

Edinburgh Research Explorer

Challenges and Trends in Probabilistic Programming

Citation for published version:
Barthe, G, Gordon, AD, Katoen, J-P & McIver, A (eds) 2015, 'Challenges and Trends in Probabilistic
Programming: (Dagstuhl Seminar 15181)' Dagstuhl Reports, vol. 5, no. 4, pp. 123-141. DOI:
10.4230/DagRep.5.4.123

Digital Object Identifier (DOI):
10.4230/DagRep.5.4.123

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Dagstuhl Reports

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/DagRep.5.4.123
https://www.research.ed.ac.uk/portal/en/publications/challenges-and-trends-in-probabilistic-programming(a9590713-bfde-43c0-828e-17250884fd9a).html

Report from Dagstuhl Seminar 15181

Challenges and Trends in Probabilistic Programming
Edited by
Gilles Barthe1, Andrew D. Gordon2, Joost-Pieter Katoen3, and
Annabelle McIver4

1 IMDEA Software – Madrid, ES, gjbarthe@gmail.com
2 Microsoft Research UK – Cambridge, GB, adg@microsoft.com
3 RWTH Aachen University, DE, katoen@cs.rwth-aachen.de
4 Macquarie University – Sydney, AU, annabelle.mciver@mq.edu.au

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15181 “Challenges
and Trends in Probabilistic Programming”. Probabilistic programming is at the heart of ma-
chine learning for describing distribution functions; Bayesian inference is pivotal in their analysis.
Probabilistic programs are used in security for describing both cryptographic constructions (such
as randomised encryption) and security experiments. In addition, probabilistic models are an
active research topic in quantitative information now. Quantum programs are inherently probab-
ilistic due to the random outcomes of quantum measurements. Finally, there is a rapidly growing
interest in program analysis of probabilistic programs, whether it be using model checking, the-
orem proving, static analysis, or similar. Dagstuhl Seminar 15181 brought researchers from these
various research communities together so as to exploit synergies and realize cross-fertilisation.

Seminar April 27–30, 2015 – http://www.dagstuhl.de/15181
1998 ACM Subject Classification D.1 Programming Techniques, D.2.4 Software/Program Veri-

fication, D.3 Programming Languages, D.4.6 Security and Protection, F. Theory of Compu-
tation, G.1.6 Optimization, G.3 Probability and Statistics, I.2.2 Automatic Programming,
I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Bayesian networks, differential privacy, machine learning, probabilistic
programs, security, semantics, static analysis, verification

Digital Object Identifier 10.4230/DagRep.5.4.123
Edited in cooperation with Benjamin Kaminski

1 Executive Summary

Gilles Barthe
Andrew D. Gordon
Joost-Pieter Katoen
Annabelle McIver

License Creative Commons BY 3.0 Unported license
© Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver

Probabilistic programming languages
Probabilistic programs are programs, written in languages like C, Java, LISP, or ML, with
two added constructs: (1) the ability to draw values at random from probability distributions,
and (2) the ability to condition values of variables in a program through observations. A
variety of probabilistic programming languages have been defined such as Church, Infer.NET,

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Challenges and Trends in Probabilistic Programming, Dagstuhl Reports, Vol. 5, Issue 4, pp. 123–141
Editors: Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/15181
http://dx.doi.org/10.4230/DagRep.5.4.123
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

124 15181 – Challenges and Trends in Probabilistic Programming

and IBAL. Church is based on the Lisp model of the lambda calculus, containing pure Lisp
as its deterministic subset, whereas Infer.NET is a Microsoft developed language akin to C#
and compiles probabilistic programs into inference code1. Probabilistic programs can be used
for modelling complex phenomena from biology and social sciences. By doing so, we get the
benefits of programming languages (rigorous semantics, execution, testing and verification) to
these problem domains. More than a decade ago, McIver and Morgan defined a probabilistic
programming language in the style of Dijkstra’s guarded command language, referred to as
pGCL. Besides the usual language constructs in Dijkstra’s GCL such as non-deterministic choice,
it features a probabilistic choice where the probability distribution may be parametric. For
instance, the assignment x += 1 [p] skip increments the variable x by one with probability
p, and keeps the value of x unchanged with probability 1−p, where p is an unknown real
value from the range [0, 1]. Quantum programming languages such as qGCL and a quantum
extension of C++ are also related, as their operational semantics is typically a probabilistic
model so as to model the effect of measurements on the quantum state.

The importance of probabilistic programming
The applications of probabilistic programs mainly lie in four domains: (1) machine learning,
(2) security, (3) randomised algorithms, and – though to a somewhat lesser extent – (4)
quantum computing. Whereas the application in the field of randomised algorithms is evident,
let us briefly describe the importance for the other three fields.

Machine learning

A Bayesian generative model consists of a prior distribution over some parameters, together
with a sampling distribution (or likelihood) that predicts outputs of the model given its
inputs and parameters. Bayesian inference in machine learning consists of training such a
model to infer the posterior distribution of the parameters and hence to make predictions.
In the probabilistic programming approach to Bayesian inference, the user simply writes
the prior and sampling distributions as probabilistic programs, and relies on a compiler to
generate code to perform inference and make predictions. Such compilers often operate by
considering the program as defining a probabilistic graphical model. Graphical models were
pioneered by Judea Pearl and others, and are extensively described in the comprehensive
text by Koller and Friedman (2009). They are widely used in statistics and machine
learning, with diverse application areas including speech recognition, computer vision, biology,
and reliability analysis. Probabilistic graphical models allow specification of dependences
between random variables via generative models, as well as conditioning of random variables
using phenomena or data observed in the real world. A variety of inference algorithms
have been developed to analyse and query such models, e.g., Gibbs sampling methods,
Metropolis-Hastings and belief propagation. The probabilistic programming approach has
seen growing interest within machine learning over the last 10 years and it is believed – see
http://probabilistic-programming.org/wiki/Home – that this approach within AI has the
potential to fundamentally change the way that community understands, designs, builds,
tests and deploys probabilistic systems.

