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Abstract

Let p be an unknown and arbitrary probability distribution over [0, 1). We con-
sider the problem of density estimation, in which a learning algorithm is given
i.i.d. draws from p and must (with high probability) output a hypothesis distri-
bution that is close to p. The main contribution of this paper is a highly efficient
density estimation algorithm for learning using a variable-width histogram, i.e., a
hypothesis distribution with a piecewise constant probability density function.
In more detail, for any k and ", we give an algorithm that makes ˜O(k/"2) draws
from p, runs in ˜O(k/"2) time, and outputs a hypothesis distribution h that is piece-
wise constant with O(k log2(1/")) pieces. With high probability the hypothesis
h satisfies d

TV

(p, h)  C · opt
k

(p) + ", where d
TV

denotes the total variation
distance (statistical distance), C is a universal constant, and opt

k

(p) is the small-
est total variation distance between p and any k-piecewise constant distribution.
The sample size and running time of our algorithm are optimal up to logarithmic
factors. The “approximation factor” C in our result is inherent in the problem,
as we prove that no algorithm with sample size bounded in terms of k and " can
achieve C < 2 regardless of what kind of hypothesis distribution it uses.

1 Introduction

Consider the following fundamental statistical task: Given independent draws from an unknown
probability distribution, what is the minimum sample size needed to obtain an accurate estimate of
the distribution? This is the question of density estimation, a classical problem in statistics with a
rich history and an extensive literature (see e.g., [BBBB72, DG85, Sil86, Sco92, DL01]). While this
broad question has mostly been studied from an information–theoretic perspective, it is an inherently
algorithmic question as well, since the ultimate goal is to describe and understand algorithms that are
both computationally and information-theoretically efficient. The need for computationally efficient
learning algorithms is only becoming more acute with the recent flood of data across the sciences;
the “gold standard” in this “big data” context is an algorithm with information-theoretically (near-)
optimal sample size and running time (near-) linear in its sample size.

In this paper we consider learning scenarios in which an algorithm is given an input data set which
is a sample of i.i.d. draws from an unknown probability distribution. It is natural to expect (and can
be easily formalized) that, if the underlying distribution of the data is inherently “complex”, it may
be hard to even approximately reconstruct the distribution. But what if the underlying distribution
is “simple” or “succinct” – can we then reconstruct the distribution to high accuracy in a computa-
tionally and sample-efficient way? In this paper we answer this question in the affirmative for the
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problem of learning “noisy” histograms, arguably one of the most basic density estimation problems
in the literature.

To motivate our results, we begin by briefly recalling the role of histograms in density estimation.
Histograms constitute “the oldest and most widely used method for density estimation” [Sil86], first
introduced by Karl Pearson in [Pea95]. Given a sample from a probability density function (pdf)
p, the method partitions the domain into a number of intervals (bins) B

1

, . . . , B
k

, and outputs the
“empirical” pdf which is constant within each bin. A k-histogram is a piecewise constant distribution
over bins B

1

, . . . , B
k

, where the probability mass of each interval B
j

, j 2 [k], equals the fraction of
observations in the interval. Thus, the goal of the “histogram method” is to approximate an unknown
pdf p by an appropriate k-histogram. It should be emphasized that the number k of bins to be used
and the “width” and location of each bin are unspecified; they are parameters of the estimation
problem and are typically selected in an ad hoc manner.

We study the following distribution learning question:

Suppose that there exists a k-histogram that provides an accurate approximation
to the unknown target distribution. Can we efficiently find such an approximation?

In this paper, we provide a fairly complete affirmative answer to this basic question. Given a bound
k on the number of intervals, we give an algorithm that uses a near-optimal sample size, runs in
near-linear time (in its sample size), and approximates the target distribution nearly as accurately as
the best k-histogram.

To formally state our main result, we will need a few definitions. We work in a standard model of
learning an unknown probability distribution from samples, essentially that of [KMR+94], which
is a natural analogue of Valiant’s well-known PAC model for learning Boolean functions [Val84] to
the unsupervised setting of learning an unknown probability distribution.1 A distribution learning
problem is defined by a class C of distributions over a domain ⌦. The algorithm has access to
independent draws from an unknown pdf p, and its goal is to output a hypothesis distribution h
that is “close” to the target distribution p. We measure the closeness between distributions using
the statistical distance or total variation distance. In the “noiseless” setting, we are promised that
p 2 C and the goal is to construct a hypothesis h such that (with high probability) the total variation
distance d

TV

(h, p) between h and p is at most ", where " > 0 is the accuracy parameter.

