight on how the ratio of SI and SD
data (determined by «) affects the WER of the first-pass and
adapted systems on TED tst2013. The SI/SD split mainly
affects the first pass accuracies with a substantial increase in
SI WER when less than 30% of the data is used to estimate
the SI LHUC transforms. However, once adapted, all variants
obtained lower WERs compared to the baseline SI and LHUC
adapted model. For instance, when v = 0.5 the SAT-LHUC
systems operating in SI mode obtained similar accuracies
to the baseline SI model (22%WER); however, the adapted
SAT-LHUC model gave around 1% absolute (6% relative)
decrease in WER compared with the SI baseline test-only
adapted LHUC model. The adaptation results for speaker-level
SAT-LHUC training were worse by around 0.4% absolute
compared to segment- or frame-level SAT-LHUC training.
However, the difference, as shown experimentally in [14],
is mostly due to poorer quality adaptation targets resulting
from the corresponding first pass SAT-LHUC systems rather
than the differences in learned representations. Managing a
good trade-off between SI and SD ratios for SAT-LHUC is
nevertheless an important aspect to take into account, and
in our experience using around 50-60% of data for the
SI transform is a good task-independent setting. If different
models for SI and SD decodes are acceptable, then further
small gains in accuracy are observed [14].
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Fig. 6. WER(%) for different sampling strategies {per frame, per segment, per
speaker} for SAT-LHUC training and SI and SD decodes on TED tst2013.

We report the baseline LHUC and SAT-LHUC comparisons
on TED and AMI data in Tables IV and V, respectively
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TABLE IV
WER(%) ON TED TALKS (TsT2010 AND TsT2013).

TABLE VI
SUMMARY OF WER RESULTS OF LHUC ADAPTED SEQUENCE MODELS ON
TED ts72011 AND TST2013

System IWSLT Test set
Training [ Decoding || tst2010 [ tst2013 Model || £st2011 | £st2013
Baseline speaker-independent systems DNN-CE 12.1 22.1
ST ST 15.0 771 DNN-sMBR 10.3 20.2
SAT-LHUC SI 15.1 22.0 +LHUC 9.5 18.0
Adapted systems +MLLR 9.6 8.0
ST LHUC 127 9.1 +HLHUC 89 158
SAT-LHUC LHUC 124 18.0
TABLE V from the weight matrices due to the well-known effect of catas-
WER(%) oN AMI-THM trophic forgetting [71] in neural networks. Indeed Huang and
Model Features || dev | eval Gong [39] report no gain from adapting SE-DNN models with
DNN FBANK || 268 | 29.1 cross-entropy adaptation objective and supervised adaptation
+LHUC FBANK || 25.6 | 27.1 targets. In those experiments, all weights in the model were
+SAT-LHUC | FBANK | 249 | 26.1 updated and one needs to perform KL divergence regularised
CNN FBANK || 2521 27.1 adaptation [38] or KL regularised sequence level adaptation to
+LAUC FBANK | 24.3 ) 25.3 further improve on top of SE-DNN. It remains to be answered
+SAT-LHUC | FBANK || 239 | 24.8

(further results, including a comparison to fMLLR transforms
and on Switchboard data are in the next sections). On TED
(Table IV), SAT-LHUC models operating in SI mode (y =
0.6) have comparable WERs to SI models; however, adaptation
resulted in a WER reduction of 0.3-1.1% absolute (2-6%
relative) compared to test-only adaptation of the SI models.
Similar results were observed on the AMI data (Table V)
where for both DNN and CNN models trained on FBANK
features LHUC adaptation decreased the WER by 2% absolute
(7% relative) and SAT-LHUC training improved this result by
4% relative for DNN models. As expected, the SAT-LHUC
gain for CNNs was smaller when compared to DNN models,
since the CNN layer can learn different patterns for different
speakers which may be selected through the max-pooling
operator at run-time.

C. Sequence model adaptation

Model-based adaptation of sequence-trained DNNs (SE-
DNN) is more challenging compared to adapting networks
trained using cross-entropy: a mismatched adaptation objective
(here cross-entropy) can easily erase sequence information

if one can get similar improvements using SE-DNN adaptation
and first-pass transcripts.