1 For academic use, it is free to use: http://research.microsoft.com/infernet.

http://probabilistic-programming.org/wiki/Home
http://research.microsoft.com/infernet

Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver 125

Security

Ever since Goldwasser and Micali – recipients of the ACM Turing Award in 2013 – introduced
probabilistic encryption, probability has played a central role in cryptography: virtually
all cryptographic algorithms are randomized, and have probabilistic security guarantees.
Similarly, perturbing outputs with probabilistic noise is a standard tool for achieving privacy
in computations; for instance, differential privacy achieves privacy-preserving data-mining
using probabilistic noise. Cryptographic algorithms and differentially private algorithms are
implemented as probabilistic programs; more singularly, one common approach for reasoning
about these algorithms is using the code-based game-based approach, proposed by Bellare
and Rogaway, in which not only the algorithms, but also their security properties and the
hardness properties upon which their security relies, are expressed as probabilistic programs
, and can be verified using (a relational variant of) Hoare logic. This code-based approach is
key to recent developments in verified cryptography. Quantitative information flow is another
important field in security where probabilistic programs and models play an important role.
Here, the key question is to obtain quantitative statements about the leakage of certain
information from a given program.

Quantum computing

Quantum programs are used to describe quantum algorithms and typically are quantum
extensions of classical while-programs. Whereas in classical computation, we use a type
to denote the domain of a variable, in quantum computation, a type is the state space
of a quantum system denoted by some quantum variable. The state space of a quantum
variable is the Hilbert space denoted by its type. According to a basic postulate of quantum
mechanics, the unique way to acquire information about a quantum system is to measure
it. Therefore, the essential ingredient in a quantum program is the ability to perform
measurements of quantum registers, i.e., finite sequences of distinct quantum variables. The
state space of a quantum register is the tensor product of the state spaces of its quantum
variables. In executing the statement measure M[q]; S, quantum measurement M will
first be performed on quantum register q, and then a sub-program S will be selected to
be executed next according to the outcome of the measurement. The essential difference
between a measurement statement and a classical conditional statement is that the state
of program variables is changed after performing the measurement. As the outcome of a
measurement is probabilistic, quantum programs are thus inherently probabilistic.

Program analysis

On the other hand, there is a recent rapidly growing trend in research on probabilistic
programs which is more in line with traditional programming languages. This focuses on
aspects such as efficient compilation, static analysis, program transformations, and program
verification. To mention a few, Cousot et al. recently extended the framework of abstract
interpretation to probabilistic programs (2012), Gordon et al. introduced Tabular, a new
probabilistic programming language (2014), Di Pierro et al. apply probabilistic static analysis
(2010), Rajamani, Gordon et al. have used symbolic execution to perform Bayesian reasoning
on probabilistic programs with loops (2013), Katoen, McIver et al. have developed invariant
synthesis technique for linear probabilistic programs (2010), and Geldenhuys et al. considered
probabilistic symbolic execution (2012).

15181

126 15181 – Challenges and Trends in Probabilistic Programming

Achievements of this seminar
The objective of the seminar was a to bring together researchers from four separate (but
related) communities to learn from each other, with the expectation that a better under-
standing between these communities would open up new opportunities for research and
collaboration.

Participants attending the seminar represented all four themes of the original proposal:
machine learning, quantitative security, (probabilistic) program analysis and quantum com-
puting. The programme consisted of both tutorials and presentations on any topic within
these themes. The tutorials provided a common ground for discussion, and the presentations
gave insight into the current state of an area, and summarised the challenges that still remain.
The tutorial topics were determined by consulting the participants prior to the seminar by
means of a questionnaire.

Although the programme was primarily constructed around the tutorials and standard-
length presentations (each around 30 minutes), the organisers made sure that time was
always available for short, impromptu talks (sometimes of only 5 minutes) where participants
were able to outline a relevant challenge problem or to draw attention to a new research
direction or connection that had become apparent during the meeting.

This open forum for exploring links between the communities has led to the following
specific achievements:
1. An increased understanding between the disciplines, especially between program verifica-

tion and probabilistic programming.
2. A demonstration that the mathematical models for reasoning about machine learning

algorithms and quantitative security are very similar, but that their objectives are very
different. This close relationship at a foundational level suggests theoretical methods to
tackle the important challenge of understanding privacy in a data mining context.

3. Evidence that probabilistic programming, analysis and verification of probabilistic pro-
grams, can have a broad impact in the design of emerging infrastructures, such as
software-defined networks.

The feedback by the participants was very positive, and it was encouraged to organise a
workshop or similar event in the future to foster the communication between the different
communities, in particular between program verification and probabilistic programming.

We were aware of many new conversations between researchers inspired by the formal
talks as well as the mealtime discussions. Already at least one paper (see below) with content
inspired by the meeting is accepted for publication, and we are aware of several other new
lines of work.

Acknowledgement

The organisers thank Benjamin Kaminski for his support in compiling this report and in
several organisational issues.

References
1 A. Ścibior, Z. Ghahramani and A. D. Gordon. Practical Probabilistic Programming with

Monads. ACM SIGPLAN Haskell Symposium 2015, Vancouver, Canada, 3–4 September
2015.

Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver 127

2 Table of Contents

Executive Summary
Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver . . . 123

Overview of Talks
Proving Differential Privacy in Hoare Logic
Gilles Barthe . 129

Reasoning about Approximate and Uncertain Computation
Michael Carbin . 129

Equivalence of (Higher-Order) Probabilistic Programs
Ugo Dal Lago . 129

A Topological Quantum Calculus
Alessandra Di Pierro . 130

Dyna: A Circuit Programming Language for Statistical AI
Jason Eisner . 131

Probabilistic Termination
Luis Maria Ferrer Fioriti . 131

Computability of conditioning: approximate inference and conditional independence
Cameron Freer . 132

Tabular: A Schema-Driven Probabilistic Programming Language
Andrew D. Gordon . 132

Conditioning in Probabilistic Programming
Friedrich Gretz . 133

On the Hardness of Almost-Sure Termination
Benjamin Kaminski . 133

Distinguishing Hidden Markov Chains
Stefan Kiefer . 133

Tutorial on Probabilistic Programming Languages
Angelika Kimmig . 134

Rational Protection against Timing Attacks
Boris Köpf . 134

Probabilistic Programming for Security
Piotr Mardziel . 135

Three Tokens Suffice
Joel Ouaknine . 135

The Design and Implementation of Figaro
Avi Pfeffer . 136

Dual Abstractions of Hidden Markov Models: A Monty Hell Puzzle
Tahiry Rabehaja . 136

Types and Modules for Probabilistic Programming Languages
Norman Ramsey . 137

15181

128 15181 – Challenges and Trends in Probabilistic Programming

Conditioning by Lazy Partial Evaluation
Chung-chieh Shan . 137

NetKAT – A Formal System for the Verification of Networks
Alexandra Silva . 137

WOLFE: Practical Machine Learning Using Probabilistic Programming and Op-
timization
Sameer Singh . 138

Recent Results in Quantitative Information Flow
Geoffrey Smith . 138

Tutorial on Probabilistic Programming in Machine Learning
Frank Wood . 139

Quantum Programming: From Superposition of Data to Superposition of Programs
Mingsheng Ying . 139

Counterexample-Guided Polynomial Quantitative Loop Invariants by Lagrange
Interpolation
Lijun Zhang . 140

Participants . 141

Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver 129

3 Overview of Talks

3.1 Proving Differential Privacy in Hoare Logic
Gilles Barthe (IMDEA Software, Spain)

License Creative Commons BY 3.0 Unported license
© Gilles Barthe

Main reference Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, César Kunz, Pierre-Yves
Strub: Proving Differential Privacy in Hoare Logic. CSF 2014

Differential privacy is a rigorous privacy policy which provides individuals strong guarantees
in the context of privacy-preserving data mining. Thanks to its rigorous definition, differential
privacy is amenable to formal verification. Using a notion of (ε, δ)-lifting which generalizes
the standard definition of lifting used in probabilistic process algebra, we develop a relational
program logic to prove that probabilistic computations are differentially private.

3.2 Reasoning about Approximate and Uncertain Computation
Michael Carbin (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Michael Carbin

Joint work of Carbin, Michael; Misailovic, Sasa; Rinard, Martin
Main reference M. Carbin, S. Misailovic, M.C. Rinard, “Verifying Quantitative Reliability for Programs that

Execute on Unreliable Hardware,” in Proc. of 28th ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA/SPLASH’13), pp. 33–52, ACM,
2013.

URL http://dx.doi.org/10.1145/2509136.2509546

Many modern applications implement large-scale computations (e.g., machine learning, big
data analytics, and financial analysis) in which there is a natural trade-off between the quality
of the results that the computation produces and the performance and cost of executing the
computation.

Exploiting this fact, researchers have recently developed a variety of new mechanisms
that automatically change the structure and execution of an application to enable it to meet
its performance requirements. Examples of these mechanisms include skipping portions of
the application’s computation and executing the application on fast and/or energy-efficient
unreliable hardware systems whose operations may silently produce incorrect results.

I present a program verification and analysis system, Rely, whose novel verification
approach makes it possible to verify the safety, security, and accuracy of the approximate
applications that these mechanisms produce. Rely also provides a program analysis that
makes it possible to verify the probability that an application executed on unreliable hardware
produces the same result as if it were executed on reliable hardware.

3.3 Equivalence of (Higher-Order) Probabilistic Programs
Ugo Dal Lago (University of Bologna, IT)

License Creative Commons BY 3.0 Unported license
© Ugo Dal Lago

We introduce program equivalence in the context of higher-order probabilistic functional
programs. The canonical notion of equivalence, namely context equivalence, has the nice

15181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Gilles Barthe, Marco Gaboardi, Emilio Jes�s Gallego Arias, Justin Hsu, C�sar Kunz, Pierre-Yves Strub: Proving Differential Privacy in Hoare Logic. CSF 2014
Gilles Barthe, Marco Gaboardi, Emilio Jes�s Gallego Arias, Justin Hsu, C�sar Kunz, Pierre-Yves Strub: Proving Differential Privacy in Hoare Logic. CSF 2014
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2509136.2509546
http://dx.doi.org/10.1145/2509136.2509546
http://dx.doi.org/10.1145/2509136.2509546
http://dx.doi.org/10.1145/2509136.2509546
http://dx.doi.org/10.1145/2509136.2509546
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

130 15181 – Challenges and Trends in Probabilistic Programming

property of prescribing equivalent programs to behave the same in any context, but has the
obvious drawback of being based on a universal quantification over all contexts. We show
how the problem can be overcome by going through a variation of Abramsky’s applicative
bisimulation. We finally hints at the role of equivalence in cryptographic proof.

