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Exploiting Structure in Solution: Decomposing Composed ModelsJane Hillston�jeh@dcs.ed.ac.ukAbstractSince their introduction nearly ten years ago, compositionality has been reported as one of the majorattractions of stochastic process algebras. The bene�ts that compositionality provides for model con-struction are readily apparent and have been demonstrated in numerous case studies. Early research onthe compositionality of the languages focussed on how the inherent structure could be used, in conjunc-tion with equivalence relations, for model simpli�cation and aggregation. In this paper we consider howfar we have been able to take advantage of compositionality when it comes to solving the Markov processunderlying a stochastic process algebra model and outline directions for future work in order for currentresults to be fully exploited.1 IntroductionStochastic process algebras (SPA) were �rst proposed as a tool for performance and dependability modellingin 1989 [24]. At that time there was already a plethora of techniques for constructing performance modelsso the introduction of another one could have been deemed unnecessary if it were not for the fact thatSPA o�ered something new|formally de�ned compositionality. Queueing networks, which have been widelyused for performance modelling for more than thirty years, have an inherent compositionality but this isimplicit and informal. Stochastic extensions of Petri nets have a semantic model but, in general, no clearcompositional structure. In the process algebra the compositionality is explicit|provided by the combinatorsof the language|and formal|supported by the semantics and equivalence relations of the language.It was immediately clear that having this explicit structure within models o�ers bene�ts for modelconstruction:� when a system consists of interacting components, the components, and the interaction, can each bemodelled separately;� models have a clear structure and are easy to understand;� models can be constructed systematically, by either elaboration or re�nement;� the possibility of maintaining a library of model components, supporting model reusability, is intro-duced.Several case studies demonstrating these and other bene�ts have appeared in the literature [25, 28, 46, 18, 32].However, almost as quickly, it became clear that SPA models are prone to problems of state spaceexplosion: making it easy for the modeller to represent systems in detail, coupled with the inherent complexityof the systems of interest, inevitably leads to models which are extremely large; in many cases, intractablyso. In particular, coupled with the abstraction provided by the hiding combinator, compositionality allows amodeller to represent components of the system in detail, model their interaction in appropriate ways, andthen abstract from the internal details of the combined component. This is a good technique for capturingthe behaviour of systems. But note that although abstraction reduces the observability of actions, and in�Laboratory for Foundations of Computer Science, The University of Edinburgh, Kings Buildings, Edinburgh EH9 3JZ. Tel:+44 131 650 5188. 1
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......................x0xx0-SFigure 1: Schematic view of SPA modelling methodologysome languages reduces the measures that can be made on the model, it does not generally eliminate theinternal states. Thus this attractive \feature" of SPA actually exacerbates the state space explosion problem.Tackling this problem has been a major motivation of much SPA research for more than �ve years now.Of course, there are two state spaces which may be considered|the state space of the SPA model, whichis generated in the labelled transition system via the operational semantics; and the state space of theunderlying Markov process, the model to be solved (see Figure 1). Using the usual procedure for generatingthe underlying Markov process, there is an isomorphism between the two. We could try to attack the statespace explosion problem at either level; indeed, there exists a substantial body of literature considering theproblem of state space explosion at the level of the Markov process via a variety of techniques. But in orderto bene�t fully from the process algebra apparatus we choose to work at the level of the SPA.Initial e�orts concentrated on model manipulation techniques|model simpli�cation and model aggrega-tion. These techniques aim to improve, from the perspective of solution, the underlying Markov process,via manipulations of the state space at the SPA level. The most straightforward form of improvement isa reduction in the number of states. However, there are other possibilities, as we will discuss later in thepaper. At the core of these techniques are equivalence relations, but compositionality also has an importantrole to play, as we will discuss in Section 2.Unfortunately model manipulation alone still leaves us with a Markov process which must be solvednumerically as a single entity. This leads to the inevitable question of how the compositional structurewithin SPA models relates to the various decomposed solution techniques which can be applied to Markovprocesses. Trying to answer this question has occupied several researchers recently and we survey this workin detail in Section 3. In general, work in this area has common elements although the approaches adoptedby di�erent researchers concentrate on di�erent aspects of this general framework.� Characterisation of structures within the SPA model which correspond to decomposable structure inthe underlying Markov process. The aim of this work is to identify those SPA models which have astructure which is amenable to decomposed solution. In some cases this is fairly informal; in othersthe aim has been to establish syntactic rules which may be applied automatically, meaning that a toolmay analyse a given model and decide whether it falls within the decomposable class or not.� Development of revised algorithms to generate the decomposed Markov process (usually as a set ofMarkov processes) from the SPA model. Identifying the set of Markov processes susceptible to e�cientsolution is only the �rst step. In the \standard" solution algorithm there is a straightforward mappingfrom the semantic model to the state space of the underlying Markov process. If this process is to bedecomposed, more sophisticated Markov process generation algorithms are needed. Once the compositeMarkov processes are formed, in some cases known solution algorithms can be applied; in some existingtechniques can be modi�ed; in others, new approaches to decomposed solution have been suggested bythe process algebra structure. In the latter case, the new solution algorithms must also be developed.� Implementation of related algorithms. Prototype tools and implementations of the new techniques,for characterisation, Markov process generation and decomposed solution, allow them to be tested inpractice, and eventually, put to practical use. 2



