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Robustness Analysis of the Heat Shock Response using
semiquantitative Reasoning

H. Koeppl S. Schindler E. Kashefi C. Messina V. Danos

Abstract— The Heat Shock Response (HSR) is a universal
procedure among organisms that repairs protein damage in-
duced by heat and other stresses. It is a simple biological
mechanism that is yet rich enough to be analyzed from the
perspective of robustness and efficiency. A series of papers by
El-Samad et al. [1], [2] have presented a control theoretical
approach for studying HSR in Escherichia coli bacteria. They
argue that the complexity of the HSR control mechanism is
necessary to achieve the observed robustness of such biological
systems.

We extend the control theoretical approach, applying interval
analysis to Lyapunov’s indirect method, and consider the
robustness of the HSR with respect to uncertainties in the
individual chemical reaction rates. In order to design alternative
control mechanisms for the HSR we compute the optimal
control to the protein damage-repair cycle. Furthermore we
propose a novel reduced order model of the HSR.

I. INTRODUCTION

Advances in molecular biology offer a great potential to
develop new cures and treatments to human diseases, to
provide bioremediation solutions to environmental hazards
and to genetically improve living organisms. However, the
expectations has not being met, due to the complex nature
of most traits. One prevailing problem in the quantitative
description of mechanisms in molecular biology is the large
measurement uncertainty. Adopting the framework of or-
dinary differential equations to describe the concentration
changes in biochemical reactions networks the uncertain
parameters are the reaction rate constants. Thus, mecha-
nism descriptions in molecular biology often boil down to
ordinary differential equations with uncertain parameters.
An outgrowth of qualitative reasoning [3], an artificial in-
telligence effort to qualitatively describe physical systems,
are semiquantitative differential equations (SQDE) [4]. Their
description combines qualitative or uncertain knowledge
about a physical system with exact knowledge. Such sys-
tems include differential equations, where the parameters are
only specified by intervals. Extensions to classical interval
analysis enable us to investigate dynamical properties of
a SQDE, such as stability [5]. In this work the authors
propose the application of these techniques to the description
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of biochemical reaction networks. The procedure will be
exemplified using the ubiquitous HSR mechanism.

The work is organized as follows. In Section II, the HSR
is briefly introduced. The main part of the paper, involving
stability of differential equations in conjunction with interval
analysis, is discussed in Section III. Considerations about
the optimal steady state control of the HSR mechanism are
given in Section IV. Section V presents a novel reduced order
model of the HSR, while Section VI draws the conclusions.

II. THE HEAT SHOCK RESPONSE

Because several biological processes are highly conserved
among organisms and species, the development of method-
ologies for simple biological systems could be portable to
more complex ones. Such a case study is the HSR in E. Coli
to remedy protein damage due to heat and other stresses.
The HSR system is composed by an intricate network of
proteases (e.g. Lon and FtsH), the transcription factor (σ32),
chaperones (e.g. GroEL/S and DnaK/J) and the machinery
involved in DNA transcription (RNA polymerase, herein
RNAP), RNA processing and mRNA translation and protein
synthesis.

The factor σ32 plays a specific role in this system as
it recognizes HSR gene promoters up-regulating their tran-
scription. The resulting increase in chaperone and protease
concentrations help proper protein folding or their degrada-
tion under stress conditions. The regulation of σ32 occurs at
the translation level. Under low temperatures the translation
start site rpoH is occluded impairing the translation of σ32.
Changes in mRNA structure under heat stress conditions
allows σ32 translation, its interaction with RNAP and the
transcription of chaperones and proteases. The activity of σ32

is also regulated through interactions with DnaK/J. Binding
of these chaperones to σ32 limits its interaction with RNAP
and therefore gene transcription. Another mechanism for the
regulation of σ32 is through its degradation. During steady
state, the degradation of σ32 is rapid through the action
of proteases. Under heat shock stress, proteases are titrated
by misfolded proteins reducing the degradation rate of σ32.
Rapid degradation of σ32 may require chaperones to recruit
FtsH, therefore, under high stress conditions degradation is
reduced due to low concentration of free DnaK/J. A detailed
description of the system and a differential-algebraic model
thereof is given in [1]. It is the basis for the present work,
which for the sake of conciseness adopts the mathematical
nomenclature of [1].



III. STABILITY ANALYSIS

We use Lyapunov’s indirect method in addition to
Kharitonov’s theorem as is suggested in [5]. Lyapunov’s
indirect method is the linearization of a nonlinear differential
equation at its equilibrium point with respect to its state
variables. This equilibrium point is stable if the real parts
of all eigenvalues of the linearization are strictly negative.
The eigenvalues are the roots of the characteristic polynomial
det(λI − A) = 0 where I is the identity matrix and A is
the Jacobian. Therefore, the test of stability of the nonlinear
system becomes a test whether the characteristic polynomial
of its Jacobian is Hurwitz, i. e., all roots have strictly negative
real parts.