3.4 A Topological Quantum Calculus
Alessandra Di Pierro (University of Verona, IT)

License Creative Commons BY 3.0 Unported license
© Alessandra Di Pierro

The work by Richard Feynman in the 1980s, and by Seth Lloyd and many others starting in
the 1990s showed how a wide range of realistic quantum systems can be simulated by using
quantum circuits, i.e. a quantum computer. In 1989, Edward Witten established a connection
between problem solving and quantum field theories; he discovered a strong analogy between
the Jones polynomial (an important knot invariant in topology) and Topological Quantum
Field Theory (TQFT). Some years later, this discovery inspired a new form of quantum
computation, called Topological Quantum Computation (TQC). A topological quantum
computer would be computationally as powerful as a standard one. Nevertheless, Witten’s
discovery of the connection between TQFT and the value of the Jones polynomial at particular
roots of unity implicitly suggested an efficient quantum algorithm for the approximation
of the Jones polynomial, a problem which classically belongs to the P# complexity class
and for which the standard quantum computing algorithmic techniques currently known do
not provide any speed-up. Topological Quantum Computation is based on the existence of
two-dimensional particles called anyons, whose statistics substantially differ from what we can
observe in a three-dimensional quantum system. The behaviour of anyons can be described
via the statistics observed after exchanging one particle with another. This exchange rotates
the system’s quantum state and produces non trivial phases. The idea of using such systems
for computing is due to Alexei Kitaev and dates back to 1997. Since then, TQC has been
mainly studied in the realm of physics and mathematics, while only recently the algorithmic
and complexity aspects of this computational paradigm has been investigated in the area of
computer science. Following this line, in this work we revisit TQC from the perspective of
computability theory and investigate the question of computational universality for TQC,
namely the definition of a anyonic quantum computer that is able to simulate any program
on any other anyonic quantum computer. To this aim we introduce a formal calculus for
TQC whose definition uses a language which is neither physical nor categorical but rather
logical (if we look at the calculus as an equational theory) or programming-oriented (by
considering it as an abstract model of computation). We adopt a formalism similar to
the lambda-calculus that we call anyonic lambda-calculus. This calculus is essentially a
re-writing system consisting of two transformation rules, namely variable substitution (as
in the classical lambda-calculus) and a second one representing the braiding of anyons.
The function definition scheme is exactly the same as Church’s lambda-calculus. However,
differently from the latter, the anyonic lambda-calculus represents an anyonic computer, that
is a quantum system of anyons where computation occurs by braiding a fixed number of
anyons among them for some fixed time. This is an approximation process that allows us
to achieve approximate results, i.e. results that are not exact although their precision can
be fixed arbitrarily high. For this calculus we provide an operational semantics in the form

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver 131

of a rewriting system and we show a property of confluence which takes into account the
approximate nature of topological quantum computation.

References
1 Pachos, J. K., Introduction to Topological Quantum Computation, Cambridge U.P., 2012.
2 Wang, Z., Topological Quantum Computation, American Mathematical Soc., 2010.
3 Witten, E., Topological quantum field theory, Commun. Math. Phys 117 (1988), pp. 353–

386.
4 Aharonov, D., V. Jones and Z. Landau, A polynomial quantum algorithm for approximating

the jones polynomial, in: Proceedings of STOC’06 (2006), pp. 427–436.
5 Barendregt, H. P., The Lambda Calculus, Studies in Logic and the Foundations of Math-

ematics 103, North-Holland, 1991, revised edition.
6 Freedman, M. H., A. Kitaev, M. J. Larsen and Z. Wang, Topological Quantum Computa-

tion, Physical Review Letters 40 (2001), p. 120402.
7 Jones, V. F. R., A polynomial invariant for knots via Von Neumann algebras, Bull. Amer-

ican Mathematical Society (New Series) 12 (1985), pp. 103–111.
8 Kitaev, A., Fault-tolerant quantum computation by anyons, Annals of Physics 303 (1997).

3.5 Dyna: A Circuit Programming Language for Statistical AI
Jason Eisner (Johns Hopkins University, US)

License Creative Commons BY 3.0 Unported license
© Jason Eisner

The Dyna programming language is intended to provide an declarative abstraction layer for
building systems in ML and AI. A Dyna program specifies a generalized circuit that defines
named quantities from other named quantities, using weighted Horn clauses with aggregation.
The Dyna runtime must efficiently find a fixpoint of this circuit and maintain it under
changes to the inputs. The language is an extension of logic programming with non-boolean
values, evaluation, aggregation, types, and modularity. We illustrate how Dyna supports
design patterns in AI, allowing extremely concise specifications of various algorithms, and
we discuss the implementation decisions that are left to the system. Finally, we also sketch
a preliminary design for P-Dyna, a probabilistic modeling language that can be embedded
within Dyna and is based on augmenting Dyna’s circuits with randomness.

3.6 Probabilistic Termination
Luis Maria Ferrer Fioriti (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Luis Maria Ferrer Fioriti

Joint work of Ferrer Fioriti, Luis María; Hermanns, Holger
Main reference L.M. Ferrer Fioriti, H. Hermanns, “Probabilistic Termination: Soundness, Completeness, and

Compositionality,” in Proc. of the 42nd Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL’15), pp. 489–501, ACM, 2015.

URL http://dx.doi.org/10.1145/2676726.2677001

We propose a framework to prove almost sure termination for probabilistic programs with
real valued variables. It is based on ranking supermartingales, a notion analogous to ranking
functions on nonprobabilistic programs. The framework is proven sound and complete for a

15181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://doi.acm.org/10.1145/2676726.2677001
http://doi.acm.org/10.1145/2676726.2677001
http://doi.acm.org/10.1145/2676726.2677001
http://dx.doi.org/10.1145/2676726.2677001

132 15181 – Challenges and Trends in Probabilistic Programming

meaningful class of programs involving randomization and bounded nondeterminism. We
complement this foundational insight by a practical proof methodology, based on sound
conditions that enable compositional reasoning and are amenable to a direct implementation
using modern theorem provers. This is integrated in a small dependent type system,
to overcome the problem that lexicographic ranking functions fail when combined with
randomization. Among others, this compositional methodology enables the verification of
probabilistic programs outside the complete class that admits ranking supermartingales.

3.7 Computability of conditioning: approximate inference and
conditional independence

Cameron Freer (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Cameron Freer

Joint work of Ackerman, Nathanael; Avigad, Jeremy; Freer, Cameron; Roy, Daniel; Rute, Jason
Main reference N.L. Ackerman, C. E. Freer, D.M. Roy, “On the computability of conditional probability,”

arXiv:1005.3014v2 [math.LO], 2011.
URL http://arxiv.org/abs/1005.3014v2

Here we address three key questions at the theoretical and algorithmic foundations of
probabilistic programming – and probabilistic modeling more generally – that can be
answered using tools from probability theory, computability and complexity theory, and non-
parametric Bayesian statistics. Which Bayesian inference problems can be automated, and
which cannot? Can probabilistic programming languages represent the stochastic processes
at the core of state-of-the-art nonparametric Bayesian models? And if not, can we construct
useful approximations?