Topics which have not yet received substantial attention but which are nevertheless interesting and importantareas for future research are:� Establishing how performance measures may be speci�ed in terms of the original model but calculatedas accurately as possible in terms of the decomposed model. In general, even when a naive approachto model solution is taken, based on numerical solution of the Markov process, the speci�cation ofthe performance measures to be extracted from a SPA model is not wholly satisfactory. As yet littlework has been undertaken to investigate how the compositional structure, and possibly decomposedsolution, can be exploited for the calculation of performance measures.� Investigating how often \real" systems fall within the classes of model which are susceptible to e�cientsolution. Aside from some work in [37], little experimental work has been done to establish how usefulthe techniques developed so far will be in practice. Unfortunately, in terms of direct application tomodels as produced by a modeller, the expectation is not high. However the real opportunity to harnessthe bene�ts of decomposed solution is likely to arise when the decomposition is used as a target formodel manipulation.� Combining these techniques with model manipulation procedures. As stated earlier, a smaller state spaceis not the only way in which we can think of a model being improved from the perspective of solution.Taking a model which is not obviously within a class which is susceptible to decomposed solution andmanipulating it into a form where the decomposition is apparent, can be seen as an improvement ofthe model even if the size of state space is not reduced. This is a major area for future work and willbe discussed in more detail in Section 4.2 Harnessing compositionalityAs outlined in the previous section, initial attempts to exploit the compositionality of SPA languages fo-cussed on model manipulation|improving the model in some sense before the underlying Markov process isgenerated and solved.There have been two principal approaches to model manipulation:model simpli�cation: Here an equivalence relation is used to establish behavioural or observational equiv-alence between models. The aim is to replace one model by an equivalent one which is more desirablefrom a solution point of view. Once the desirable model has replaced the original, the underlyingMarkov process is generated as usual, associating one state with each node in the labelled transitionsystem generated by the semantics. Equivalence relations which have been used in this way are weakisomorphism in PEPA [25, 13], Markovian bisimulation and weak bisimulation in TIPP [37].model aggregation: Here an equivalence relation is used to establish behavioural or observational equiv-alence between states within a model. The aim is to use an alternative mapping from the labelledtransition system, given by the semantics of the model, to the underlying Markov process. The equiv-alence relation is used to partition the nodes of the labelled transition system into equivalence classes.Then, instead of the usual one-to-one correspondence between nodes and states, one state in the un-derlying Markov process is associated with each equivalence class of nodes. The hope is that this willgenerate a Markov process with a smaller number of states. The equivalence relation which has beenused in this way is variously called strong equivalence (PEPA) [25], Markovian bisimulation (TIPP)[23], and extended Markovian bisimulation equivalence (EMPA) [3]. (For the remainder of this paperwe will refer to it as Markovian bisimulation.)In model aggregation the introduction of equivalence classes will generally reduce the number of statesin the underlying Markov process and will certainly never increase it. Thus the resulting Markov processis more amenable to solution because its size has been reduced. Similarly, in model simpli�cation reducingthe number of states is the most straightforward way to make a model more desirable from a solution pointof view; this is the approach taken in the work on weak isomorphism in PEPA. However there are otherpossibilities. For example, if the modi�ed model falls within a class of models which are known to be3



amenable to an e�cient non-standard solution procedure, the transformation will still aid solution even ifthe state space remains the same. This is the approach taken by Mertsiotakis's work on TIPP which will bediscussed in more detail in Section 3.2.Note that in general, when model manipulation is based on an equivalence relation which captures allrelevant aspects of the behaviour of a model the subsequent solution of the transformed model will be exact[25, 23, 3]. However, when a partial order relation or an equivalence relation which does not consider allaspects of represented behaviour is used, model manipulation may result in an approximation of the originalmodel. This is the case when weak bisimulation is used with respect to a subset of TIPP in Mertsiotakis'swork on throughput approximation: the weak bisimulation relation cannot capture the timing characteristicsof the models.In the context of model manipulation, the role of compositionality is perhaps secondary to the equiv-alence relations which are used to de�ne the model transformations. Nevertheless it is an important role,distinguishing the use of the model manipulation techniques in the SPA setting from their direct applica-tion at the Markov process level. Using the process algebra apparatus we are able to establish that theequivalence relations on which the transformations are based respect the structure of the model : by this wemean that the components which are explicit in the composite SPA model can be transformed individuallyand the modi�ed model is formed as the composite of the modi�ed components. This ability to use theequivalence relation in conjunction with the compositional structure relies on the equivalence relation beinga congruence.An equivalence relation is a congruence if it is preserved by the combinators of the algebra. For example,an equivalence relation, such as �=, is preserved by a combinator, such as �� , if whenever we know thatP �= P 0 it follows that for any Q, P ��L Q �= P 0 ��L Q. Once it is established that an equivalence relation is acongruence relation, it can be used in a manner complementary to the compositional structure of the model.Thus if we use the equivalence relation �= to transform model P to a more desirable form P 0, we can carryout the transformation of a composite, such as P ��L Q, component-by-component to form P 0 ��L Q0. Notethat this is not necessarily the same as (P ��L Q)0 which may be