In this work we adapt state-level minimum Bayes risk
(sMBR) [72], [73] sequence-trained models using LHUC and
report results on TED tst2011 and tst2013 in Table VL.
We kept all the LHUC adaptation hyper-parameters the same
as for CE models and obtained around 2% absolute (11% rel-
ative) WER reductions on tst 2013 for both SI and fMLLR
SAT adapted SE-DNN systems. Interestingly, the obtained
adaptation gain was similar to the cross-entropy models and
LHUC adaptation did not seem to disrupt the learned model’s
sequence representation.

We compared our adaptation results to the most accurate
system of the IWSLT-2013 TED transcription evaluation,
which performed both feature- and model-space speaker adap-
tation [74]. For model-space adaptation that system used
a method which adapts DNNs with a speaker-dependent
layer [42]. The results are reported in Table VII where in the
first block one can see a standard sequence-trained feature-
space adapted system build from TED and 150 hours of out-
of-domain data scoring 15.7% WER, similar to the WER of
our TED system (15.4%), which also for IWSLT utilised 100
hours of out-of-domain AMI data. The 0.3% difference could



TABLE VII
WERS FOR ADAPTED SEQUENCE-TRAINED MODELS USED IN IWSLT
EVALUATION. NOTE, THE RESULTS ARE NOT DIRECTLY COMPARABLE TO
THOSE REPORTED ON TED IN TABLE VI DUE DIFFERENT TRAINING DATA
AND FEATURE PRE-PROCESSING PIPELINES (SEE REFERENCED PAPERS
FOR SYSTEM DETAILS).

Model || tst2011 | tst2013
IWSLT2013 winner system (numbers taken from [74])
DNN (sMBR) + HUB4 + WSJ - 15.7

+ Six ROVER subsystems - 14.8
++ Automatic segmentation - 14.3
+++ LM adapt. + RNN resc. - 14.1
+++++ SAT on DNN [42] 7.7 13.5
Our system [62]

DNN (sMBR) + AMI data 9.0 15.4
+LHUC 8.5 13.3

be explained by characteristics of the out-of-domain data used
(tst2013 is characterised by a large proportion of non-native
speakers which is also typical for AMI data, hence benefits
more our baseline systems). When comparing both adaptation
approaches operating in an unsupervised manner one can
see that LHUC gives much bigger improvements in WER
compared to speaker-dependent layer, 2.1% vs. 0.6% absolute
(14% vs. 4% relative) on tst2013. This allows our single-
model system to match a considerably more sophisticated post-
processing pipeline [74], as outlined in Table VII. For less
mismatched data (£t st2011) adaptation is less important and
our system has a WER 0.8% absolute higher compared with
the more sophisticated system.

From these experiments we conclude that LHUC is an
effective way to adapt sequence models in an unsupervised
manner using a cross-entropy objective function, without the
risk of removing learned sequence information.

D. Other aspects of adaptation

Amount of adaptation data: Fig 7 shows the effect of the
amount of adaptation data on WER for LHUC and SAT-LHUC
adapted models. As little as 10s of unsupervised adaptation
data is already able to substantially decrease WERs (by 0.5—
0.8% absolute). The improvement for SAT-LHUC adaptation
compared with LHUC is considerably larger — roughly by a
factor of two up to 30s adaptation data. As the duration of
adaptation data increases the difference gets smaller; however
SAT-LHUC results in consistently lower WERs than LHUC in
all cases (including full two pass adaptation).

We also investigated supervised (oracle) adaptation by
aligning the acoustics with the reference transcriptions
(dashed lines). Given supervised adaptation targets, LHUC
and SAT-LHUC further substantially decrease WERs, with
SAT-LHUC giving a consistent advantage over LHUC.

Quality of adaptation targets: Since our approach relies
on a first-pass decoding, we investigated the extent to which
LHUC is sensitive to the quality of the adaptation targets. In
this experiment we explored the differences resulting from
different language models, and assumed that the first pass
adaptation data was generated by either an SI or a SAT-LHUC
model operating in SI mode. The main results are shown
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Fig. 7. WER(%) for unsupervised and oracle adaptation data on TED
tst2010.

in Fig 8 where the solid lines show WERs obtained with a
pruned 3-gram LM and different types of adaptation targets
resulting from re-scoring the adaptation data with stronger
LMs. One can see there is not much difference unless the
adaptation data was re-scored with the largest 4-gram LM.
This improvement diminishes in the final adapted system
after re-scoring. This suggests that the technique is not very
sensitive to the quality of adaptation targets. This trend holds
regardless of the amount of data used for adaptation (ranging
from 10s to several minutes per speaker). In related work [32]
LHUC was employed using alignments obtained from an SI-
GMM system with a 8.1% absolute higher WER than the
corresponding SI DNN, and substantial gains were obtained
over the unadapted SI DNN baseline — although the WER
reduction was considerably smaller (1% absolute) compared
to adaptation with alignments obtained with the corresponding
SI DNN.