The more challenging “noisy” or agnostic model captures the situation of having arbitrary (or even
adversarial) noise in the data. In this setting, we do not make any assumptions about the target den-
sity p and the goal is to find a hypothesis h that is almost as accurate as the “best” approximation of p
by any distribution in C. Formally, given sample access to a (potentially arbitrary) target distribution
p and " > 0, the goal of an agnostic learning algorithm for C is to compute a hypothesis distribution
h such that d

TV

(h, p)  ↵ · optC(p) + ", where optC(p) := inf

q2C dTV

(q, p) – i.e., optC(p) is
the statistical distance between p and the closest distribution to it in C – and ↵ � 1 is a constant
(that may depend on the class C). We will call such a learning algorithm an ↵-agnostic learning
algorithm for C; when ↵ > 1 we sometimes refer to this as a semi-agnostic learning algorithm.

A distribution f over a finite interval I ✓ R is called k-flat if there exists a partition of I into k
intervals I

1

, . . . , I
k

such that the pdf f is constant within each such interval. We henceforth (without
loss of generality for densities with bounded support) restrict ourselves to the case I = [0, 1). Let
C
k

be the class of all k-flat distributions over [0, 1). For a (potentially arbitrary) distribution p over
[0, 1) we will denote by opt

k

(p) := inf

f2Ck dTV

(f, p).

In this terminology, our learning problem is exactly the problem of agnostically learning the class
of k-flat distributions. Our main positive result is a near-optimal algorithm for this problem, i.e.,
a semi-agnostic learning algorithm that has near-optimal sample size and near-linear running time.
More precisely, we prove the following:
Theorem 1 (Main). There is an algorithm A with the following property: Given k � 1, " > 0,
and sample access to a target distribution p, algorithm A uses ˜O(k/"2) independent draws from
p, runs in time ˜O(k/"2), and outputs a O(k log2(1/"))-flat hypothesis distribution h that satisfies
d
TV

(h, p)  O(opt

k

(p)) + " with probability at least 9/10.
1We remark that our model is essentially equivalent to the “minimax rate of convergence under the L1

distance” in statistics [DL01], and our results carry over to this setting as well.
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Using standard techniques, the confidence probability can be boosted to 1 � �, for any � > 0, with
a (necessary) overhead of O(log(1/�)) in the sample size and the running time.

We emphasize that the difficulty of our result lies in the fact that the “optimal” piecewise constant
decomposition of the domain is both unknown and approximate (in the sense that opt

k

(p) > 0);
and that our algorithm is both sample-optimal and runs in (near-) linear time. Even in the (signifi-
cantly easier) case that the target p 2 C

k

(i.e., opt
k

(p) = 0), and the optimal partition is explicitly
given to the algorithm, it is known that a sample of size ⌦(k/"2) is information-theoretically nec-
essary. (This lower bound can, e.g., be deduced from the standard fact that learning an unknown
discrete distribution over a k-element set to statistical distance " requires an ⌦(k/"2) size sample.)
Hence, our algorithm has provably optimal sample complexity (up to a logarithmic factor), runs in
essentially sample linear time, and is ↵-agnostic for a universal constant ↵ > 1.

It should be noted that the sample size required for our problem is well-understood; it follows from
the VC theorem (Theorem 3) that O(k/"2) draws from p are information-theoretically sufficient.
However, the theorem is non-constructive, and the “obvious” algorithm following from it has run-
ning time exponential in k and 1/". In recent work, Chan et al [CDSS14] presented an approach
employing an intricate combination of dynamic programming and linear programming which yields
a poly(k/") time algorithm for the above problem. However, the running time of the [CDSS14] al-
gorithm is ⌦(k3) even for constant values of ", making it impractical for applications. As discussed
below our algorithmic approach is significantly different from that of [CDSS14], using neither
dynamic nor linear programming.

Applications. Nonparametric density estimation for shape restricted classes has been a subject
of study in statistics since the 1950’s (see [BBBB72] for an early book on the topic and [Gre56,
Bru58, Rao69, Weg70, HP76, Gro85, Bir87] for some of the early literature), and has applications
to a range of areas including reliability theory (see [Reb05] and references therein). By using the
structural approximation results of Chan et al [CDSS13], as an immediate corollary of Theorem 1
we obtain sample optimal and near-linear time estimators for various well-studied classes of shape
restricted densities including monotone, unimodal, and multimodal densities (with unknown mode
locations), monotone hazard rate (MHR) distributions, and others (because of space constraints we
do not enumerate the exact descriptions of these classes or statements of these results here, but
instead refer the interested reader to [CDSS13]). Birgé [Bir87] obtained a sample optimal and linear
time estimator for monotone densities, but prior to our work, no linear time and sample optimal
estimator was known for any of the other classes.