even more desirable, but if P ��L Q is toolarge to handle as a single entity, forming P 0 ��L Q0 may be \good enough". Alternatively we can apply thetransformation to the improved model P 0 ��L Q0 since (P 0 ��L Q0)0 will be equivalent to (P ��L Q)0.Establishing that an equivalence relation is a congruence is something which is done once for any partic-ular relation and set of process algebra combinators. In other words, as far as the performance modeller isconcerned it is an established feature of the language. Moreover, the consequences of this for model manip-ulation are signi�cant: as we have seen, components within the model may be manipulated, and improved,in isolation. Thus the state space of the complete model may never need to be constructed [25, 26, 23]. Thisgreatly reduces the complexity of the procedure and ultimately, may make intractable models tractable.Another approach which has been taken to exploit SPA model compositionality during Markov processgeneration, is the use of tensor algebra. Again, the objective is to tackle the problem of state space explosionbut the strategy is to alter the representation of the underlying Markov process. Instead of capturingthe Markov process as a single in�nitesimal generator matrix, using tensor algebra it is represented as anexpression of smaller matrices. Specially designed algorithms are able to take advantage of this expressionand �nd the steady state solution in terms of the expression, avoiding the construction of the completematrix. This general approach has been pioneered by Plateau and others with Stochastic Automata Networks[44, 45, 48].In [10], Buchholz identi�es the relationship between the parallel composition operator in the SPA lan-guage, MPA, and tensor algebra expressions for the underlying Markov process. He shows how an expressionfor the complete model can be constructed in terms of smaller matrices representing the individual com-ponents and the synchronisation sets in operation between them. Similarly, in [46], Rettelbach and Siegleconstruct a minimal compositional semantics for a subset of TIPP, called TIPPMS. Speci�cally, this lan-guage includes a synchronising replication operator but not parallel composition in its general form. In thiswork a matrix is de�ned for each language expression without recourse to an operational semantics andthe associated labelled transition system. This is achieved by constructing the matrix from sub-matricescorresponding to terms in the expression using matrix operators corresponding to the process algebra com-binators. In particular, the replication operator maps to the tensor sum of replicated copies of the matrixcorresponding to the replicated process. 4



We do not classify this work as decomposed solution since the underlying Markov process is still solvedas a single entity although it is represented in a decomposed form. In the following section we survey workwhich we classify as truly decomposed solution. In these cases the SPA model is used to generate not oneMarkov process but several, and these processes are solved separately.3 Decomposed solutionA variety of decompositional or structural techniques have been proposed to aid in the solution of largeMarkov processes. Recently several results have been published which show that, at least for some particularcases, there is a clear relationship between these techniques and the SPA model descriptions. In this sectionwe survey these recent results.In many cases the techniques which are applied are well-known at the Markov process level. The advantageof characterising the corresponding class of SPA models is that by \lifting" the de�nition from the stochasticprocess level to a formally de�ned high-level modelling paradigm we can facilitate the automatic detectionof these structures when they occur, thus avoiding the construction of the original Markov process.3.1 Product form solutionsIt is clear that there is great advantage to be gained if the compositional structure of a SPA model canused during model solution, i.e. if the Markov processes corresponding to the components could be solvedseparately and their solutions combined to obtain a solution, exact or approximate, of the whole Markovprocess. One class of Markov processes which are susceptible to such an e�cient solution technique are thosewhich exhibit a product form equilibrium distribution.Consider a Markov process X(t), whose state space S is of the form S = S1 � S2, i.e. each states = (s1; s2) contains two pieces of information capturing di�erent aspects of the current state. In general,these aspects may be related in many ways. When the process X(t) exhibits a product form solution, i.e.�(s) = �1(s1)� �2(s2), it indicates that these di�erent aspects of the state description are independent.Product form distributions have been widely used in the analysis of queueing networks and, due to theire�cient solution, have contributed to the popularity of queueing networks for performance analysis. Forexample, Jackson networks [33] and their generalisation, BCMP-networks [2], have been widely employed.Here the underlying Markov process is known to have a reversible or quasi-reversible structure.In contrast stochastic Petri nets (SPN) have rarely been found to be amenable to such e�cient equilibriumsolution, except when some of the expressibility of the formalism is reduced, for example by excluding resourcesharing and competition over resources in a general form. By imposing these restrictions, Henderson andTaylor develop product form over the places of the Petri net, to obtain a product form similar to thatobtained for queueing networks [21]. Lazar and Robertazzi establish a �rst step towards a product formover subnets, characterising independence between subnets which compete for resources [36]. Donatelli andSereno show how both these approaches are related to T -semiows in the Petri net [16].Work on �nding SPA models which give rise to product form solutions has drawn on the previous workon both queueing networks and SPNs, and a brief survey of this work is given in the paragraphs below.Essentially this can be seen as an investigation of when components interact and yet remain statisticallyindependent. It is clear that when a SPA model consists of completely independent sequential components,i.e. P k Q, the equilibrium distribution will have a product form:�(P k Q) = �P (P )� �Q(Q) (3.1)where �P and �Q are the steady state distributions over the local states of P and Q respectively. Howeverfew real systems consist of components which are independent in this way, and if they did the state spaceexplosion problem would not arise because it would be obvious that the components could be analysedseparately. The challenge is to �nd circumstances in which components P and Q which synchronise, P ��L Qin PEPA notation, still exhibit statistical independence.
