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Validation of Automatic Vehicle Location
Data in Public Transport Systems

Stephen Gilmore and Daniël Reijsbergen

Laboratory for Foundations of Computer Science
University of Edinburgh
Edinburgh, Scotland

Abstract

Performance metrics for public transport systems can be calculated from automatic vehicle location (AVL)
data but data collection subsystems can introduce errors into the data which would invalidate these calcu-
lations, giving rise to misleading conclusions. In this paper we present a range of methods for visualising
and validating AVL data before performance metrics are computed. We illustrate our presentation with
the specific example of the Lothian Buses Airlink bus, a frequent service connecting Edinburgh city centre
and Edinburgh airport. Performance metrics for frequent services are based on headways, the separation
in space and time between subsequent buses serving a route. This paper provides a practical experience
report of working with genuine vehicle location data and illustrates where care and attention is needed in
cleaning data before results are computed from the data which could incorrectly reflect the true level of
service provided.

Keywords: Public transport measurement and modelling, data cleaning, headway computation

1 Introduction

Modern engineered systems are reflexive. Through instrumentation and sensors,

they collect data on their function and performance which is used to assess their

progress and safe operation. Transport systems work in this way: a modern bus fleet

has richly-instrumented vehicles which report their latitude and longitude, speed

and heading. This data is streamed back over a data connection to an automatic

vehicle location tracking system which feeds other systems such as real-time arrival

prediction for bus passengers.

Judging by recent advances in the field of adaptive systems, it would seem

that the future offers us a vision of self-organising, self-healing systems regulated

and kept in check by their data-collection subsystems. Unfortunately, these data-

collection subsystems are themselves often complex systems, with their own faults

and problems, and intrinsic limitations to their engineering. It is not until one

starts working with such subsystems that some of these problems begin to become

evident. These problems increase in significance when regulators begin to calculate
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performance metrics for public transport services from historical Automatic Vehicle

Location (AVL) data traces.

Determining service performance has until recently been done by human ob-

servers in place by the side of the road recording vehicle departures and applying

intelligence and experience to interpret and record events. This approach has the

benefit of ensuring that data is scrutinised before performance measures are calcu-

lated. In contrast, in the context where human intelligence is not applied (as in

automated processing of historical AVL data traces), errors of interpretation can

occur, and it is these errors which are our concern here.

In this paper, we present an experience report on the use of AVL data for

obtaining headway and frequency measurements. The AVL data is provided to us

by the Lothian Buses company, based in Scotland and operating an extensive bus

network in Edinburgh. We consider the specific example here of the Airlink bus

service, connecting Edinburgh city centre and Edinburgh airport. An undesirable

feature of a frequent service is clumping, where two or more buses remain close to

each other for an extended period. For this reason headway, the separation between

successive buses, is an important metric for regulations and service operators.

In particular, we discuss the computation of headway measurements to evaluate

the performance of bus routes in terms of specific measures of punctuality. We use

a range of methods to visually represent both the data and the computed head-

ways, including a visualisation tool that uses the Google Maps API and which was

developed at the University of Edinburgh [1].

The AVL data which is made available to us records the position of each bus

in the fleet in terms of Ordnance Survey of Great Britain eastings and northings

measurements, which can be easily converted to more familiar latitude and longitude

coordinates. The AVL data is specific to a particular bus, as determined by a unique

bus identifier called a fleet number. The assignment of buses to routes is captured

in a schedule which is drawn up before the bus service begins for the day, but may

change without notice during the day in response to operational problems. This

uncertainty about which buses are in service and which are not gives rise to part of

the problems of interpreting the AVL data before metrics are computed.

The remainder of this paper is structured as follows. We first discuss the visual-

isation of AVL data in Section 2, before moving on to the isolation and removal of

data errors in Section 3. We discuss the visualisation of headway data in Section 4

and the use of headway measurements in service level agreements in Section 5. We

discuss related work that uses the same data or tools in Section 7, and conclude the

paper in Section 8.