3.8 Tabular: A Schema-Driven Probabilistic Programming Language
Andrew D. Gordon (Microsoft Research UK – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Andrew D. Gordon

Joint work of Gordon, Andrew D.; Graepel, Thore; Rolland, Nicolas; Russo, Claudio; Borgstrom, Johannes; John
Guiver, John

Main reference A.D. Gordon, T. Graepel, N. Rolland, C. Russo, J. Borgstrom, J. Guiver, “Tabular: A
Schema-driven Probabilistic Programming Language,” in Proc. of the 41st ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL’14), pp. 321-334,
ACM, 2014.

URL http://dx.doi.org/10.1145/2535838.2535850

We propose a new kind of probabilistic programming language for machine learning. We
write programs simply by annotating existing relational schemas with probabilistic model
expressions. We describe a detailed design of our language, Tabular, complete with formal
semantics and type system. A rich series of examples illustrates the expressiveness of Tabular.
We report an implementation, and show evidence of the succinctness of our notation relative
to current best practice. Finally, we describe and verify a transformation of Tabular schemas
so as to predict missing values in a concrete database. The ability to query for missing values
provides a uniform interface to a wide variety of tasks, including classification, clustering,
recommendation, and ranking.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1005.3014v2
http://arxiv.org/abs/1005.3014v2
http://arxiv.org/abs/1005.3014v2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2535838.2535850
http://dx.doi.org/10.1145/2535838.2535850
http://dx.doi.org/10.1145/2535838.2535850
http://dx.doi.org/10.1145/2535838.2535850
http://dx.doi.org/10.1145/2535838.2535850

Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver 133

3.9 Conditioning in Probabilistic Programming
Friedrich Gretz (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
© Friedrich Gretz

Joint work of Gretz, Friedrich; Jansen, Nils; Kaminski, Benjamin Lucien; Katoen, Joost-Pieter; McIver,
Annabelle; Olmedo, Federico

Main reference F. Gretz, N. Jansen, B. L. Kaminski, J.-P. Katoen, A. McIver, F. Olmedo, “Conditioning in
Probabilistic Programming,” arXiv:1504.00198v1 [cs.PL] , 2015.

URL http://arxiv.org/abs/1504.00198v1

In practical applications of probabilistic programming such as machine learning often the goal
is to infer parameters of a probabilistic model from observed data. The used inference methods
are entirely based on sampling and statistical methods. At the same time probabilistic
programs in the realm of formal methods have a formal semantics that precisely captures
the distribution generated by a program. First formal analysis techniques for such programs
are emerging. Thus the question is if we can bring together two areas and apply formal
methods to machine learning. Our work goes in this direction by introducing observations in
a minimalistic core probabilistic language called pGCL. We are able to extend two existing
equivalent semantics to conditional probability distributions. Our semantics are sound
even for programs that do not necessarily terminate with probability one. We explain how
non-determinism in the model can be handled in the operational semantics and why it is
problematic for denotational semantics. We conclude with applications of our semantics. For
one, we show how in principle we can reason about properties of probabilistic programs with
observations. Second, we show how our semantics enable us to formally proof the validity of
program transformations which are useful in practise.

3.10 On the Hardness of Almost-Sure Termination
Benjamin Kaminski (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
© Benjamin Kaminski

Joint work of Kaminski, Benjamin; Katoen, Joost-Pieter

We study the computational hardness of computing expected outcomes and deciding (univer-
sal) (positive) almost–sure termination of probabilistic programs. It is shown that computing
lower and upper bounds of expected outcomes is Σ0

1– and Σ0
2–complete, respectively. Deciding

(universal) almost–sure termination as well as deciding whether the expected outcome of a
program equals a given rational value is shown to be Π0

2–complete. Finally, it is shown that
deciding (universal) positive almost–sure termination is Σ0

2–complete (Π0
3–complete).

3.11 Distinguishing Hidden Markov Chains
Stefan Kiefer (University of Oxford, UK)

License Creative Commons BY 3.0 Unported license
© Stefan Kiefer

Hidden Markov Chains (HMCs) are commonly used mathematical models of probabilistic
systems. They are specified by a Markov Chain, capturing the probabilistic behavior of a

15181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1504.00198v1
http://arxiv.org/abs/1504.00198v1
http://arxiv.org/abs/1504.00198v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

134 15181 – Challenges and Trends in Probabilistic Programming

system, and an output function specifying the outputs generated from each of its states.
One of the important problems associated with HMCs is the problem of identification of the
source of outputs generated by one of a number of known HMCs. We report on progress on
this problem.

3.12 Tutorial on Probabilistic Programming Languages
Angelika Kimmig (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Angelika Kimmig

Probabilistic programming languages combine programming languages with probabilistic
primitives as well as general purpose probabilistic inference techniques. They thus facilitate
constructing and querying complex probabilistic models. This tutorial provides a gentle
introduction to the field through a number of core probabilistic programming concepts. It
focuses on probabilistic logic programming (PLP), but also connects to related areas such as
statistical relational learning and probabilistic databases. The tutorial illustrates the concepts
through examples, discusses the key ideas underlying inference in PLP, and touches upon
parameter learning, language extensions, and applications in areas such as bioinformatics,
object tracking and information processing.

An interactive tutorial can be found at https://dtai.cs.kuleuven.be/problog/.

References
1 Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming concepts. Machine

Learning, 2015. http://dx.doi.org/10.1007/s10994-015-5494-z

3.13 Rational Protection against Timing Attacks
Boris Köpf (IMDEA Software – Madrid, ES)

License Creative Commons BY 3.0 Unported license
© Boris Köpf

Joint work of Doychev, Goran; Köpf, Boris
Main reference G. Doychev, B. Köpf, “Rational Protection against Timing Attacks,” in Proc. of the IEEE 28th

Computer Security Foundations Symp. (CSF’15), pp. 526–536, IEEE, 2015; revised version
available from author’s webpage.