5



ReversibilityInformally, a reversible Markov process is one which behaves identically when we observe it with time reversedas when we observe it with time owing forward. At the Markov process level there are several ways tocharacterise these processes, but we state only the local balance condition. An irreducible, stationary Markovprocess X(t) is reversible if it satis�es the detailed balance equations:�(j)q(j; k) = �(k)q(k; j) (3.2)where q(j; k) is the instantaneous transition rate from state j to state k and �(�) is the steady state probabilitydistribution.An initial study of SPA models giving rise to reversible Markov processes was presented by Bhabuta et al.in [4]. This paper largely considered the problem at the level of the underlying state space. In [30], Hillstonand Thomas, identify syntactic conditions which a SPA model must satisfy in order for the underlyingprocess to be reversible. The problem is tackled in two stages. First, a basic class of sequential components(those which do not involve any synchronisation) which give rise to reversible structures are identi�ed.Then, assuming that a known class of reversible SPA components exist, the authors investigate under whatcircumstances the conditions for reversibility will be preserved if reversible components are composed usingthe combinators of the SPA.Fundamental to the basic class of reversible sequential components is the notion of a reverse pair. A pairof action types (�;��) form a reverse pair if, in any state, any � transition leads to a state in which a ��transition leading back to the original state. This ability to \undo" any transition in the subsequent transitionseems to be fundamental to reversibility. It clear to see that this is a necessary condition for equation 3.2to be satis�ed. From this starting pointing various canonical forms for sequential reversible components aredescribed. The interesting conditions for when reversible components can be composed without losing thereversibility property relate to parallel composition when there is synchronisation or cooperation. In [30]detailed conditions, on the form of the synchronisation and the rates of the activities involved, are given.We refer the reader to that paper for more detail.Quasi-reversibilityLike reversibility, quasi-reversibility is a type of product form originating from queueing theory. It is thecondition which allows a wide class of queueing networks to be separated into their individual queues andsolved in isolation, provided tra�c equations are solved to give appropriate arrival rates at each queue. For-mally, a stationary Markov process X(t) is quasi-reversible if, for all times t0 the state X(t0) is independentof 1. the input process after t0 and2. the output process before t0.Rather than the detailed balance equations which characterised reversibility, a quasi-reversible process sat-is�es partial balance equations :�(i)Xj2S0 q(i; j) = Xj2S0 �(j)q(j; i) (3.3)for all states i and a corresponding subset of states S0. Again, more details of the de�nition of quasi-reversibility can be found in the excellent book by Kelly [35].In [19], a SPA characterisation of this class is presented. As in the work on reversibility, the approach isto �rst �nd simple instances of SPA processes which give rise to quasi-reversible structure in their underlyingMarkov process. Then, conditions are established under which these components can be composed whilstmaintaining the quasi-reversible property. Relative to the simple product form SPA case presented in equa-tion 3.1, this does allow interaction between the components P and Q. But strong restrictions are placedon the form of this interaction. Again the notion of a reverse pair is important. Not surprisingly, giventhe origins in queueing networks, the form of admissible interaction is a ow cooperation. This means thatthe \positive" half of a reverse pair in one component is carried out in synchronisation or cooperation with6



the \negative" half of a reverse pair in another. The \positive" actions correspond to the input process inthe de�nition of quasi-reversibility, while the \negative" correspond to the output process. The subsequenttheorems reported in [19] correspond to those for open and closed queueing networks reported in [35].Routing process approachSereno's work, reported in [47], derives product form criteria for SPA models based on earlier work onproduct form criteria for SPN [20, 21, 9]. The SPN results rely on de�ning a Markov chain whose statescorrespond to the transitions of the SPN, the so-called routing chain. The condition for this chain to exist isthat the set of places into which tokens are placed when a transition �res should be exactly the input placesof another transition. This condition places severe restrictions on the forms of synchronisation and resourcecontention which can be represented in the net.In [47], Sereno uses a vector representation of the state of a SPA model in the characterisation of the classof models which have a product form based on the routing process. It is assumed that some preprocessingof the model is done in order to collect information and to aggregate the model, using one of the techniquesoutlined in Section 2 of this paper. The information which is needed is the local state space of each component,and, for each action type of the model, which local states of participating components enable the action andwhich appear after it has been performed. These two sets of local states are called the pre-set and post-setof the action, respectively. The state vector representation is composed of sub-vectors, one correspondingto each de�ned sequential component; an element within the sub-vector corresponds to a local state withincorresponding component. In the representation of any particular state the value of an element within thevector records the number of instances of each local state exhibited in the current syntactical state of themodel. Storing the state in this form, together with the pre- and post-sets of actions represented as vectors,allows the e�ect of completing an action to be written down in vector form.There are several restrictions placed on the SPA models, in particular with respect to action types.An action can only have one pre-set|this implies that each action within the behaviour of a sequentialcomponent must have a distinct name. Moreover if actions of the same type occur within di�erent