2 The value of data visualisation

We are undertaking a modelling exercise which is strongly rooted in data. One

vitally important sub-task here is to learn about the data, its scope, and its limita-

tions. In our work with the Lothian buses data we have developed a visualisation

tool which allows us to literally view the data in geographical context, against a

S. Gilmore, D. Reijsbergen / Electronic Notes in Theoretical Computer Science 318 (2015) 31–5132



Fig. 1. The user interface allows the user to select bus routes of interest and dates and times of interest and
step through the data to see events which occurred in the selected part of the city of Edinburgh.

map of the city of Edinburgh.

This visualisation tool allows us to revisit historical trace data on bus movement

and to play or single-step through the data, visualising only those bus services which

are of interest. In this way, it brings the data to life, making it easy to confirm that

one is looking at the right bus routes. It is shown in Figures 1, 2 and 3.

The visualisation tool has no predictive power, it can only render measure-

ment data. Neither has it any logical, inferential, deductive or verification capacity.

Nonetheless, it was very valuable in allowing us to find some significant errors in the

data, which we then set about removing in a systematic process of data cleaning.

Fig. 2. The data can be accurate enough to confirm the direction of the bus by inspecting visually the side
of the road on which it is driving.

In working with data on bus movement from Lothian Buses we are fortunate to

have useful domain knowledge about what buses can and cannot do. For example,

we know that buses cannot teleport, so when we see that some Edinburgh buses

appear to visit Wales (as in Figure 4) we know that this is only a phantom GPS result

from the data-collection subsystem which we can discard. Similarly, Edinburgh

buses are not amphibious, so measurement data which has them swimming about

in the Firth of Forth is also to be discarded. Finally, Edinburgh buses cannot fly,

so when we see data which when rendered on the map seems to show them flying
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over the rooftops like Ron Weasley’s magical car, we know not to believe this. Our

visualisation helps us to make sense of this kind of erroneous data by showing that

it is a straight line between the final stop on a vehicle’s last journey of the night

and the bus depot where they are housed overnight.

These erroneous position reports come from vehicles which are not in service,

or from measurement sensors which have not been powered down as completely as

they should have been, or they are artefacts caused by interpolation in the system

trying to fill in data points to compensate for the gap in the data caused by the

location-tracking subsystem being switched off at the end of the day’s use for a

vehicle. However, the data does not record which buses are in service and which

are not, so if using the data for purposes other than those for which it was being

collected – as we are here – then we need to interpret with care and attention and

clean the data to remove erroneous measurements such as these before calculating

any measures of interest.

2.1 Visualisation of single bus trajectories

The validation of the service provision which we will conduct depends fully on the

data, its quality and completeness, and our interpretation of the data. In order to

Fig. 3. A heat map representation of Edinburgh city centre showing the patches along Princes Street where
buses have the longest sojourn time.

Fig. 4. The visualisation tool can be used to identify buses that appear in a peculiar place, such as a field
near the Anglo-Welsh border.
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provide ourselves with as thorough an understanding of the data as possible, we

developed different views on the data, each of which had value in establishing some

understanding of the data and bringing us insights which we found useful.

Our first visualisation, shown in Figure 5, rendered the data in a conventional

map view. This was useful in helping us to see that this bus was providing the

Airlink service on the day of interest, but it did not use the time content of the

measurement trace.

Fig. 5. Sample AVL data from one bus from the airport to the city centre, rendered in the conventional
map view which plots latitude against longitude. This view abstracts from both the timing of events and
their relative ordering in time.

Our second visualisation, shown in Figure 6, represented time in the abstract

sense of subsequency in that we used different colours to represent phases of the

journey which happen successively. Colours are assigned in a fixed order beginning

with red and continuing with orange, yellow, green, blue, indigo and violet before

returning to red again. From this visualisation we can see that the bus is travelling

from the airport in the west to the city centre in the east, but not at what time of

the day (or night) this journey occurred.

Fig. 6. A visualisation of the airport bus route showing buses on the route from Edinburgh airport in
the west to Edinburgh city centre in the east. This visualisation represents sample AVL data from one bus
from the airport to the city centre. The colouring imposed on points allows us to determine the direction
of the journey.