Quality of data: We also investigated how the quality
of the acoustic data itself affects the adaptation accuracies,
keeping the other ASR components fixed. We performed an
experiment on the AMI corpus using speech captured by
individual headset microphones (IHM) and a single distant
tabletop microphone (SDM). In case of IHM we adapt to the
headset; in this experiment we assume we have speaker labels
for the SDM data®. The results are reported in Table VIII:
LHUC adaptation improves the accuracy in both experiments,
although the gain for the SDM condition is smaller; how-
ever, the SDM system is characterised by twice as large
WERs. Notice that LHUC has also been successfully applied
to channel normalisation between distant and close talking
microphones [75].

One-shot adaptation: By one-shot adaptation we mean the
scenario in which LHUC transforms were estimated once for
a held-out speaker and then used many times in a single pass

’In a real scenario for SDM data one would have to perform speaker
diarisation in order to obtain speaker labels.
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TABLE VIII
WER(%) ON AMI-THM AND AMI-SDM USING ADAPTED CNNS.

Model || dev | eval
CNN (IHM) 25.2 27.1
+LHUC 243 25.3
CNN (SDM) 49.8 54.4
+LHUC 48.8 53.1

system for this speaker. We performed those experiments on
AMI THM data, and report results on dev and eval which
contain 21 and 16 unique speakers taking part in 18 and
16 different meetings, respectively. Each speaker participates
in multiple meetings: to some degree, adapting to a speaker
in one meeting, then applying the adaptation transform to
the same speaker in the other meetings simulates a real-life
condition where it is possible to assume the speaker identity
without having to perform speaker diarisation (e.g. personal
devices). The results of this experiment (Table IX) indicate that
LHUC retains the accuracies of two-pass systems by providing
almost identical results when comparing LHUC estimated in
a full two-pass system and when the unsupervised transforms
are re-used in the LHUC.one—-shot experiment.

E. Complementarity to feature normalisation

Feature-space adaptation using fMLLR is a very reliable
current form of speaker adaptation, so it is of great interest to
explore how complementary the proposed approaches are to
SAT training with fMLLR transforms.’

We compared LHUC and SAT-LHUC to SAT-fMLLR train-
ing using TED tst2010 (Fig 9, red curves). We also com-
pared both techniques, including a comparison in terms of
the amount of data used to estimate each type of transform.

3Due to space constraints we do not make an explicit comparisons to other
techniques such as auxiliary i-vector features or speaker-codes; however, the
literature suggest that the use of i-vectors give similar [29] results when
compared to fMLLR trained models. Related recent studies also show LHUC
is at least as good as the standard use of i-vector features [32], [76].

TABLE IX
WER(%) ON AMI-IHM AND ONE-SHOT ADAPTATION

Model || dev | eval
CNN 252 | 27.1
+LHUC 243 | 25.3
+LHUC.one—shot 24.3 254

fMLLR transforms estimated on 10s of unsupervised data
result in an increase in WER compared with the Sl-trained
baseline (16.1% vs. 15.0%). When combined with LHUC or
SAT-LHUC some of this deterioration was recovered (similar
results using LHUC alone were reported in Fig 7). For more
adaptation data (30s or more) fMLLR improved the accuracies
by around 1-2% absolute and combination with LHUC (or
SAT-LHUC) resulted in an additional 1% reduction in WER
(see also Table X in the next section for further results).

We also investigated (in a rather unrealistic experiment)
how much mismatch in feature space one can normalise in
model space with LHUC. To do so, we used a SAT-fMLLR
trained model with unadapted PLP features which gave a large
increase in WER (26% vs 15%). Then, using unsupervised
adaptation targets obtained from the feature-mismatched de-
coding both LHUC and SAT-LHUC were applied. The results
(also presented in Fig. 9) indicate that a very large portion of
the WER increase can be effectively compensated in model
space — more than 8% absolute. As found before, test-only re-
parametrisation functions (exp(r) vs. 2/(1 + exp(—r))) have
negligible impact on the adaptation results, and SAT-LHUC
again provides better results.
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Fig. 9. WER(%) for LHUC, SAT-LHUC, and SAT-fMLLR (and combinations)
on TED tst2010.