sequentialcomponents they must be synchronised.Sereno's approach for SPA is completely analogous to the earlier work on SPN|he de�nes a Markovchain in which the states correspond to the actions of the SPA model. This is called the routing process. Theglobal balance equations of the routing process correspond to the tra�c equations of queueing networks.If the state space of this process can be partitioned into equivalence classes of enabling actions (roughlyspeaking, one action enables another if the post-set of one is the pre-set of the other; we take the transitiveclosure of that relation), then a product form solution exists. Moreover the partition forms the basis for thedecomposition.Product form over submodelsAs mentioned earlier, in [36] Lazar and Robertazzi investigate a product form in the context of SPN|thedecomposition is carried out over subnets, which may still need to be solved by standard numerical techniquesto �nd their local steady state.In [8], Boucherie generalised their result and characterised the class of underlying Markov processes. Sucha process is formed as the product of a set of Markov processes which compete over a set of resources. Theresources are not explicitly represented but the competition has two important impacts on the state spaceand the transition rates of the product process. Firstly, if two constituent processes compete over a resourcethey cannot both enter the region of their state space representing possession of the resource at the sametime. Thus areas of the state space of the product process are eliminated. It is assumed that the productprocess will change state in only one of the constituent processes at each state change. The second e�ectof the competition over resources is to limit this still further|if two processes compete over a resource,and one of them is currently holding the resource, then the other cannot make any state change, no matterwhere it is in its state space. Thus when a constituent process holds a resource, all competing processesare blocked. Essentially the product form result holds because in each state of the product process eachconstituent process satis�es its own global balance equations. If it can make a transition it is free to act as ifit were independent; alternatively, it is completely blocked and satis�es its global balance equations trivially.7



In [27, 31], Hillston and Thomas aim to characterise this class of Markov processes in the SPA languagePEPA. The class of models that they identify consist of independent components, which give rise to theconstituent Markov processes of the underlying Markov process. These components interact indirectly bysynchronisation with resource components. Compared with the simple product form model presented inequation 3.1, the general form of these process algebra terms and the resulting product form is, schematically:� �(P k Q)��L R� = B � �P (P ��L R)� �Q(Q��L R) (3.4)where the component R represents the resource, �P and �Q are the steady state distributions over thederivatives of P ��L R and Q��L R respectively, and B is the normalising constant. The decomposition isformed by considering each of the model terms (P and Q in this case) acting in synchronisation with theresource (R) in isolation.In the SPA, a component is termed a resource if it is never free to act independently; all its activitiesmust be carried out in synchronisation with the rest of the model. All components are assumed to havecyclic behaviour. In this context a component is considered to be using or holding the resource if it hascarried out the �rst action of the resource's behaviour in synchronisation with the resource. The semanticsof the SPA ensure that the state space of the product process is suitably modi�ed, i.e. that two competingcomponents cannot hold the resource simultaneously. In order to ensure that the correct condition is alsosatis�ed by the transition rates of the product process, Hillston and Thomas place a further restriction onthe synchronisation set in operation between the resource component and the rest of the model. If a modelcomponent wishes to use the resource during one of its possible behavioural cycles, it must gain control ofthe resource at the start of the cycle and release it only at the end. This guarantees that other competingcomponents will be blocked when the component holds the resource. Although presented here informally,these conditions are de�ned as formal syntactical conditions which can be checked on the model speci�cation.As we have seen, the previous work on product form SPA models centred on components of a particularstructure which interact in a restricted way, preserving a form of independence between the components.Here the characterised models represent the competition of otherwise independent components over resources.The form of these components is not restricted; however they do place a relative restriction on the form ofthe resource and on the form of the cooperation set in operation between the resource and the rest of themodel. As suggested by equation 3.4 above, these components, together with the resource, are solved inisolation, these partial solutions subsequently being combined to give a solution of the complete model. Theoutstanding problem of this approach, however, is the calculation of the normalising constant.The models presented in [8], including those presented as stochastic Petri nets, relied on the insight ofthe modeller to detect the product form structure. Moreover, in the case of the SPN models, a non-standardstate representation had to be used in order to eliminate the resource from the model representation. TheSPA models do not have this disadvantage since the resource may (indeed, must) be represented explicitlyand subsequently eliminated from the state representation using formally de�ned procedures.Quasi-separabilityA quasi-separable Markov process does not have a product form solution in the sense of the other classes ofmodels considered in this section. However we discuss this approach here because it has more similaritieswith the product form cases than with the aggregated decomposed solutions considered in the followingsection. Unlike the case with product form processes it is not possible to �nd the exact solution of thesteady state distribution of a quasi-separable process as a product of the local steady state distributions.Nevertheless decomposed solution can lead to exact results for the local steady state distributions and manyperformance measures, and no aggregated model needs to be formed.As with reversibility and quasi-reversibility, the notion of quasi-separability is one which has been devel-oped in relation to queueing networks, in particular queueing networks in which breakdowns occur [42, 41].It is assumed that the Markov process is comprised of a number of components and that there are two per-tinent pieces of information for each component. A representation of the whole process can then be formedas a pair of vectors, each vector capturing one piece of information for each component. For a process to bequasi-separable it must be possible to analyse the behaviour of a component, say component i, given the ithelement of the �rst vector and all elements of the second, or vice versa. This allows the complete process8