To allow us to see the journey more clearly it is sometimes helpful to fill in the

route in a little more detail by interpolating between the data points. Figure 7

presents such an interpolation. Depending on the use to which this interpolation is

put, the measurement errors which are introduced by “cutting corners” as we see

in Figure 7 might or might not be problematic.

Finally, Figure 8 shows the AVL data as a time series. In this view, latitude and

longitude are plotted separately against time. This has the advantage of allowing

us to see when the bus journey happened and to identify positions where it is

stationary for long periods of time, which was much more difficult to see in the

map view. Against this, our intuitions about where in the city the bus is at any
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Fig. 7. Some simple interpolation is computed, but naively. The placement of these interpolation points
suggests that the bus made the transition from Eastfield Road to Glasgow Road by driving across a field
instead of navigating the roundabouts and joining via the slip road, as it of course did.

point in time are lost, because we have moved away from the map view. Thus, this

view is complementary to the others which we have seen and provides us with a

supplementary understanding of the data, rather than replacing the views which we

have seen.

Fig. 8. Sample AVL data from one bus from the airport to the city centre, rendered as a time series.
The bus is stationary when neither latitude nor longitude are changing as in this graph between 12:13 and
12:25. The stationary point at 55◦57′05.5′′N, 3◦11′30.3′′W is the Airlink bus stop on Waverley Bridge in
Edinburgh city centre.

Different views on the data have given us different insights but the identification

of collective behaviour remains elusive. In a scenario where events depend not

on the behaviour of individuals, but on the behaviour over the long run, or an

aggregate measure obtained from a collection of observations, then representing

a single individual trace is of little interest. More profound insights come from

aggregating individual behaviours to look for trends and patterns.

2.2 Visualisation for collective systems

If we wished to learn the topology of the Airlink bus route in order to identify how

and where it turns in order to execute the return journey then this collective view

is much more helpful than the individual views which we have seen previously. If
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we simply plot all observations of a bus location which we are given, as we do in

Figure 9, then this maps out the route without interpolation or approximation (up

to the resolution of the GPS data available).

Fig. 9. Latitude and longitude data from eleven buses for two days

Deviations from the planned route can be seen in this view. In this view it is

possible to determine that some roads are travelled relatively infrequently (in this

case, once per day, the journey from the bus depot to the start of the route, and

once per day the journey from the end of the route to the bus depot at night).

Occasional diversions from the planned route can occur due to difficult-to-predict

events such as traffic accidents, vehicular breakdowns, or even instances of extreme

weather conditions. These deviations would also show up in this view, provided

that the deviation from the route is long enough that the position of the bus is

recorded during the deviation.

Another long-run collective view of the data would be a heat map, allowing

us to identify where in the city buses spend most of their time (as detected by

noting more observations in this area than in others). To achieve this, we place a

regular grid over the map of the city with a counter for each square in the grid.

We increment the counter every time we see a GPS measurement placing a bus in

this square, up to a ceiling of 100 observations per square. Mapping these numbers

to a colour spectrum, we see that more-frequently-occupied squares will show up

as being hotter than the less-frequently-occupied squares. This might confirm (or

refute) our expectations about where delays occur along the route. Figure 10 shows

such a view for our data.

From this we can see that the least-frequently travelled part of the route is the

journey to the depot in Annandale Street (in the top right-hand corner) because
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there are very few observations of buses in this region: only one or two observations

for each bus over a two day period. We can also infer that the faster part of

the route is on the Glasgow Road leading to the airport (in the bottom left-hand

corner). There are more observations here than for the depot, and there is no

possible branching off the route here so fewer observations in this region must come

from the buses travelling faster here.

Fig. 10. Heatmap data from eleven buses for two days

3 Isolating errors in data

GPS data can contain both errors of omission and errors of inclusion. Figure 11

demonstrates both of these. The GPS data misses observations on Market Street

because this street falls under the GPS shadow of tall buildings on the Mound,

a steep hill climbing upwards from Princes Street. This is seen at the bottom of

Figure 11 near the centre where there are no data points on Market Street until the

roundabout with Cockburn Street and Waverley Bridge.