Our algorithm from Theorem 1 is ↵-agnostic for a constant ↵ > 1. It is natural to ask whether a
significantly stronger accuracy guarantee is efficiently achievable; in particular, is there an agnostic
algorithm with similar running time and sample complexity and ↵ = 1? Perhaps surprisingly, we
provide a negative answer to this question. Even in the simplest nontrivial case that k = 2, and the
target distribution is defined over a discrete domain [N ] = {1, . . . , N}, any ↵-agnostic algorithm
with ↵ < 2 requires large sample size:

Theorem 2 (Lower bound, Informal statement). Any 1.99-agnostic learning algorithm for 2-flat
distributions over [N ] requires a sample of size ⌦(

p
N).

See Theorem 7 in Section 4 for a precise statement. Note that there is an exact correspondence be-
tween distributions over the discrete domain [N ] and pdf’s over [0, 1) which are piecewise constant
on each interval of the form [k/N, (k + 1)/N) for k 2 {0, 1, . . . , N � 1}. Thus, Theorem 2 implies
that no finite sample algorithm can 1.99-agnostically learn even 2-flat distributions over [0, 1). (See
Corollary 4.1 in Section 4 for a detailed statement.)

Related work. A number of techniques for density estimation have been developed in the mathemat-
ical statistics literature, including kernels and variants thereof, nearest neighbor estimators, orthog-
onal series estimators, maximum likelihood estimators (MLE), and others (see Chapter 2 of [Sil86]
for a survey of existing methods). The main focus of these methods has been on the statistical rate
of convergence, as opposed to the running time of the corresponding estimators. We remark that
the MLE does not exist for very simple classes of distributions (e.g., unimodal distributions with
an unknown mode, see e.g, [Bir97]). We note that the notion of agnostic learning is related to the
literature on model selection and oracle inequalities [MP007], however this work is of a different
flavor and is not technically related to our results.
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Histograms have also been studied extensively in various areas of computer science, including
databases and streaming [JKM+98, GKS06, CMN98, GGI+02] under various assumptions about
the input data and the precise objective. Recently, Indyk et al [ILR12] studied the problem of learn-
ing a k-flat distribution over [N ] under the L

2

norm and gave an efficient algorithm with sample
complexity O(k2 log(N)/"4). Since the L

1

distance is a stronger metric, Theorem 1 implies an
improved sample and time bound of ˜O(k/"2) for their setting.

2 Preliminaries

Throughout the paper we assume that the underlying distributions have Lebesgue measurable den-
sities. For a pdf p : [0, 1) ! R

+

and a Lebesgue measurable subset A ✓ [0, 1), i.e., A 2 L([0, 1)),
we use p(A) to denote

R
z2A

p(z). The statistical distance or total variation distance between two
densities p, q : [0, 1) ! R

+

is d
TV

(p, q) := sup

A2L([0,1))

|p(A) � q(A)|. The statistical distance
satisfies the identity d

TV

(p, q) =

1

2

kp � qk
1

where kp � qk
1

, the L
1

distance between p and q,
is
R
[0,1)

|p(x) � q(x)|dx; for convenience in the rest of the paper we work with L
1

distance. We
refer to a nonnegative function p over an interval (which need not necessarily integrate to one over
the interval) as a “sub-distribution.” Given a value  > 0, we say that a (sub-)distribution p over
[0, 1) is -well-behaved if sup

x2[0,1)

Pr
x⇠p

[x]  , i.e., no individual real value is assigned more
than  probability under p. Any probability distribution with no atoms is -well-behaved for all
 > 0. Our results apply for general distributions over [0, 1) which may have an atomic part as well
as a non-atomic part. Given m independent draws s

1

, . . . , s
m

from a distribution p over [0, 1), the
empirical distribution bp

m

over [0, 1) is the discrete distribution supported on {s
1

, . . . , s
m

} defined
as follows: for all z 2 [0, 1), Pr

x⇠bpm [x = z] = |{j 2 [m] | s
j

= z}|/m.

The VC inequality. Let p : [0, 1) ! R be a Lebesgue measurable function. Given a family of
subsets A ✓ L([0, 1)) over [0, 1), define kpkA = sup

A2A |p(A)|. The VC dimension of A is
the maximum size of a subset X ✓ [0, 1) that is shattered by A (a set X is shattered by A if for
every Y ✓ X , some A 2 A satisfies A \ X = Y ). If there is a shattered subset of size s for all
s 2

+

, then we say that the VC dimension of A is1. The well-known Vapnik-Chervonenkis (VC)
inequality states the following:

Theorem 3 (VC inequality, [DL01, p.31]). Let p : I ! R
+

be a probability density function over
I ✓ R and bp

m

be the empirical distribution obtained after drawing m points from p. Let A ✓ 2

I be
a family of subsets with VC dimension d. Then E[kp� bp

m

kA]  O(

p
d/m).