URL http://dx.doi.org/10.1109/CSF.2015.39
URL http://software.imdea.org/~bkoepf/papers/csf15.pdf

Timing attacks can effectively recover keys from cryptosystems. While they can be defeated
using constant-time implementations, this defensive approach comes at the price of a perform-
ance penalty. One is hence faced with the problem of striking a balance between performance
and security against timing attacks.

This talk presents a game-theoretic approach to the problem, for the case of cryptosystems
based on discrete logarithms. Namely, we identify the optimal countermeasure configuration
as an equilibrium in a game between a resource-bounded timing adversary who strives to
maximize the probability of key recovery, and a defender who strives to reduce the cost while
maintaining a certain degree of security. The key novelty in our approach are bounds for
the probability of key recovery, which are expressed as a function of the countermeasure
configuration and the attack strategy of the adversary.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://dtai.cs.kuleuven.be/problog/
http://dx.doi.org/10.1007/s10994-015-5494-z
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/CSF.2015.39
http://dx.doi.org/10.1109/CSF.2015.39
http://dx.doi.org/10.1109/CSF.2015.39
http://dx.doi.org/10.1109/CSF.2015.39
http://software.imdea.org/~{}bkoepf/papers/csf15.pdf

Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver 135

We put our techniques to work for a library implementation of ElGamal. A highlight
of our results is that we can formally justify the use of an aggressively tuned but (slightly)
leaky implementation over a defensive constant-time implementation, for some parameter
ranges. The talk concludes with an outlook on how static analysis, probabilistic programming,
and machine learning can help with performing similar analyses for more general classes of
programs.

References
1 Goran Doychev and Boris Köpf. Rational Protection against Timing Attacks. 28th IEEE

Computer Security Foundations Symposium (CSF). 2015

3.14 Probabilistic Programming for Security
Piotr Mardziel (University of Maryland – College Park, US)

License Creative Commons BY 3.0 Unported license
© Piotr Mardziel

Probabilistic inference is a powerful tool for reasoning about hidden data from restricted
observations and probabilistic programming is a convenient means of expressing and mech-
anizing this process. Likewise the same approaches can used to model adversaries learning
about secrets. Security, however, often relies on formal guarantees not typical in machine
learning applications. In this talk we will compare and contrast the two applications of
probabilistic programming and present our work on approximate probabilistic inference that
is sound relative to quantitative measures of information security.

3.15 Three Tokens Suffice
Joel Ouaknine (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Joel Ouaknine

Herman’s self-stabilisation algorithm, introduced 25 years ago, is a well-studied synchronous
randomised protocol for enabling a ring of N processes collectively holding any odd number
of tokens to reach a stable state in which a single token remains. Determining the worst-case
expected time to stabilisation is the central outstanding open problem about this protocol.
It is known that there is a constant h such that any initial configuration has expected
stabilisation time at most hN2. Ten years ago, McIver and Morgan established a lower bound
of 4/27 ≈ 0.148 for h, achieved with three equally-spaced tokens, and conjectured this to be
the optimal value of h. A series of papers over the last decade gradually reduced the upper
bound on h, with the present record (achieved last year) standing at approximately 0.156.
In a paper currently under review, we prove McIver and Morgan’s conjecture and establish
that h = 4/27 is indeed optimal.

In the talk, I would like to describe Herman’s protocol, consider examples, discuss related
work and some of the history of the problem, and present a very brief schematic overview of
the approach.

15181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

136 15181 – Challenges and Trends in Probabilistic Programming

3.16 The Design and Implementation of Figaro
Avi Pfeffer (Charles River Analytics – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Avi Pfeffer

In this talk, I present some of the motivations for the design of the Figaro probabilistic pro-
gramming system (PPS) and describe the approach to implementing the system, particularly
in regards to factored inference algorithms. Figaro is a PPS that is able to represent a very
wide range of probabilistic models and provides automated inference algorithms for reasoning
with those models. Figaro is designed to be easy to integrate with applications and data
and to support many modeling frameworks, like functional and object-oriented paradigms,
directed and undirected models, hybrid models with discrete and continuous variables, and
dynamic models. Figaro is designed as an embedded library in Scala; you write Scala
programs to construct and operate on Figaro models. This provides numerous advantages
such as support for integration and the ability to construct models programmatically. Figaro
has been applied to a number of applications in areas like cyber security, climate prediction,
and system health monitoring.

Many PPSs use sampling algorithms such as Markov chain Monte Carlo for inference and
Figaro also provides such algorithms. However, in Figaro, we are trying to make factored
inference algorithms like variable elimination and belief propagation viable for probabilistic
programming. These algorithms are often the best performing for graphical models, but they
can be difficult to apply to probabilistic programs because they assume a factor graph of fixed,
finite structure. We address this problem with two main ideas. First, lazy factored inference
partially expands a model to a finite depth and bounds the influence of the unexpanded part
of the model on the query, thereby enabling factored algorithms to be applied even when
the factor graph is very large or infinite. We have shown the ability to produce bounds on
problems where sampling and other factored algorithms cannot operate. Second, structured
inference uses the model definition to automatically decompose a difficult factor graph
into subproblems. Each of these subproblems can be solved using a different solver. We
have shown that using different algorithms on different subproblems can yield a significant
improvement in accuracy without incurring additional computation cost.

3.17 Dual Abstractions of Hidden Markov Models: A Monty Hell
Puzzle

Tahiry Rabehaja (Macquarie University – Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Tahiry Rabehaja

Hidden Markov Models, HMMs, are mathematical models of Markov processes whose state
is hidden but from which information can leak via channels. They are typically represented
as 3-way joint probability distributions. We use HMMs as denotations of probabilistic
hidden state sequential programs, after recasting them as “abstract" HMMs, computations
in the Giry monad, and equipping them with a partial order of increasing security. We
then present uncertainty measures as a generalisation of the extant diversity of probabilistic
entropies, and we propose characteristic analytic properties for them. Based on that, we give
a “backwards", uncertainty-transformer semantics for HMMs, dual to the “forwards" abstract

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver 137

HMMs. The backward semantics is specifically aimed towards a source level reasoning method
for probabilistic hidden state sequential programs. [Joint work with Annabelle McIver and
Carroll Morgan.]