An interval polynomial is a set of polynomials where the
coefficients may vary within intervals. Kharitonov’s theorem
[6] gives a simplified test whether all instances of an interval
polynomial are Hurwitz by checking the Hurwitz property of
only four polynomials. Given an interval polynomial {a0 +
a1λ+a2λ

2+ · · ·+anλn : a0 ∈ [a−

0 , a+
0 ], . . . , an ∈ [a−

n , a+
n ]}

the four Kharitonov polynomials are

p+− = a+
0 + a−

1 λ + a−

2 λ2 + a+
3 λ3 + a+

4 λ4 + · · · + a±

n λn

p++ = a+
0 + a+

1 λ + a−

2 λ2 + a−

3 λ3 + a+
4 λ4 + · · · + a±

n λn

p−+ = a−

0 + a+
1 λ + a+

2 λ2 + a−

3 λ3 + a−

4 λ4 + · · · + a±

n λn

p−− = a−

0 + a−

1 λ + a+
2 λ2 + a+

3 λ3 + a−

4 λ4 + · · · + a±

n λn.

Every instance of the interval polynomial is Hurwitz if and
only if its four Kharitonov polynomials are Hurwitz. In lower
dimensions the theorem of Anderson, Jury and Mansour [7]
states that one needs to check the Hurwitz property only of
p+− for n = 3, of p+− and p++ for n = 4, and of p+−,
p++ and p−+ for n = 5. In the case of n = 2 the test for
stability is simply reduced to checking that the coefficients
of p−− are positive.

In the following we apply the above framework to the
reduced heat shock model in order to perform a stability anal-
ysis in the presence of parametric uncertainty. The reduced
heat shock model is given in the supplementary information
to [1] as

d[σ32
t ]

dt
= η(T ) − α0[σ

32
t ]−

αs

αKsKf [DnaKt]
2

Γ − κ[DnaKt] + Ks[DnaKt](1 + αKf [DnaKt])
[σ32

t ]

d[DnaKt]

dt
= −αd[DnaKt]+

Kd

Γ − κ[DnaKt]

Γ − κ[DnaKt] + Ks[DnaKt](1 + αKf [DnaKt])
[σ32

t ],

(1)

with Γ ≡ 1+Ku[Pt] and κ ≡ Ku(KT ) + Kf )/KT . The
reduced model consists of two differential equations for the
concentration of the σ-factor [σ32

t ], and the concentration of
chaperones [DnaKt] which depend on 11 parameters and
are coupled nonlinearly.

With Lyapunov’s indirect method the system of differential
equation is linearized with respect to the state variables [σ32

t ]

TABLE I
ROUNDED INTERVALS FOR REAL-VALUED EQUILIBRIUM POINT

The value of p gives the percentage with which the parameters are varied
both up and down from the given value. The equilibria are calculated before
and after heat shock, denoted by T1 (37◦C) and T2 (42◦C), respectively.

p [σ32

t ] [DnaKt]
10 T1 [86.00, 150.78] [5537.95, 7886.97]

T2 [178.80, 283.43] [9490.919, 13324.39]
20 T1 [67.28, 209.11] [4633.66, 9904.34]

T2 [136.98, 348.60] [7896.03, 16885.41]
30 T1 [55.10, 284.94] [3913.12, 11424.47]

T2 [91.38, 424.22] [6688.43, 19139.78]
40 T1 [41.61, 451.52] [3168.20, 20970.58]

T2 [81.93, 569.69] [5458.16, 24410.61]
50 T1 [32.42, 465.84] [1627.48, 15451.44]

T2 [68.20, 871.76] [4090.76, 27357.12]
60 T1 [19.86, 1144.45] [1548.45, 24641.82]

T2 [50.23, 1340.95] [2647.19, 80165.40]
70 T1 [14.32, 1267.01] [1867.39, 26303.98]

T2 [35.33, 2665.70] [3191.49, 44515.27]
80 T1 [7.12, 5315.91] [1460.13, 46885.40]

T2 [23.90, 5263.83] [2496.36, 82721.87]
90 T1 [4.72, 23248.36] [428.56, 133125.58]

T2 [10.69, 9433.86] [732.80, 293025.14]

and [DnaKt]. The resulting Jacobian is analyzed regarding
its eigenvalues. The system is asymptotically stable for small
perturbations around the equilibrium value if and only if the
real part of each eigenvalue is strictly negative. Note that the
equilibrium points of the system and the eigenvalues of its
Jacobian are effected by the uncertainty in the parameters.
Kharitonov’s theorem gives a sufficient and necessary condi-
tion to determine whether the system is stable for uncertain
parameter values. Using interval arithmetic the range of the
coefficients of the characteristic polynomial is determined
by the possible range of the slope of the components of the
Jacobian matrix. These slope intervals are deduced either by
measurements or by biological reasoning.