Partitioning into intervals of approximately equal mass. As a basic primitive, given access to
a sample drawn from a -well-behaved target distribution p over [0, 1), we will need to partition
[0, 1) into ⇥(1/) intervals each of which has probability ⇥() under p. There is a simple algo-
rithm, based on order statistics, which does this and has the following performance guarantee (see
Appendix A.2 of [CDSS14]):

Lemma 2.1. Given  2 (0, 1) and access to points drawn from a /64-well-behaved distribution
p over [0, 1), the procedure Approximately-Equal-Partition draws O((1/) log(1/))

points from p, runs in time ˜O(1/), and with probability at least 99/100 outputs a partition of [0, 1)
into ` = ⇥(1/) intervals such that p(I

j

) 2 [/2, 3] for all 1  j  `.

3 The algorithm and its analysis

In this section we prove our main algorithmic result, Theorem 1. Our approach has the following
high-level structure: In Section 3.1 we give an algorithm for agnostically learning a target distri-
bution p that is “nice” in two senses: (i) p is well-behaved (i.e., it does not have any heavy atomic
elements), and (ii) opt

k

(p) is bounded from above by the error parameter ". In Section 3.2 we give a
general efficient reduction showing how the second assumption can be removed, and in Section 3.3
we briefly explain how the first assumption can be removed, thus yielding Theorem 1.
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3.1 The main algorithm

In this section we give our main algorithmic result, which handles well-behaved distributions p for
which opt

k

(p) is not too large:
Theorem 4. There is an algorithm Learn-WB-small-opt-k-histogram that given as input
˜O(k/"2) i.i.d. draws from a target distribution p and a parameter " > 0, runs in time ˜O(k/"2), and
has the following performance guarantee: If (i) p is "/ log(1/")

384k

-well-behaved, and (ii) opt
k

(p)  ",
then with probability at least 19/20, it outputs an O(k · log2(1/"))-flat distribution h such that
d
TV

(p, h)  2 · opt
k

(p) + 3".

We require some notation and terminology. Let r be a distribution over [0, 1), and let P be a set of
disjoint intervals that are contained in [0, 1). We say that the P-flattening of r, denoted (r)P , is the
sub-distribution defined as

r(v) =

⇢
r(I)/|I| if v 2 I, I 2 P
0 if v does not belong to any I 2 P

Observe that if P is a partition of [0, 1), then (since r is a distribution) (r)P is a distribution.

We say that two intervals I, I 0 are consecutive if I = [a, b) and I 0 = [b, c). Given two consecutive
intervals I, I 0 contained in [0, 1) and a sub-distribution r, we use ↵

r

(I, I 0) to denote the L
1

distance
between (r){I,I

0} and (r){I[I

0}, i.e., ↵
r

(I, I 0) =
R
I[I

0 |(r){I,I
0}
(x) � (r){I[I

0}
(x)|dx. Note here

that {I [ I 0} is a set that contains one element, the interval [a, c).

3.1.1 Intuition for the algorithm

We begin with a high-level intuitive explanation of the Learn-WB-small-opt-k-histogram
algorithm. It starts in Step 1 by constructing a partition of [0, 1) into z = ⇥(k/"0) intervals
I
1

, . . . , I
z

(where "0 = ˜

⇥(")) such that p has weight ⇥("0/k) on each subinterval. In Step 2 the
algorithm draws a sample of ˜O(k/"2) points from p and uses them to define an empirical distri-
bution bp

m

. This is the only step in which points are drawn from p. For the rest of this intuitive
explanation we pretend that the weight bp(I) that the empirical distribution bp

m

assigns to each inter-
val I is actually the same as the true weight p(I) (Lemma 3.1 below shows that this is not too far
from the truth).

Before continuing with our explanation of the algorithm, let us digress briefly by imagining for a
moment that the target distribution p actually is a k-flat distribution (i.e., that opt

k

(p) = 0). In this
case there are at most k “breakpoints”, and hence at most k intervals I

j

for which ↵bpm(I
j

, I
j+1

) > 0,
so computing the ↵bpm(I

j

, I
j+1

) values would be an easy way to identify the true breakpoints (and
given these it is not difficult to construct a high-accuracy hypothesis).