F. Adaptation Summary

In this section we summarise our results, applying LHUC
and SAT-LHUC to TED, AMI, and Switchboard. Table X con-
tains results for four IWSLT test sets (dev2010, tst2010,
tst2011, and tst2013): in most scenarios SAT-LHUC



TABLE X
WER (%) ON VARIOUS TED DEVELOPMENT AND TEST SETS FROM
IWSLT12 AND IWSLT13 EVALUATIONS.

Model || dev2010 | £st2010 | tst2011 | tst2013
DNN 154 15.0 12.1 22.1
+LHUC 14.5 12.8 10.9 19.1
+SAT-LHUC 14.0 12.4 10.9 18.0
+MLLR 145 129 109 20.8
++LHUC 14.1 11.8 10.3 18.4
++SAT-LHUC 137 11.6 9.9 17.6
TABLE XI

WER(%) ON AMI-IHM

Model | Features || dev | eval
DNN FMLLR 26.2 273
+LHUC FMLLR 25.6 26.2
DNN FBANK 26.8 29.1
+LHUC FBANK 25.6 27.1
+SAT-LHUC | FBANK || 24.9 26.1

results in a lower WER than LHUC and both techniques are
complementary with SAT-fMLLR training.

Similar conclusions can be drawn from experiments on
AMI (Table XI) where LHUC and SAT-LHUC were found to
effectively adapt DNN and CNN models trained on FBANK
features. SAT-LHUC trained DNN models gave the same final
results as the more complicated SAT-fMLLR+LHUC system.

On Switchboard, in contrast to other corpora, we observed
that test-only LHUC does not match the WERs obtained
from SAT-fMLLR models (Table XII). The SI system has a
WER of 21.7% compared with 20.7% for the test-only LHUC
and 20.2% for the SAT-fMLLR system. The improvement
obtained using test-only LHUC is comparable to that obtained
with other test-only adaptation techniques, e.g. feature-space
discriminative linear regression (fDLR) [4], but neither of
these matches SAT trained feature transform models. This
could be due to the fact Switchboard data is narrow-band
and as such contains less information for discrimination
between speakers [77], especially when estimating relevant
statistics from small amounts of unsupervised adaptation data.
Another potential reason could be related to the fact that
the Switchboard part of eval2000 is characterised by a
large overlap between training and test speakers — 36 out of
40 test speakers are observed in training [78], which limits
the need for adaptation, but also enables models to learn
much more accurate speaker-characteristics during supervised
speaker adaptive training.

Adaptation using SAT-LHUC (20.3% WER) almost
matches SAT-fMLLR (20.2%). We also observe that LHUC
performs relatively better under more mismatched conditions
(the Callhome (CHE) subset of eval2000), similar to what
we observed on TED.

Finally, in Fig 10 we show the WERs obtained for 200
speakers across the TED, AMI, and SWBD test sets. We
observe that for 89% of speakers LHUC and SAT-LHUC
adaptation reduced the WER, and that SAT-LHUC gives a
consistent reduction over LHUC.

TABLE XII
WER(%) ON SWITCHBOARD EvAL2000.
eval2000

Model SWB [ CHE [ TOTAL
DNN 15.2 28.2 21.7
+LHUC 14.7 26.6 20.7
++SAT-LHUC 14.6 25.9 20.3
+fMLLR 14.2 26.2 20.2
++LHUC 14.2 25.6 19.9
++SAT-LHUC 14.1 25.6 19.9

TABLE XIII

RESULTS ON AURORA 4. MULTI-CONDITION DNN MODEL.

Model | A| B | C | D |AVG
DNN 5.1 1931931208 | 139
DNN +rg 43 193 |69 | 193 13.1
DNN +rg 50 (90 | 85| 198 | 133
DNN + rYsp JOINT 4.5 8.6 7.4 18.3 124
DNN + 5, =05 | 46 | 89 | 7.7 | 19.1 12.9
DNN + 5, =07 | 45 | 88 | 7.2 | 189 | 12.7

VII. LHUC FOR FACTORISATION

We applied LHUC to adapt to both the speaker and the
acoustic environment. If multi-condition data is available for
a speaker, then it is possible to define a set of joint speaker-
environment LHUC transforms. Alternatively, we can estimate
two set of transforms — for speaker rg and for environment r g
— and then linearly interpolate them, using hyper-parameter «,
to derive a combined transform fgg as follows:

¢ (Fsp) = a€ (k) + (1 - )¢ (rp)

Notice, that although both types of transforms are estimated in
an unsupervised manner we assume that the test environment
is known, allowing the correct environmental transform to be
selected. This adaptation to the test environment is similar to
that of Li et al [79].