We calculate the equilibrium points of the system and
minimize and maximize their positions with respect to the
parameters that can vary in the predetermined parameter
intervals. The resulting intervals for the position of the
considered equilibrium point are given in Table I.

The slope intervals for the entries of the Jacobian matrix
can be calculated by the same method. We minimized and
maximized them over the equilibrium intervals of St and Dt,
and the parameter intervals. The Kharitonov’s polynomials
p−− are given in Tab. II. We see that the system described
by (1) is stable at least for the parameter perturbations not
exceeding 80%.

IV. OPTIMAL STEADY STATE CONTROL

To extract the unique features of biological control mech-
anisms it is worthwhile to compare them to state-of-the-art
control designs from control theory. As discussed in [1] one
has multiple strategies for the design of the control signal
[DnaKf ] for the biological plant, i.e., the repair-damage-



TABLE II
KHARITONOV’S POLYNOMIALS AND THE REAL PARTS OF ITS ROOTS

Parameters can vary p in [%], the temperature is denoted by T1 (37◦C)
before heat shock and T2 (42◦C) after heat shock, respectively.

p p−−

10 T1 0.12 + 1.26λ + λ2

T2 0.31 + 2.26λ + λ2

20 T1 0.03 + 2.21λ + λ2

T2 0.09 + 3.56λ + λ2

30 T1 0.01 + 3.35λ + λ2

T2 0.03 + 4.75λ + λ2

40 T1 0.002 + 5.83λ + λ2

T2 0.008 + 6.27λ + λ2

50 T1 0.0004 + 6.28λ + λ2

T2 0.0018 + 8.11λ + λ2

60 T1 0.0001 + 10.22λ + λ2

T2 0.0002 + 11.33λ + λ2

70 T1 0.00004 + 12.72λ + λ2

T2 0.00007 + 18.84λ + λ2

80 T1 5.35 × 10−6 + 42.08λ + λ2

T2 6.01 × 10−6 + 39.70λ + λ2

90 T1 −222.00 + 255.24λ + λ2

T2 −597.50 + 109.62λ + λ2

cyle

[Pfold]
k(T )
−−−→ [Punfold]

[Punfold] + [DnaKf ] � [Punfold : DnaK] → [Pfold].

A useful quantity in designing new control strategies is the
minimum number of repair proteins in the plant [DnaKp] =
[DnaKf ] + [Punfold : DnaK], required to keep the protein
damage below a predetermined level ρ for constant temper-
ature. We define protein damage as the relative number of
unfolded proteins

ρ =
[Pt] − [Pfold]

[Pt]
.

The optimal steady state level [DnaKp] turns out to be

[DnaKp] ≥
(k(T ) − ν)(k(T )k′ + [Pt]ν)

(k(T ) + 1)k(T )ν
, (2)

with k′ = 1
K8

, k(T ) =
Kfold

K(T ) and ν = ρ(k + 1) − 1. For
k � ν and kk′ � [Pt]ν, that holds for the considered HSR
scenario, we obtain the simple approximate relation

[DnaKp] '
[Pt]

k(T )
. (3)

With this, the steady values for [DnaKp] read

[DnaKp] ≥

{

1.05× 104 molec/cell for T = 37◦C

1.93× 104 molec/cell for T = 42◦C

and

[DnaKp] '

{

1 × 104 molec/cell for T = 37◦C

2 × 104 molec/cell for T = 42◦C,

for (2) and its approximation (3), respectively. The re-
sults match the observed level of the full-order differential-
algebraic model as shown in Fig. 1. The observable offset at
the lower temperature is subject to future analysis.
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Fig. 1. Theoretical steady state level of the concentration of chaperones
in the repair-damage cycle for T = 37◦C and T = 42◦C and the time
evolution of chaperones obtained by the full-order differential-algebraic
model.