Figure 11 also contains spurious data points which appear to have been generated

by interpolation of observations between Waverley Bridge and the Lothian Buses

garage on Annandale Street (note that these are reported data points given to us

by the bus company, not like the interpolated data points which we introduced in

Figure 7). These manifest themselves as a straight line on the map with interpolated

points cutting across York Place and East London Street with no apparent regard

for road layout.

The timestamps associated with these data points are either all from the early

morning (04:30) when the service starts or last thing at night (23:55) when the

service ends. Because of this we believe that these data points are an artefact of

cold starts or powering down of the GPS tracking hardware.

Once identified and isolated, erroneous GPS data can be removed using a GPS

track editor such as GPSprune [2], as shown in Figure 12. The application shows
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Fig. 11. GPS data for the Airlink bus showing Princes Street, Waverley Station and the Lothian Buses
garage in Annandale Street.

derived statistics on the GPS track as well as showing the track in context in a map

view, and relating positions on the route to their height.

Using this tool we can conveniently eliminate the erroneous early-morning and

late-night interpolated data points. This is a manual editing process, but it is

made much more convenient because we can see the data points in context in a

standard map view. We can define a region geometrically and then eliminate all of

the points which fall within that region. Once this process is complete we are left

with a clean data set where all of the erroneous data which we could identify has

been eliminated, allowing us to progress on to considering the performance measure

of interest (headway). As before, we use visualisation to help us to gain greater

insights into the data.
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Fig. 12. GPS data being edited in the GPSprune application.

Fig. 13. Average longitude data from eleven buses for one hour

4 Visualising headway

To allow us to approach the computation of headway-based metrics we can begin to

look at the collection of eleven buses serving the Airlink bus route. Focusing in on

a period of one hour between 11:30 and 12:30, and considering only longitude data

as a proxy for progress along the route (because the journey from the city centre to

the airport is mostly roughly east-to-west) we can obtain from Figure 13 a sense of

headway as separation in time between successive buses.

Looking at the same eleven buses serving the Airlink route over a different

granularity of two days, a different pattern emerges. We begin to obtain a sense

from Figure 14 of days of service for this collection of buses in the fleet punctuated

by overnight absences from service when the buses are stored in the garage.

Note that it is not obvious from published timetable information that the bus

operation should follow a day-night pattern. The Airlink bus service runs 24 hours

a day and in principle any of the buses from the fleet could be used at any time of
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Fig. 14. Average longitude data from eleven buses for two days

Fig. 15. Average latitude and longitude data from bus number 950 in the fleet over two days. During its
absence from service in the middle of the second day this bus is in the Lothian Buses garage on Annandale
Street.

day. In practice, one set of buses is used for the daytime service and another set is

used for the night-time service.

Understanding whether or not a bus is in service is another important aspect of

data cleaning when computing headways. Being widely-separated from a bus which

is not in service is much less important than being widely-separated from a bus

which is in service.

It is only when we appreciate the day-night pattern that we can notice buses

which are not following the pattern. Isolating the data for bus number 950 in the

fleet in Figure 15 we can see that it does not follow the established pattern because

its second day of service is punctuated by an absence (from approximately 09:30 to

16:00) where it was not serving the Airlink bus route. (We can discover separately
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Fig. 16. Time series running mean distances in miles between fleet number 937 and fleet numbers 938, 939,
941, 943, 944, and 945.

that the bus was taken to the garage for an unknown reason such as some kind of

mechanical repair to the vehicle, or perhaps a routine service.)

4.1 Spatial separation of service instances

As an alternative to considering headway as separation in time, we could consider

headway as separation on route, or at least separation in GPS position. We have

used the Haversine function to calculate the spatial distance of one bus from another,

as determined by their latitude and longitude, giving their great-circle distances, as

commonly used in navigation and spherical trigonometry.

In Figure 16 we present the Haversine distances in miles from fleet number 937,
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as a function of time across three days of observation data. This has the benefit of

providing a succinct summary of relative bus movement. We can see for each of the

three days of data presented that bus number 937 is not close to one of the other

buses for an extended period. In each day it moves close to and away from other

buses as they make their journeys to and from the airport. The bus which remains

closest to fleet number 937 is fleet number 945 which is rarely more than three miles

away from fleet number 937 on our second day of observation. Nonetheless, even

in this case we can see that the buses are not ‘clumping’ as the relative distance

between the two buses oscillates between zero and three miles throughout the day.