to be reduced to a number of sub-models, each of which contains all the information about exactly onecomponent. In the queueing network context the two pieces of information about each queue are typicallyits operational state and the number of customers present.In [49], Thomas and Gilmore present a characterisation of SPA models which are quasi-separable. It isassumed in this characterisation that the information which must be included in each decomposed submodelis not distributed between the components but maintained by a single scheduler component. There areseveral conditions on the way in which this component may interact with the other components of themodel, which do correspond to the components of the system. When the scheduler changes its state it mustdo so by an individual action, or by a shared action in which the other participant is passive. Furthermorethe individual components have no direct interaction between them|they must be in parallel compositionwith no synchronisation. In other words, each of these components interacts only with the scheduler. Insome senses this is similar to the scenario for the product form over submodels described above, but notethat the behaviour of the scheduler and the resource, in relation to the rest of the model, are quite di�erent.The model is decomposed into a set of models, each comprising of a single component considered with thescheduler, in isolation. More details can be found in [49].In all the cases reported above, the primary focus has been on characterising SPA models which, when thesemantics of the language are applied and the labelled transition system formed, generate Markov processeswithin the given class. The aim is to develop the characterisation as a set of syntactical conditions whichcan be tested without having to apply the semantics to the whole model, although investigation of the statespace of individual components may be necessary. Moreover, these conditions should be su�ciently formalthat they can be incorporated into one of the SPA tools, such as the PEPA Workbench [17], allowing therecognition of the structure to be automated. Note that in each case, the current characterisation is known tobe incomplete in the sense that there are SPA models which give rise to Markov processes of the appropriateclass which would not be recognised by the current conditions. Extending the characterisations is on-goingwork.3.2 Aggregated decomposed solutionsIn this section we consider aggregated decomposed solutions. Here, it is not simply a case of splitting themodel into submodels or components in the style of product form. As well as a stochastic representation ofeach of the components, the decompositional solution involves a stochastic representation of the interactionsbetween these components, the aggregated model. In most cases these stochastic representations will beMarkov processes but in the work by Bohnenkamp and Haverkort on decomposition via synchronisationpoints semi-Markov processes are used [7]. This paper is also the exception in not having been inspired byearlier work on SPN. It may be the �rst example of a decomposition technique being suggested by the SPAmodel structure.Time scale decompositionThe work on time scale decomposition in SPA is based on the notion of near completely decomposableMarkov processes [14], and inspired by previous work on time scale decomposition of SPN models [5, 1]. Acharacterisation of a near completely decomposable Markov process at the matrix level is that the matrixis block structured with elements in the diagonal blocks being at least an order of magnitude larger thanelements in the o�-diagonal blocks. This implies that the model is made up of subsystems whose internalinteractions are much more frequent than the interactions between subsystems. As a consequence it can beassumed that the subsystems reach an internal equilibrium between external interactions. Thus a steady statefor each Markov process corresponding to a diagonal block of the original process is found; the interactionsare modelled by an aggregated model capturing the interactions between subsystems as represented by theo�-diagonal blocks. The aggregated model has one state for each subsystem/diagonal block. There areknown error bounds for the technique based on the magnitude of the largest element in an o�-diagonalblock.The initial classi�cation of SPA models susceptible to time scale decomposition [29], relied on a classi�ca-tion of the sequential components within a model into fast or slow ; this in turn was based on a classi�cation9



of all actions relative to some threshold rate. A component is considered to be fast if it enables fast or passiveactions; a component is considered to be slow if it enables only slow actions. Only models comprised of fastand slow components were considered. The state of such a process may be represented as the vector of localstates for each sequential component: this is called the state vector. So a model P which is comprised ofk fast and ` slow components may be represented as: P � (F1; : : : ; Fk; S1; : : : ; S`). Then each decomposedcomponent corresponds to a set of state vectors which exhibitthe same derivatives in all the slow components:A[S1;:::;S`] � f(F 01; : : : ; F 0k; S01; : : : ; S 0̀) j S01 � S1; : : : ; S 0̀ � S`gThe elements of this set are found using the semantics of the language when the original model is consideredin composition over a synchronisation set which blocks all the slow actions. Finding other decomposedcomponents, and constructing the