V. MODEL REDUCTION

The reduced order, two-dimensional model (1) of the
HSR qualitatively reflects the dynamics of the original 31-
dimensional differential-algebraic description. While it is
able to approximately reproduce the steady state levels of
[σ32

t ] and [DnaKt], the reduced model does not capture the
transients during temperature changes. In order the capture
the transient behavior we devised an alternative reduced
order, 4-dimensional model. The model has as its additional
states, the concentration of folded proteins in the cell [Pfold]
and the concentration of messenger RNAs for the chaperones
[mRNA(DnaK)]. The model reads

d[mRNA(DnaK)]

dt
=Ktr1

s̃([σ32
t ], [DnaKt], [Pfold])

− αmRNA[mRNA(DnaK)]

d[DnaKt]

dt
=Ktl[mRNA(DnaK)]

− αprot[DnaKt]

d[σ32
t ]

dt
=Ktlη(T )[mRNA(σ32)]0

− αFtsH f̃([σ32
t ], [DnaKt], [Pfold])

d[Pfold]

dt
=Kfold p([Pfold], [DnaKt])

− K(T )[Pfold].
(4)

The involved functions are defined as follows:

s̃([σ32
t ], [DnaKt], [Pfold]) ≡ s(ξ([σ32

t ], [DnaKt], [Pfold]))

with

s([σ32
f ]) ≡

K2K9[pht][σ
32
f ] [RNAPt2]

[Dt](K3+K2K12[σ32

f
])

1 + K2K9[σ32
f ] [RNAPt2]

[Dt](K3+K2K12[σ32

f
])

and

ξ([σ32
t ], [DnaKt], [Pfold]) ≡

1

2a

(

−b +
√

b2 − 4ac
)

,



with

a ≡
Ktr2

Ktr1

K2K4K5K12[Dt][DnaKt]d([DnaKt], [Pfold])

b ≡
Ktr2

Ktr1

K3K4K5[Dt][DnaKt]d([DnaKt], [Pfold])

+ K2K12[Dt][RNAPt2] − K2K12[Dt][σ
32
t ]

c ≡ K3[Dt][σ
32
t ].

Furthermore

f̃([σ32
t ], [DnaKt], [Pfold]) ≡

K4K5
Ktr2

Ktr1

[DnaKt]d([DnaKt], [Pfold])

1 + K4K5ξ([σ32
t ], [DnaKt], [Pfold])d([DnaKt], [Pfold])

× ξ([σ32
t ], [DnaKt], [Pfold])

with
d([DnaKt], [Pfold]) ≡

1

2K8

(

−β +
√

β2 + 4K8[DnaKt]
)

,

where

β ≡ 1 + K8([Pt] − [Pfold] − [DnaKt]).

Finally we have the synthesis function for the folded proteins

p([Pfold], [DnaKt]) ≡

K8
[Pt] − [Pfold]

1 + K8d([DnaKt], [Pfold])
d([DnaKt], [Pfold]).

Besides the constants already defined in the supplemen-
tary material of [1], we introduce one additional constant
[RNAPt2] = 1342 (molec/cell).

To evaluate the novel reduced order model we simulated
a temperature up-step from T = 37◦C to T = 42◦C degree
Celsius. The time evolution of [σ32

t ] and [DnaKt] for the
full-order model as well as for both reduced order models
are shown in Fig. 3 and Fig. 2, respectively. The model (4)
strikingly accurate reproduces the transient behavior of the
31-dimensional differential-algebraic model. The results indi-
cate that the major players for the heat response mechanism
have been correctly identified. Because (4) was generated
deductively from the full-order model all other state variables
present in the full-order model can be computed from the
four states variables of (4).

VI. CONCLUSIONS

One prevailing problem in the quantitative description
of mechanisms in molecular biology is the large measure-
ment uncertainty. We applied methods from the artificial
intelligence community, namely semiquantitative reasoning
to cope with the parametric uncertainty in biochemical
reaction networks. These concept in conjunction with clas-
sical nonlinear control theory allowed us to determined
the stability margin of the 2-dimensional HSR model. To
enhance the accuracy of compact HSR models with respect
to the full-order differential-algebraic model we deduced a
novel 4-dimensional differential model that supersedes the 2-
dimensional model in accuracy. Furthermore, we computed
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Fig. 2. Time evolution of the chaperones [DnaKt] for a temperature up-
step from T = 37◦C to T = 42◦C at t = 150 min for the full-order model,
the 4-dimensional model (4) and the 2-dimensional model (1).
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Fig. 3. Time evolution of the σ-factor [σ32
t

] for a temperature up-step
from T = 37◦C to T = 42◦C at t = 150 min for the full-order model, the
4-dimensional model (4) and the 2-dimensional model (1).

the optimal steady concentration of repair proteins for a given
temperature, such that the protein damage stays below a
predetermined threshold. The outlined methodology is very
promising for applications in systems biology because of its
generality and portability.
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