Although it has the benefit of being relatively easy to compute, the Haversine

distance is not the ideal distance measure to use to truly calculate the distance

between buses. Firstly, it does not take road layout and route into account, and

will consistently under-estimate the distance between buses because it calculates

the distance “as the crow flies”. Secondly, it does not take direction of travel

into account: two buses near to each other but on opposite sides of the road, will

be reported as being close whereas semantically, they may be several miles apart.

Finally, because of variations in speed limits over the route, the same distance

denotes a different temporal separation at different parts of the route.

A more relevant distance metric would then be temporal displacement, asking

“How many minutes has it been since the previous bus was where this bus is now?”

This temporal separation is more important to passengers of the system, because

regular temporal separation between bus arrivals reduces a passenger’s risk of wait-

ing at a bus stop for an unexpectedly long time. Unfortunately these more signif-

icant semantic distance measurements which take into account road layout, route,

direction of travel, and temporal separation are more difficult to compute than the

simple Haversine distance.

The overall result which we would hope to see for a well-running service is spatio-

temporal separation where buses are not often close to each other for an extended

period, according to some relevant semantic definition of closeness. Such a metric

has some merits. It allows for reasonable adaptation to problems in service delivery

(so that, for example, buses can on some occasions be close to others for an extended

period, as can happen). However, it is not one of the metrics which has been defined

by the regulators in this instance.

5 Headway-based service-level agreements

We now consider the service-level agreements which have been identified by the

regulators for the service, as published by the Scottish Government. Firstly, there

are two classes of bus service identified by regulators: frequent and non-frequent.

Frequent buses depart at least every 10 minutes. Our concern in this paper is only

with frequent services. The Airlink bus service is a frequent service departing at

least every ten minutes between 04:00 and midnight.

A key characteristic of frequent services is that regulators are not primarily in-

terested in timetable adherence, but rather in the amounts of time between bus
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arrivals — the headways. We focus on two of the three punctuality metrics for fre-

quent services identified in the guidance document on Bus Punctuality Improvement

Partnerships by the Scottish Government [3]; all three are related to headways.

(i) Six or more buses will depart from the starting point within any period of 60

minutes on 95% of occasions.

(ii) The interval between consecutive buses departing from the starting point will

not exceed 15 minutes on 95% of occasions.

The first of these is a requirement on the frequency of departures, the second specifies

the maximum allowable headway between buses.

These service-level agreements are themselves statements about collective be-

haviour. They do not specify that particular individual instances of the service

must be correct, but that, viewed as a collection of observations, a large percentage

of this collection (in this case, 95% of it) must be satisfactory according to the

regulations.

Punctuality is important for regulators but it is of great value to passengers

too. The importance of punctuality is such that it has been observed that the

negative impact on passenger satisfaction of a decrease in punctuality can outweigh

the positive effects of increasing the number of departures per day [4].

5.1 Determining satisfaction of service-level agreements

Through visualisation we have been able to explore various aspects of the available

data and investigate problems with the data which need to be resolved but the most

important collective system metrics of frequency and headway have not yet been

fully explored.

A modelling tool such as Traviando [5] allows us to process trace data and to

compute measures of interest over the trace. The primary purpose of Traviando is

to act as a post-mortem simulation trace debugger, diagnosing problems with sim-

ulation models through statistical, structural, invariant-based and model-checking

analysis of output traces. However, because Traviando works with timed trace

output, it is possible to invoke it on measurement data such as our time series of

GPS observations of bus positions, even before a simulation model is constructed.

Figure 17 shows headway observations which have been obtained in this way.

The linear regression across this time series is centred on 476.13 secs, which is

approximately 8 minutes, and comfortably less than the 15 minute interval between

consecutive buses which is required by the regulator. Furthermore, we observe in

Figure 17 that headways of over 15 minutes (900 seconds) are rarely observed, in

this case only once in 90 observations.

We define a finite-state process to convert the departure data into a form where

we can compute the frequency requirement that at least six buses should depart

every hour. The process represents a forgetful observer, who counts departures, but

forgets departures which happened more than one hour ago, as in Figure 18.