In reality, we may of course have opt

k

(p) > 0; this means that if we try to use the ↵bpm(I
j

, I
j+1

)

criterion to identify “breakpoints” of the optimal k-flat distribution that is closest to p (call this k-flat
distribution q), we may sometimes be “fooled” into thinking that q has a breakpoint in an interval
I
j

where it does not (but rather the value ↵bpm(I
j

, I
j+1

) is large because of the difference between
q and p). However, recall that by assumption we have opt

k

(p)  "; this bound can be used to
show that there cannot be too many intervals I

j

for which a large value of ↵bpm(I
j

, I
j+1

) suggests
a “spurious breakpoint” (see the proof of Lemma 3.3). This is helpful, but in and of itself not
enough; since our partition I

1

, . . . , I
z

divides [0, 1) into k/"0 intervals, a naive approach based on
this would result in a (k/"0)-flat hypothesis distribution, which in turn would necessitate a sample
complexity of ˜O(k/"03), which is unacceptably high. Instead, our algorithm performs a careful
process of iteratively merging consecutive intervals for which the ↵bpm(I

j

, I
j+1

) criterion indicates
that a merge will not adversely affect the final accuracy by too much. As a result of this process
we end up with k · polylog(1/") intervals for the final hypothesis, which enables us to output a
(k · polylog(1/"0))-flat final hypothesis using ˜O(k/"02) draws from p.

In more detail, this iterative merging is carried out by the main loop of the algorithm in Step 4.
Going into the t-th iteration of the loop, the algorithm has a partition P

t�1

of [0, 1) into disjoint
sub-intervals, and a set F

t�1

✓ P
t�1

(i.e., every interval belonging to F
t�1

also belongs to P
t�1

).
Initially P

0

contains all the intervals I
1

, . . . , I
z

and F
0

is empty. Intuitively, the intervals in P
t�1

\
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F
t�1

are still being “processed”; such an interval may possibly be merged with a consecutive interval
from P

t�1

\ F
t�1

if doing so would only incur a small “cost” (see condition (iii) of Step 4(b) of the
algorithm).The intervals in F

t�1

have been “frozen” and will not be altered or used subsequently in
the algorithm.

3.1.2 The algorithm

Algorithm Learn-WB-small-opt-k-histogram:

Input: parameters k � 1, " > 0; access to i.i.d. draws from target distribution p over [0, 1)

Output: If (i) p is "/ log(1/")

384k

-well-behaved and (ii) opt
k

(p)  ", then with probability at least
99/100 the output is a distribution q such that d

TV

(p, q)  2opt

k

(p) + 3".

1. Let "0 = "/ log(1/"). Run Algorithm Approximately-Equal-Partition on
input parameter "

0

6k

to partition [0, 1) into z = ⇥(k/"0) intervals I
1

= [i
0

, i
1

), . . . ,
I
z

= [i
z�1

, i
z

), where i
0

= 0 and i
z

= 1, such that with probability at least
99/100, for each j 2 {1, . . . , z} we have p([i

j�1

, i
j

)) 2 ["0/12k, "0/2k] (assuming p
is "0/(384k)-well-behaved).

2. Draw m =

˜O(k/"02) points from p and let bp
m

be the resulting empirical distribution.
3. Set P

0

= {I
1

, I
2

, . . . I
z

}, and F
0

= ;.
4. Let s = log

2

1

"

0 . Repeat for t = 1, . . . until t = s:

(a) Initialize P
t

to ; and F
t

to F
t�1

.
(b) Without loss of generality, assume P

t�1

= {I
t�1,1

, . . . , I
t�1,zt�1} where inter-

val I
t�1,i

is to the left of I
t�1,i+1

for all i. Scan left to right across the intervals
in P

t�1

(i.e., iterate over i = 1, . . . , z
t�1

�1). If intervals I
t�1,i

, I
t�1,i+1

are (i)
both not in F

t�1

, and (ii) ↵bpm(I
t�1,i

, I
t�1,i+1

) > "0/(2k), then add both I
t�1,i

and I
t�1,i+1

into F
t

.
(c) Initialize i to 1, and repeatedly execute one of the following four (mutually ex-

clusive and exhaustive) cases until i > z
t�1

:
[Case 1] i  z

t�1

� 1 and I
t�1,i

= [a, b), I
t�1,i+1

= [b, c) are consecutive
intervals both not in F

t

. Add the merged interval I
t�1,i

[ I
t�1,i+1

= [a, c) into
P
t

. Set i i+ 2.
[Case 2] i  z

t�1

� 1 and I
t�1,i

2 F
t

. Set i i+ 1.
[Case 3] i  z

t�1

� 1, I
t�1,i

/2 F
t

and I
t�1,i+1

2 F
t

. Add I
t�1,i

into F
t

and
set i i+ 2.
[Case 4] i = z

t�1

. Add I
t�1,zt�1 into F

t

if I
t�1,zt�1 is not in F

t

and set i  
i+ 1.