We adapted baseline multi-condition trained DNN mod-
els [80] to the speaker (rg) and the environment (rg). The
rg transforms were estimated only on clean speech; similarly
the environment transforms were estimated for each scenario
(one set of rp per scenario) using multiple speakers (hence, we
have 7 different environmental transforms). To avoid learning
joint speaker-environment transforms the target speaker’s data
was removed from environment adaptation material (e.g. when
estimating transforms for the restaurant environment, we
use all restaurant data except the one for the target speaker).

The results (Table XIII) show that both standalone speaker
or environment adaptation LHUC adaptation improve over an
unadapted system (13.1%(S) and 13.3%(FE) vs. 13.9%) but,
as expected, a single transform estimated jointly on the target
speaker and environment has a lower WER (12.4%). However,
when interpolated with o = 0.7 the result of the factorised
model improves to 12.7% WER, although still higher that
joint estimation. However, adaptation data for joint speaker-
environment adaptation is not available in many scenarios,
and the factorised adaptation based on interpolation is more
flexible.

(10)
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Fig. 10. Summary of WERs(%) obtained with LHUC and SAT-LHUC adaptation techniques on test speakers of TED, SWBD and AMI corpora (results are
sorted in descending WER order for the SI system). For LHUC the average observed improvement per speaker was at 1.6% absolute (7.0% relative). The
same statistic for SAT-LHUC was at 2.3% absolute (9.7% relative). The maximum observed WER decrease per speaker was 11.4% absolute (32.7% relative)
and 16.0% absolute (50% relative) for LHUC and SAT-LHUC, respectively. WERs decreased for 89% of speakers using LHUC adaptation.

TABLE XIV
RESULTS ON AURORA 4. MULTI-CONDITION MAXOUT-CNN MODEL,
WITH AND WITHOUT ANNEALED DROPOUT (AD).

Model | A| B | C | D | AVG
MaxCNN 42 |77 |79 | 174 | 11.6
MaxCNN + YSE JOINT 3.7 6.3 5.5 14.3 9.5
AD MaxCNN 43 177 | 72| 156 | 109
AD MaxCNN + rgg joIinT | 34 | 57 | 61 | 134 | 87

We also trained more competitive models following Rennie
et al [81]: Maxout [82] CNN models were trained using
annealed dropout [83]. In this work we used alignments
obtained by aligning a corresponding multi-condition model as
ground-truth labels, rather than replicating clean alignments to
multi-condition data, in contrast to [81]: this is likely to explain
differences in the reported baselines (10.9% compared with
10.5% in [81]). The results for the joint optimisation are re-
ported in Table XIV where one can notice large improvements
with unsupervised LHUC adaptation.

Finally, we visualise the top hidden layer activations of the
annealed dropout Maxout CNN using stochastic neighbour-
hood embedding (tSNE) [84] for one utterance recorded under
clean and noisy (restaurant) conditions (Fig. 11).

VIII. CONCLUSIONS

We have presented the LHUC approach to unsupervised
adaptation of neural network acoustic models in both test-
only (LHUC) and SAT (SAT-LHUC) frameworks, evaluating
them using four standard speech recognition corpora: TED
talks as used in the IWSLT evaluations, AMI, Switchboard,
and Aurora4. Our experimental results indicate that both
LHUC and SAT-LHUC can provide significant improvements
in word error rates (5-23% relative depending on test set
and task). LHUC adaptation works well unsupervised and with
small amounts of data (as little as 10s), is complementary to
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Fig. 11. tSNE plots (best viewed in color) of the top hidden layer before
and after adaptation for an utterance recorded in (a) clean and (b) noisy
(restaurant) environment, using the annealed dropout maxout CNN. The model
can normalise the phonetic space between conditions (brown color), keeping
two different spaces for non-speech frames (blue color) under clean and noisy
conditions. The effect of LHUC is mostly visible for non-speech frames.




feature space normalisation transforms such as SAT-fMLLR,
and can be used for unsupervised adaptation of sequence-
trained DNN acoustic models using a cross-entropy adaptation
objective function. Furthermore we have demonstrated that it
can be applied in a factorised way, estimating and interpolating
separate transforms for adaptation to the acoustic environment
and speaker.
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