I will be talking about channels, Markov processes and HMMs through a small Monty
Hell puzzle. We will see that they are pieces of the single unified framework of abstract
HMMs which in turn admit backward interpretations as UM-transformers. The transformer
semantics constitutes the logical basis towards a source level quantitative analysis of programs
with hidden states.

3.18 Types and Modules for Probabilistic Programming Languages
Norman Ramsey (Tufts University – Medford, US)

License Creative Commons BY 3.0 Unported license
© Norman Ramsey

Many probabilistic programming languages include only core-language constructs for determ-
inistic computation, plus primitives for probabilistic modeling and inference. We hypothesize
that, like many other special-purpose languages, probabilistic languages could benefit from
linguistic apparatus that has been found to be helpful in more general settings – in particular,
types and modules. To support this hypothesis, we introduce the model, which resembles an
ML module, but which in addition to a type part and a value part, also enjoys a distribution
part. These parts are described in a model type, which is analogous to an ML signature or
interface. In both a model and its type, distribution part is described compositionally by a
collection of bindings to random variables. To explore the values of these ideas, we present
a family of model types, at different levels of abstraction, and a corresponding model, of a
problem in seismic detection (provided by Stuart Russell). Many challenges remain, of which
the most pressing may be specifying the desire to learn a predictive posterior distribution.

3.19 Conditioning by Lazy Partial Evaluation
Chung-chieh Shan (Indiana University – Bloomington, US)

License Creative Commons BY 3.0 Unported license
© Chung-chieh Shan

We review how to define measures mathematically, express them as programs, and run them
as samplers. We then show how to define conditioning mathematically and implement it as a
program transformation.

3.20 NetKAT – A Formal System for the Verification of Networks
Alexandra Silva (Radboud University Nijmegen, NL)

License Creative Commons BY 3.0 Unported license
© Alexandra Silva

This talk will describe NetKAT, a formal system to program and verify networks. I will
describe work from the following two articles:

15181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

138 15181 – Challenges and Trends in Probabilistic Programming

1. Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen,
Cole Schlesinger, and David Walker, NetKAT: Semantic Foundations for Networks.
POPL 14.

2. Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson. A
Coalgebraic Decision Procedure for NetKAT. POPL 15.

3.21 WOLFE: Practical Machine Learning Using Probabilistic
Programming and Optimization

Sameer Singh (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© Sameer Singh

Performing machine learning with existing toolkits on large datasets is quite a frustrating
experience: each toolkit focuses on its own subclass of machine learning techniques, have
their own different interface of how much of the underlying system is surfaced to the user, and
don’t support the iterative development that is required to tune machine learning algorithms
and achieve satisfactory predictors.

In this talk we present Wolfe, a declarative machine learning stack consisting of three
crucial components: (1) Language: a math-like syntax embedded in Scala to concisely specify
arbitrarily complex machine learning systems that unify most existing, and future, techniques,
(2) Interpreter that transforms the declarative description into efficient code that scales to
large-datasets, and (3) REPL: A new iPython-like IDE for Scala that supports the unique
features for machine learning such as visualizing structured data, probability distributions,
and state of optimization.

3.22 Recent Results in Quantitative Information Flow
Geoffrey Smith (Florida International University – Miami, US)

License Creative Commons BY 3.0 Unported license
© Geoffrey Smith

Main reference G. Smith, “Recent Developments in Quantitative Information Flow (Invited Tutorial),” in Proc. of
the 30th Annual ACM/IEEE Symp. on Logic in Computer Science (LICS’15), pp. 23–31, IEEE,
2015; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1109/LICS.2015.13
URL http://users.cis.fiu.edu/~smithg/papers/lics15.pdf

In computer security, it is frequently necessary in practice to accept some leakage of confid-
ential information. This motivates the development of theories of Quantitative Information
Flow aimed at showing that some leaks are "small" and therefore tolerable. We describe
the fundamental view of channels as mappings from prior distributions on secrets to hyper-
distributions, which are distributions on posterior distributions, and we show how g-leakage
provides a rich family of operationally-significant measures of leakage. We also discuss two
approaches to achieving robust judgments about leakage: notions of capacity and a robust
leakage ordering called composition refinement.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/LICS.2015.13
http://dx.doi.org/10.1109/LICS.2015.13
http://dx.doi.org/10.1109/LICS.2015.13
http://dx.doi.org/10.1109/LICS.2015.13
http://users.cis.fiu.edu/~{}smithg/papers/lics15.pdf

Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver 139

3.23 Tutorial on Probabilistic Programming in Machine Learning
Frank Wood (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Frank Wood

This tutorial covers aspects of probabilistic programming that are of particular importance
in machine learning in a way that is meant to be accessible and interesting to programming
languages researchers. Example programs and inference are demonstrated in the Anglican
programming language and examples of new inference algorithms applicable to inference in
probabilistic programming systems, in particular the particle cascade, are provided.

3.24 Quantum Programming: From Superposition of Data to
Superposition of Programs

Mingsheng Ying (University of Technology – Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Mingsheng Ying

We extract a novel quantum programming paradigm – superposition of programs – from the
design idea of a popular class of quantum algorithms, namely quantum walk-based algorithms.
The generality of this paradigm is guaranteed by the universality of quantum walks as a
computational model.

A new quantum programming language QGCL is then proposed to support the paradigm
of superposition of programs. This language can be seen as a quantum extension of Dijkstra’s
GCL (Guarded Command Language). Alternation (case statement) in GCL splits into two
different notions in the quantum setting: classical alternation (of quantum programs) and
quantum alternation, with the latter being introduced in QGCL for the first time. Quantum
alternation is the key program construct for realizing the paradigm of superposition of
programs.