(d) Set P
t

 P
t

[ F
t

.

5. Output the |P
s

|-flat hypothesis distribution (bp
m

)

Ps .

3.1.3 Analysis of the algorithm and proof of Theorem 4

It is straightforward to verify the claimed running time given Lemma 2.1, which bounds the running
time of Approximately-Equal-Partition. Indeed, we note that Step 2, which simply
draws ˜O(k/"02) points and constructs the resulting empirical distribution, dominates the overall
running time. In the rest of this subsubsection we prove correctness.

We first observe that with high probability the empirical distribution bp
m

defined in Step 2 gives a
high-accuracy estimate of the true probability of any union of consecutive intervals from I

1

, . . . , I
z

.
The following lemma from [CDSS14] follows from the standard multiplicative Chernoff bound:
Lemma 3.1 (Lemma 12, [CDSS14]). With probability 99/100 over the sample drawn in Step 2, for
every 0  a < b  z we have that |bp

m

([i
a

, i
b

))� p([i
a

, i
b

))| 
p

"0(b� a) · "0/(10k).

We henceforth assume that this 99/100-likely event indeed takes place, so the above inequality holds
for all 0  a < b  z. We use this to show that the ↵bpm(I

t�1,i

, I
t�1,i+1

) value that the algorithm
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uses in Step 4(b) is a good proxy for the actual value ↵
p

(I
t�1,i

, I
t�1,i+1

) (which of course is not
accessible to the algorithm):
Lemma 3.2. Fix 1  t  s. Then we have |↵bpm(I

t�1,i

, I
t�1,i+1

) � ↵
p

(I
t�1,i

, I
t�1,i+1

)| 
2"0/(5k).

Due to space constraints the proofs of all lemmas in this section are deferred to Appendix A.

For the rest of the analysis, let q denote a fixed k-flat distribution that is closest to p, so kp� qk
1

=

opt

k

(p). (We note that while opt

k

(p) is defined as inf

q2C kp � qk
1

, standard closure arguments
can be used to show that the infimum is actually achieved by some k-flat distribution q.) Let Q be
the partition of [0, 1) corresponding to the intervals on which q is piecewise constant. We say that a
breakpoint of Q is a value in [0, 1] that is an endpoint of one of the (at most) k intervals in Q.

The following important lemma bounds the number of intervals in the final partition P
s

:

Lemma 3.3. P
s

contains at most O(k log2(1/")) intervals.

The following definition will be useful:
Definition 5. Let P denote any partition of [0, 1). We say that partition P is "0-good for (p, q) if for
every breakpoint v of Q, the interval I in P containing v satisfies p(I)  "0/(2k).

The above definition is justified by the following lemma:
Lemma 3.4. If P is "0-good for (p, q), then kp� (p)Pk

1

 2opt

k

(p) + "0.

We are now in a position to prove the following:
Lemma 3.5. There exists a partition R of [0, 1) that is "0-good for (p, q) and satisfies

k(p)Ps � (p)Rk
1

 ".

We construct the claimed R based on P
s

,P
s�1

, . . . ,P
0

as follows: (i) If I is an interval in P
s

not
containing a breakpoint of Q, then I is also in R; (ii) If I is an interval in P

s

that does contain a
breakpoint of Q, then we further partition I into a set of intervals S in a recursive manner using
P
s�1

, . . . ,P
0

(see Appendix A.4). Finally, by putting everything together we can prove Theorem 4:

Proof of Theorem 4. By Lemma 3.4 applied to R, we have that kp� (p)Rk
1

 2opt

k

(p) + "0. By
Lemma 3.5, we have that k(p)Ps�(p)Rk

1

 "; thus the triangle inequality gives that kp�(p)Psk
1


2opt

k

(p) + 2". By Lemma 3.3 the partition P
s

contains at most O(k log2(1/")) intervals, so both
(p)Ps and (bp

m

)

Ps are O(k log2(1/"))-flat distributions. Thus, k(p)Ps � (bp
m

)

Psk
1

= k(p)Ps �
(bp

m

)

PskA` , where ` = O(k log2(1/")) and A
`

is the family of all subsets of [0, 1) that consist
of unions of up to ` intervals (which has VC dimension 2`). Consequently by the VC inequality
(Theorem 3, for a suitable choice of m =

˜O(k/"02), we have that E[k(p)Ps�(bp
m

)

Psk
1

]  4"0/100.
Markov’s inequality now gives that with probability at least 96/100, we have k(p)Ps � (bp

m

)

Psk
1


"0. Hence, with overall probability at least 19/20 (recall the 1/100 error probability incurred in
Lemma 3.1), we have that kp� (bp

m

)

Psk
1

 2opt

k

(p) + 3", and the theorem is proved.