That is, the observer notes the occurrence of each departure of a bus from the
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Fig. 17. Headway observations plotted using Traviando as time differences

Fig. 18. Observers counting departures should note the times of departures and forget departures which
are more than one hour old (at t+ 1h).

start of the journey and records the time that this event occurred. An hour after any

observed departure the departure event is discounted as being outside the relevant

window as defined by the Traffic Commissioner regulations. This – not altogether

straightforward – process is a reactive system which changes state in response to

two types of events: bus departures and clock expiration.

This process allows us to track the frequency metric relating to bus departures,

as seen in Figure 19 plotted as a counter value-event trace using Traviando. During

the day the observations lie between 6 (the minimum allowable value) and 10. The

low period on the second day corresponds to the time when bus number 950 in the

fleet was in the garage. Time is abstracted away in this view although the relative

ordering of events is maintained. This has determined that regulation (i) above has

been satisfied across this observation period.

6 Simulation model

The forgetful observer automaton in Figure 18 provides us with a conceptual model

of the process which we use to record (and forget) departures in order to compute

the six-buses-per-hour metric. However, in order to analyse the system more deeply

we need to develop a simulation algorithm and generate traces to estimate the

probability distribution of numbers of departures of buses per hour along the route.

The simulation algorithm is the same for each departure point on the route, only

S. Gilmore, D. Reijsbergen / Electronic Notes in Theoretical Computer Science 318 (2015) 31–51 45



Fig. 19. The frequency metric of buses in the past hour, as obtained from the data for the George Street
bus stop.

the numerical parameters of the algorithm are changed to differentiate between the

bus stops.

Our goal is to simulate the Z-process, recording (and forgetting) departure

events. The simulation algorithm is presented in Algorithm 1, the runZ simu-

lation algorithm. The goal of the algorithm is to produce a simulation trace X

of (t, z) observations of the time variable t and the variable counting departures per

hour, z. In addition, the algorithm computes the probability distribution πk for

integer values of k, giving the long-run probability of there being k departures per

hour.

The runZ simulation algorithm simulates events forwards in time. Departure

events can occur over the course of an eight-hour day. After this time no other

departures will occur and the only changes to the z counter will be decrements

reflecting departures which happened one hour ago.

The algorithm is guided by an event list, given by the variables L0 and L1. L0

is the time of the next departure event. L1 is the time when the oldest recorded

departure should be forgotten. The simulation algorithm has two cases depending

on the relative values of these times.

• If L0 < L1 then we increment the z counter and record that this departure should

be forgotten in one hour’s time (t + 3600 seconds) either directly as L1 or in a

set of recorded departures D. We then choose the time of the next departure to

give a new value for L0 if we have not already reached the eight-hour limit for

departures.

• If instead L1 < L0 then we decrement the z counter and choose L1 as being the

time of the earliest recorded departure event in D.

Figure 20 presents ten sample runs (X) of the runZ simulation algorithm at the

Airport, Zoo and George Street bus stops on the journey from the airport to the

city centre (at George Street). After the initial transient warm-up period in the first

hour the process lies in the range {7, 8, 9} at the Airport stop, in the range {6, 7, 8, 9}
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Algorithm 1. The runZ simulation algorithm

Require: μ, σε, θ

1: ∀k ∈ N : τk := 0;

2: D := ∅; X := {(0, 0)};
3: u := random(); � random() draws a number uniformly from [0, 1]

4: ε := σε · Φ 1(u); � Φ is the Gaussian cumulative distribution function

5: εprev := 0;

6: z := 0; t := 0; t∗ := 0;

7: L0 = max{0, μ+ ε};L1 = ∞;

8: while L0 < ∞ ∨ L1 < ∞ do

9: if L0 < L1 then � The next event is a departure

10: if t > 3600 ∧ L0 < ∞ then

11: τz := τz + L0 t;

12: t∗ := t∗ + L0 t;

13: end if

14: z := z + 1; t := L0; εprev := ε; � Increment z to record the departure

15: ε := σε · Φ 1(random());