The denotational semantics of QGCL are defined by introducing a new mathematical tool
called the guarded composition of operator-valued functions. Then the weakest precondition
semantics of QGCL can straightforwardly derived.

Another very useful program construct in realizing the quantum programming paradigm
of superposition of programs, called quantum choice, can be easily defined in terms of
quantum alternation. The relation between quantum choices and probabilistic choices is
clarified through defining the notion of local variables.

Furthermore, quantum recursion with quantum control flow is defined based on second
quantisation method.

We believe that this new quantum programming paradigm can help to further exploit
the unique power of quantum computing.

15181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

140 15181 – Challenges and Trends in Probabilistic Programming

3.25 Counterexample-Guided Polynomial Quantitative Loop Invariants
by Lagrange Interpolation

Lijun Zhang (Chinese Academy of Sciences, CN)

License Creative Commons BY 3.0 Unported license
© Lijun Zhang

We apply multivariate Lagrange interpolation to synthesizing polynomial quantitative loop
invariants for probabilistic programs. We reduce the computation of an quantitative loop
invariant to solving constraints over program variables and unknown coefficients. Lagrange
interpolation allows us to find constraints with less unknown coefficients. Counterexample-
guided refinement furthermore generates linear constraints that pinpoint the desired quantitat-
ive invariants. We evaluate our technique by several case studies with polynomial quantitative
loop invariants in the experiments.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver 141

Participants

Christel Baier
TU Dresden, DE

Gilles Barthe
IMDEA Software – Madrid, ES

Johannes Borgström
Uppsala University, SE

Michael Carbin
Microsoft Res. – Redmond, US

Aleksandar Chakarov
Univ. of Colorado – Boulder, US

Ugo Dal Lago
University of Bologna, IT

Alessandra Di Pierro
University of Verona, IT

Jason Eisner
Johns Hopkins University –
Baltimore, US

Yuan Feng
University of Technology –
Sydney, AU

Luis Maria Ferrer Fioriti
Universität des Saarlandes, DE

Cédric Fournet
Microsoft Research UK –
Cambridge, GB

Cameron Freer
MIT – Cambridge, US

Marco Gaboardi
University of Dundee, GB

Andrew D. Gordon
Microsoft Research UK –
Cambridge, GB

Friedrich Gretz
RWTH Aachen, DE

Johannes Hölzl
TU München, DE

Chung-Kil Hur
Seoul National University, KR

Benjamin Kaminski
RWTH Aachen, DE

Joost-Pieter Katoen
RWTH Aachen, DE

Stefan Kiefer
University of Oxford, GB

Angelika Kimmig
KU Leuven, BE

Boris Köpf
IMDEA Software – Madrid, ES

Pasquale Malacaria
Queen Mary University of
London, GB

Vikash Mansinghka
MIT – Cambridge, US

Piotr Mardziel
University of Maryland –
College Park, US

Annabelle McIver
Macquarie Univ. – Sydney, AU

Joel Ouaknine
University of Oxford, GB

Catuscia Palamidessi
INRIA Saclay –
Île-de-France, FR

David Parker
University of Birmingham, GB

Avi Pfeffer
Charles River Analytics –
Cambridge, US

Tahiry Rabehaja
Macquarie Univ. – Sydney, AU

Sriram K. Rajamani
Microsoft Research India –
Bangalore, IN

Norman Ramsey
Tufts University – Medford, US

Chung-chieh Shan
Indiana University –
Bloomington, US

Alexandra Silva
Radboud Univ. Nijmegen, NL

Sameer Singh
University of Washington –
Seattle, US

Geoffrey Smith
Florida International University –
Miami, US

Andreas Stuhlmüller
MIT Cambridge & Stanford
University, US

Frank Wood
University of Oxford, GB

Mingsheng Ying
University of Technology –
Sydney, AU

Lijun Zhang
Chinese Academy of Sciences, CN

15181

	Executive Summary Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver
	Table of Contents
	Overview of Talks
	Proving Differential Privacy in Hoare Logic Gilles Barthe
	Reasoning about Approximate and Uncertain Computation Michael Carbin
	Equivalence of (Higher-Order) Probabilistic Programs Ugo Dal Lago
	A Topological Quantum Calculus Alessandra Di Pierro
	Dyna: A Circuit Programming Language for Statistical AI Jason Eisner
	Probabilistic Termination Luis Maria Ferrer Fioriti
	Computability of conditioning: approximate inference and conditional independence Cameron Freer
	Tabular: A Schema-Driven Probabilistic Programming Language Andrew D. Gordon
	Conditioning in Probabilistic Programming Friedrich Gretz
	On the Hardness of Almost-Sure Termination Benjamin Kaminski
	Distinguishing Hidden Markov Chains Stefan Kiefer
	Tutorial on Probabilistic Programming Languages Angelika Kimmig
	Rational Protection against Timing Attacks Boris Köpf
	Probabilistic Programming for Security Piotr Mardziel
	Three Tokens Suffice Joel Ouaknine
	The Design and Implementation of Figaro Avi Pfeffer
	Dual Abstractions of Hidden Markov Models: A Monty Hell Puzzle Tahiry Rabehaja
	Types and Modules for Probabilistic Programming Languages Norman Ramsey
	Conditioning by Lazy Partial Evaluation Chung-chieh Shan
	NetKAT – A Formal System for the Verification of Networks Alexandra Silva
	WOLFE: Practical Machine Learning Using Probabilistic Programming and Optimization Sameer Singh
	Recent Results in Quantitative Information Flow Geoffrey Smith
	Tutorial on Probabilistic Programming in Machine Learning Frank Wood
	Quantum Programming: From Superposition of Data to Superposition of Programs Mingsheng Ying
	Counterexample-Guided Polynomial Quantitative Loop Invariants by Lagrange Interpolation Lijun Zhang

	Participants