3.2 A general reduction to the case of small opt for semi-agnostic learning

In this section we show that under mild conditions, the general problem of agnostic distribution
learning for a class C can be efficiently reduced to the special case when optC is not too large
compared with ". While the reduction is simple and generic, we have not previously encountered it
in the literature on density estimation, so we provide a proof in Appendix A.5. A precise statement
of the reduction follows:
Theorem 6. Let A be an algorithm with the following behavior: A is given as input i.i.d. points
drawn from p and a parameter " > 0. A uses m(") = ⌦(1/") draws from p, runs in time t(") =
⌦(1/"), and satisfies the following: if optC(p)  10", then with probability at least 19/20 it outputs
a hypothesis distribution q such that (i) kp�qk

1

 ↵ ·optC(p)+", where ↵ is an absolute constant,
and (ii) given any r 2 [0, 1), the value q(r) of the pdf of q at r can be efficiently computed in T time
steps.
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Then there is an algorithm A0 with the following performance guarantee: A0 is given as input i.i.d.
draws from p and a parameter " > 0.2 Algorithm A0 uses O(m("/10) + log log(1/")/"2) draws
from p, runs in time O(t("/10)) + T · ˜O(1/"2), and outputs a hypothesis distribution q0 such that
with probability at least 39/40 we have kp� q0k

1

 10(↵+ 2) · optC(p) + ".

3.3 Dealing with distributions that are not well behaved

The assumption that the target distribution p is ˜

⇥("/k)-well-behaved can be straightforwardly re-
moved by following the approach in Section 3.6 of [CDSS14]. That paper presents a simple linear-
time sampling-based procedure, using ˜O(k/") samples, that with high probability identifies all the
“heavy” elements (atoms which cause p to not be well-behaved, if any such points exist).

Our overall algorithm first runs this procedure to find the set S of “heavy” elements, and then runs
the algorithm presented above (which succeeds for well-behaved distributions, i.e., distributions
that have no “heavy” elements) using as its target distribution the conditional distribution of p over
[0, 1) \ S (let us denote this conditional distribution by p0). A straightforward analysis given in
[CDSS14] shows that (i) opt

k

(p) � opt

k

(p0), and moreover (ii) d
TV

(p, p0)  opt

k

(p). Thus, by
the triangle inequality, any hypothesis h satisfying d

TV

(h, p0)  Copt

k

(p0) + " will also satisfy
d
TV

(h, p)  (C + 1)opt

k

(p) + " as desired.

4 Lower bounds on agnostic learning

In this section we establish that ↵-agnostic learning with ↵ < 2 is information theoretically impos-
sible, thus establishing Theorem 2.

Fix any 0 < t < 1/2. We define a probability distribution D
t

over a finite set of discrete distributions
over the domain [2N ] = {1, . . . , 2N} as follows. (We assume without loss of generality below that
t is rational and that tN is an integer.) A draw of p

S1,S2,t from D
t

is obtained as follows.

1. A set S
1

⇢ [N ] is chosen uniformly at random from all subsets of [N ] that contain precisely
tN elements. For i 2 [N ], the distribution p

S1,S2,t assigns probability weight as follows:

p
S1,S2,t(i) =

1

4N
if i 2 S

1

, p
S1,S2,t(i) =

1

2N

✓
1 +

t

2(1� t)

◆
if i 2 [N ] \ S

1

.

2. A set S
2

⇢ [N + 1, . . . , 2N ] is chosen uniformly at random from all subsets of [N +

1, . . . , 2N ] that contain precisely tN elements. For i 2 [N + 1, . . . , 2N ], the distribution
p
S1,S2,t assigns probability weight as follows:

p
S1,S2,t(i) =

3

4N
if i 2 S

2

,
1

2N

✓
1� t

2(1� t)

◆
if i 2 [N ] \ S

1

.

Using a birthday paradox type argument, we show that no o(
p
N)-sample algorithm can successfully

distinguish between a distribution p
S1,S2,t ⇠ D

t

and the uniform distribution over [2N ]. We then
leverage this indistinguishability to show that any (2 � �)-semi-agnostic learning algorithm, even
for 2-flat distributions, must use a sample of size ⌦(

p
N) (see Appendix B for these proofs):

Theorem 7. Fix any � > 0 and any function f(·). There is no algorithm A with the following
property: given " > 0 and access to independent points drawn from an unknown distribution p over
[2N ], algorithm A makes o(

p
N) · f(") draws from p and with probability at least 51/100 outputs

a hypothesis distribution h over [2N ] satisfying kh� pk
1

 (2� �)opt
2

(p) + ".