aggregated model, is achieved by removing this blocking synchronisationand allowing the current submodel to evolve just one step by a slow action. Note that the aggregated modeldoes not have a representation at the SPA level, only as a Markov process.Later work by Mertsiotakis [38, 37], tackles the problem of hybrid components|these are sequentialcomponents which cannot be classi�ed as either fast or slow since they enable both fast and slow actions.Rather than split a hybrid component into a fast and slow component, it was decided to extract the slowbehaviour of the hybrid into a separate shadow component, making the original component passive withrespect to these actions. In [37] it is shown that such a transformation preserves the behaviour of the hybridcomponent, and, since the equivalence relation is a congruence, the behaviour of the complete model. Oncethe transformation has been completed the original procedure can be applied.Decision free processesMertsiotakis and Silva's work on decomposition of a class of SPA models, termed decision free processes, isbased on earlier work on throughput approximation in a class of SPN called marked graphs [34]. Essentially,the idea is to partition the model into components, typically two in the marked graph case. Decomposedmodels are then formed in which one component is fully represented while the other is reduced to a minimalform, usually consisting of a single transition. In addition to these two decomposed models there is also anextremely simple aggregated model, consisting of the two minimal forms linked appropriately. An iterativescheme is then used to �nd a solution to the model, the inuence of one component on the other beingrepresented in the decomposed model by the rate of the transition in the minimal form.The decision free process approach to throughput approximation [39, 40, 37] relies on the decompositionof a decision free process into three components, one of which acts as an intermediary between the other two.This component is distinguished as the interface. Note that the components do not necessarily correspondto sequential components (c.f. time scale decomposition). The decomposed Markov processes are generatedfrom the consideration of the two possible (component, interface) pairs. In each case a reduced representationof the interface is used, corresponding to this component's view. In addition a basic skeleton is formed whichcorresponds to a greatly reduced version of the complete model, in which only the interface actions arecarried out. Once this decomposition has been carried out, the algorithm follows the same general form asoutlined above for the marked graph case.Rather than a characterisation to recognise models of this form, this work relies on models havingbeen constructed in the speci�ed way. The class of decision free processes is de�ned via a reduced syntax,disallowing the choice combinator, +, and placing restrictions on where action types may appear withincomponents. In particular any action may be performed only once within any cycle of behaviour. Thiscondition removes the possibility of implicit choice, when the action is to be carried out in synchronisationwith another component. It is recognised that even working within this class the necessary structure, with aninterface component acting as intermediary between two other components, may not be immediately apparentwithin the model. Therefore a series of possible transformations are de�ned, each of which is shown to bebased on an equivalence relation which preserves some aspects of the model's behaviour. However, note thatfor two of the transformations the equivalence considers only functional, not temporal, behaviour. Thus itguarantees, for example, that no deadlock is introduced into the model but tells us nothing about the timingcharacteristics of the new model in relation to the old one.10



Near-independenceIn [12], Ciardo and Trivedi present a decomposition technique for stochastic reward nets (a version ofSPN with immediate transitions, inhibitor arcs and rewards) based on the notion of near-independence.Components are considered to be near-independent if they operate in parallel and only rarely interact. Thebasic idea is that near-independent components can be solved independently in conjunction with a graphmodel which represents the (limited) dependencies that do still exist between them. Several examples ofcanonical near-independent net structures are given in the paper, but in general recognising such structuresin any given model, and whether necessary conditions on the graph model are met, rely on the expertise ofthe modeller.Components are solved in isolation, as if they were independent, but their inuence upon each other isapproximated by the rate at which synchronisation can take place. This is estimated using the dependencygraph. In general, �xed point iteration may be necessary in order to achieve a satisfactory solution of thecomplete model, depending on the structure of the graph.In [6], Bohnenkamp and Haverkort suggest that this technique could be adapted for SPA models. Thispaper does not progress this directly in terms of an SPA language but does report some interesting experi-ments which investigate the feasibility of the approach. In the proposed approach the dependence betweencomponents is recognised as the actions on which they synchronise (synchronisation between delays is notallowed). In e�ect the behaviours of the near-independent components are serialised, �rst capturing thework which can be done until blocking occurs due to a synchronisation point and then the work necessaryto achieve the synchronisation.Decomposition via synchronisation pointsIn [7], Bohnenkamp and Haverkort develop the ideas from [6] in a slightly di�erent direction. The approachstill centres on the role of synchronisations between parallel components, but now the aim is to reformulatethe underlying Markov process in terms of a set of semi-Markov processes. These semi-Markov processesare solved via their embedded Markov chains and evaluations of the distribution of the times betweensynchronisation points. Working within a SPA framework, they consider a class of models in which thereis a �xed number of sequential processes composed in parallel, assuming each composition is subject to thesame set of global synchronisation actions. Within this class of models their solution technique is exact withrespect