16: if t < 8 · 3600 then � Departures stop after 8 hours

17: L0 := max{0, t+ ε+ θ · εprev + μ}; � Choose the next departure

18: else

19: L0 := ∞; � No more departures take place

20: end if

21: if L1 = ∞ then

22: L1 := t+ 3600; � Set the next departure to forget

23: else

24: D := D ∪ {t+ 3600}; � Add this to the set of departures to forget

25: end if

26: else � The next event is forgetting a departure

27: if t > 3600 ∧ L0 < ∞ then

28: τz := τz + L1 t;

29: t∗ := t∗ + L1 t;

30: end if

31: z := z 1; t := L1; � Decrement z to forget the departure

32: if D = ∅ then

33: L1:= ∞; � No departures to forget

34: else

35: L1 = minD; D := D\{L1}; � Choose the first departure to forget

36: end if

37: end if

38: X := X ∪ {(t, z)}; � Record the value of z at time t

39: end while

40: ∀k ∈ N : πk := τk
t∗ ;

41: return (πk)k∈N, X
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at the Zoo stop, and in the range {6, 7, 8, 9, 10} at the George Street stop. Clearly,

the variance of the process increases as the bus travels along its route from the

Airport to the Zoo to George Street.

Fig. 20. Ten sample runs of departures per hour for stops on the Airlink route.

Figure 21 presents the probability distributions πk of the Z process at the Air-

port, Zoo and George Street bus stops. As we would expect, these distributions

reflect the behaviour that the variance of the service increases along the route, as

has been typically observed by others in other contexts for other bus routes. How-

ever, the probability of the problematic case of fewer than six departures per hour

is negligible at all of the bus stops along the route.

7 Related work

The presented data analysis and visualisation methods have been used in several

recent papers. In [6], the model checking tool Traviando was used to perform

correctness checks on bus journey time data obtained by scraping the Edinburgh
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Fig. 21. Probability estimates of departures per hour for stops on the Airlink route, based on a single day
simulated using the runZ algorithm.

Bus Tracker website. In [7], the AVL dataset of this paper was used to obtain bus

sojourn time distributions of land patches in the Edinburgh city centre, which were

then used to carry out ‘what-if’ analysis involving the introduction of trams. In

[8], several statistical analysis techniques were used to evaluate the performance of

several frequent services in Edinburgh (including the Airlink) in terms of the service

level agreements discussed in Section 5, using the same AVL dataset.

8 Conclusions

In contrast to the results from a high-level model, measurement data has enormous

authority. It is full of detail and quirks and seems to represent physical truth but as

we have seen in examples above, it is not the whole truth, and it is not nothing but
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the truth either. In our experience so far in working with data on the QUANTICOL

project we have always needed to use human intelligence to clean the data before

any automated processing could begin. An outlier only becomes an outlier when an

interpretation is placed on the other data points.

What we saw in this example was that our understanding was enhanced by pro-

cessing the data in a range of ways before any reflection and consequential adapta-

tion took place. Further, there were complex collective percentile-based performance

metrics to satisfy which required some ingenuity for us even to compute.

In some respects, our smart transport case study is relatively easy to work

with. Data is readily available, and latitude and longitude data is relatively easy

to interpret and visualise, allowing us to see problems in the data and apply data

cleaning. We have intuitions about buses and transport, and local knowledge of

what happens in practice. Further, we have access to the personnel in the Lothian

Buses company who operate the system in practice. We can ask them what are

the problems which are of concern to them. We have the potential to have some

influence on the practice of the company, even if only a slight influence. Based

on our calculations and more detailed reasoning [8], our belief at this point is that

Lothian Buses are meeting the Traffic Commissioner’s regulatory instruments.

In the future, we hope to use heat maps similar to the one in Figure 10 to

automatically learn the bus routes, using a variant of the algorithm described in [9].

Using a representation of the routes in the form of a graph, we would be able to

detect and remove outliers by removing measurements that are too far away from

the edges on their route. This would allow us to automate the data filtering process,

which at the moment is largely done manually.
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[8] Daniël Reijsbergen and Stephen Gilmore. Formal punctuality analysis of frequent bus services using
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