As described in the Introduction, via the obvious correspondence that maps distributions over [N ]

to distributions over [0, 1), we get the following:
Corollary 4.1. Fix any � > 0 and any function f(·). There is no algorithm A with the following
property: given " > 0 and access to independent draws from an unknown distribution p over [0, 1),
algorithm A makes f(") draws from p and with probability at least 51/100 outputs a hypothesis
distribution h over [0, 1) satisfying kh� pk

1

 (2� �)opt
2

(p) + ".

2 Note that now there is no guarantee that optC(p)  "; indeed, the point here is that optC(p) may be
arbitrary.
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[Bir97] L. Birgé. Estimation of unimodal densities without smoothness assumptions. Annals of Statistics,

25(3):970–981, 1997. 1
[Bru58] H. D. Brunk. On the estimation of parameters restricted by inequalities. Ann. Math. Statist.,

29(2):pp. 437–454, 1958. 1
[CDSS13] S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Learning mixtures of structured distributions

over discrete domains. In SODA, pages 1380–1394, 2013. 1
[CDSS14] S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Efficient density estimation via piecewise

polynomial approximation. Technical Report http://arxiv.org/abs/1305.3207, conference version
in STOC, pages 604-613, 2014. 1, 2, 3.1.3, 3.1, 3.3, A.2

[CMN98] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for histogram construction: How
much is enough? In SIGMOD Conference, pages 436–447, 1998. 1

[DDS12] A. De, I. Diakonikolas, and R. Servedio. Inverse problems in approximate uniform generation.
Available at http://arxiv.org/pdf/1211.1722v1.pdf, 2012. A.5

[DG85] L. Devroye and L. Györfi. Nonparametric Density Estimation: The L1 View. John Wiley & Sons,
1985. 1

[DK14] C. Daskalakis and G. Kamath. Faster and sample near-optimal algorithms for proper learning
mixtures of gaussians. In COLT, pages 1183–1213, 2014. A.5

[DL01] L. Devroye and G. Lugosi. Combinatorial methods in density estimation. Springer Series in
Statistics, Springer, 2001. 1, 1, 3, A.5

[GGI+02] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Fast, small-space
algorithms for approximate histogram maintenance. In STOC, pages 389–398, 2002. 1

[GKS06] S. Guha, N. Koudas, and K. Shim. Approximation and streaming algorithms for histogram con-
struction problems. ACM Trans. Database Syst., 31(1):396–438, 2006. 1

[Gre56] U. Grenander. On the theory of mortality measurement. Skand. Aktuarietidskr., 39:125–153, 1956.
1

[Gro85] P. Groeneboom. Estimating a monotone density. In Proc. of the Berkeley Conference in Honor of
Jerzy Neyman and Jack Kiefer, pages 539–555, 1985. 1

[HP76] D. L. Hanson and G. Pledger. Consistency in concave regression. The Annals of Statistics, 4(6):pp.
1038–1050, 1976. 1

[ILR12] P. Indyk, R. Levi, and R. Rubinfeld. Approximating and Testing k-Histogram Distributions in
Sub-linear Time. In PODS, pages 15–22, 2012. 1

[JKM+98] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. Sevcik, and T. Suel. Optimal his-
tograms with quality guarantees. In VLDB, pages 275–286, 1998. 1

[KMR+94] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the learnability of
discrete distributions. In Proc. 26th STOC, pages 273–282, 1994. 1

[MP007] Concentration inequalities and model selection. Lecture Notes in Mathematics, 33, 2003, Saint-
Flour, Cantal, 2007. Massart, P. and Picard, J., Springer. 1

[Pea95] K. Pearson. Contributions to the mathematical theory of evolution. ii. skew variation in homoge-
neous material. Philosophical Trans. of the Royal Society of London, 186:343–414, 1895. 1

[Rao69] B.L.S. Prakasa Rao. Estimation of a unimodal density. Sankhya Ser. A, 31:23–36, 1969. 1
[Reb05] L. Reboul. Estimation of a function under shape restrictions. Applications to reliability. Ann.

Statist., 33(3):1330–1356, 2005. 1
[Sco92] D.W. Scott. Multivariate Density Estimation: Theory, Practice and Visualization. Wiley, New

York, 1992. 1
[Sil86] B. W. Silverman. Density Estimation. Chapman and Hall, London, 1986. 1, 1
[Val84] L. G. Valiant. A theory of the learnable. In Proc. 16th Annual ACM Symposium on Theory of

Computing (STOC), pages 436–445. ACM Press, 1984. 1
[Weg70] E.J. Wegman. Maximum likelihood estimation of a unimodal density. I. and II. Ann. Math. Statist.,

41:457–471, 2169–2174, 1970. 1

9