to throughputs and local steady state probabilities.In the original SPA languages a delay is associated with each action representing its duration, resultingin a labelled transition system in which arcs are labelled by two types of information: action type andrate information. All the work already described in this paper is based on such languages. However,Bohnenkamp and Haverkort use a language in which actions and time delays are treated separately. Severalrecent SPA languages [22, 15] take this approach, which is also found in the timed process algebras. Herethe transition system has two distinct transition relations: one representing instantaneous actions and theother representing the passing of (stochastic) time.From the point of view of the work reported in [7], this simpli�es somewhat as only actions are allowed tosynchronise, and the authors do not need to be concerned about the meaning of synchronisation between twodelays. The sequential components of the model are treated as the decomposed processes of the underlyingMarkov process. The aggregated model, the embedded Markov chain of a semi-Markov process, is constructedcompositionally: a tensor expression is formed from the embedded Markov chain of the semi-Markov processcorresponding to the synchronisation process of each sequential process algebra component. This EMC mayhave several disjoint components but the initial state of the process is used to ensure that only the \live"component is considered. The reader is referred to [7] for more details.4 Conclusions and future workClearly, decomposed solution of SPA models is possible. Moreover, it can be achieved by exploiting structureswhich are introduced at the process algebra level, to elucidate structures in the underlying Markov process.Of course, the class of models which can be recognised and handled by each of the current techniques,11



reported in the previous section, is somewhat limited. However the diversity of these techniques means thattogether they represent a substantial class of models.Although the current approaches to decomposed solution di�er, there are some common points fromwhich we can perhaps learn:� In general, interaction between components is the major barrier to exact decomposition (i.e. productform solution), although it holds the key to some of the aggregated decompositional techniques. Thereis scope to review the combinators for interactions which are o�ered by the SPA languages. Perhaps itwould be possible to de�ne a combinator which o�ered a restricted form of interaction which maintainedstatistical independence, such as the ow cooperation for quasi-reversible PEPA models.� In the characterisations which have been carried out some conditions seem to appear with regularity:for example, the condition that an action type may occur only once in the de�nition of a sequentialcomponent. The implications of imposing such conditions on all models should be investigated.� Inspiration from older paradigms, especially SPN is clearly important, as can be witnessed by thenumber of approaches reported in this paper which have developed via that route. However, it shouldbe made clear that in most cases this is inspiration and not translation|if the technique is to workwell within the new framework it should take full advantage of the process algebra apparatus. In somecases, such as time scale decomposition [29, 37], the resulting algorithm is actually simpler because wecan take advantage of the SPA semantics.There is much work still to be done. An interesting project would be to compare the published casestudies with the published classes of \well-behaved" models. Although this would not advance the theory itwould give us some impression of how useful it is. Unfortunately the overlap between case studies and char-acterisations is likely not to be as substantial as we would like. This however leads on to another promisingdirection for future work: the development of model manipulation techniques which are complementary tothe decomposed solution techniques.The basic idea is that once a model has been constructed, with tool assistance, the modeller will be ableto massage her model into one of the classes of models corresponding to a decomposed solution technique.In the most straightforward case this would be based on one of the existing equivalence relations, usingrewriting rules. For any SPA model there are often several equivalent ways in which it can be expressed.The characterisations often assume one particular form which may not be readily apparent. For example, aPEPA model (P ��K R)��L Q may be equivalent to (P k Q) ��K[LR. In the �rst form it is not a candidate forthe product form over submodels while in the second form it is.In general, however, such non-intrusive manipulations will not be su�cient. The model will not belongto a class with e�cient solution techniques. The aim will be to transform it into a similar model whichis; moreover to carry out that transformation formally. Building on the formal semantics of the SPA, thismanipulation will be carried out subject to established partial order relations which guarantee that for theperformance measure of interest, the new model performs at least as well as the original model. Thus thenew model can be regarded as a bound for the original model. Note that we anticipate that such partialorder relations will have to be performance measure speci�c. Also, that these will result in a procedure forwhich there is tool-assistance but not necessarily automation.Developing such partial order relations is a major undertaking. There is some previous work from timedprocess algebras[43] and from SPN[11] which we can draw upon but largely this is uncharted territory. Therewards, however, will be considerable.It is the prerogative of an invited paper to pose at least as many questions as it answers and in thearea of e�cient solution of the Markov processes underlying SPA models there are many questions still tobe answered. However the work that has been completed so far demonstrates that automated decomposedsolution of SPA models is feasible. As such, it o�ers a solution, albeit partial, to the state space explosionproblem. Moreover, in several cases this solution can already be applied transparently to the modeller [37].This represents a signi�cant step forwards for performance modelling using process algebras.
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