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Abstract
Instruction set simulators (ISS) have many uses in embedded soft-
ware and hardware development and are typically based on dy-
namic binary translation (DBT), where frequently executed regions
of guest instructions are compiled into host instructions using a
just-in-time (JIT) compiler. Full-system simulation, which neces-
sitates handling of asynchronous interrupts from e.g. timers and
I/O devices, complicates matters as control flow is interrupted un-
predictably and diverted from the current region of code. In this
paper we present a novel scheme for handling of asynchronous in-
terrupts, which integrates seamlessly into a region-based dynamic
binary translator. We first show that our scheme is correct, i.e. in-
terrupt handling is not deferred indefinitely, even in the presence of
code regions comprising control flow loops. We demonstrate that
our new interrupt handling scheme is efficient as we minimise the
number of inserted checks. Interrupt handlers are also presented to
the JIT compiler and compiled to native code, further enhancing
the performance of our system. We have evaluated our scheme in
an ARM simulator using a region-based JIT compilation strategy.
We demonstrate that our solution reduces the number of dynamic
interrupt checks by 73%, reduces interrupt service latency by 26%
and improves throughput of an I/O bound workload by 7%, over
traditional per-block schemes.

Categories and Subject Descriptors D.4.8 [Operating Systems]:
Performance—Simulation

General Terms Design, experimentation, measurement, perfor-
mance

Keywords Full system simulation, Dynamic binary translation,
Region-based just-in-time compilation, Asynchronous interrupt
handling

1. Introduction
Instruction set simulators (ISS) are indispensable tools for software
and hardware developers alike. In fact, in the embedded systems
domain, ISS are routinely used during software development stages
for functional and performance testing whilst hardware designers

rely on their fast turn-around times for prototyping new architec-
tures or architectural extensions.

Full-system ISS have extended capabilities that go beyond the
execution of a stream of user mode instructions in standard ISS.
Such full-system ISS need to support additional features including a
memory management unit, kernel mode instructions, interrupt han-
dling, and device emulation, which are required for the simulation
of a complete system capable of hosting an operating system (OS).

Efficiency of interrupt handling is of particular importance as
interrupts need to be processed frequently (e.g. the frequency of
the Linux kernel timer interrupt which triggers the process sched-
uler is typically set between 100-1000Hz) and require fast response.
Unfortunately, efficient interrupt handling is at odds with dynamic
binary translation (DBT), which is the underlying technology for
building high-performance ISS. In a DBT-based ISS control flow
is profiled and regions of frequently executed guest instructions
are identified and translated to host instructions using a just-in-
time (JIT) compiler [25]. This generated native code executes much
faster than an interpreter can execute guest instructions, thus pro-
viding higher simulation performance. Interrupts, however, inter-
fere unpredictably with the “natural” control flow of an application
and divert it away from the current region of code to another. To
capture this behaviour additional checks need to be inserted into
the generated code, which initiate interrupt handling if a pending
interrupt request is signalled. These additional checks are costly to
perform and can inhibit aggressive region-based optimisations re-
sulting in a reduction of simulation performance by more than an
order of magnitude, if inserted naïvely e.g. after each guest instruc-
tion.

For asynchronous interrupts, i.e. externally triggered interrupts
unrelated to the currently executing instruction and the current
state of the processor, handling can be deferred by a small period
of time until a more “convenient” moment. For example, an OS
might mask certain interrupts in critical sections and only process
pending interrupts after leaving such a section. We exploit this trait
in our ISS and insert fewer interrupt checks, thus reducing their
performance impact.

The central questions we are trying to answer in this paper are:
What is the minimum number of interrupt checks that need to be
inserted and where to insert them?

We show that inserting interrupt checks at the beginning and end
of linear execution traces, e.g. generated by trace based JIT com-
pilers, does not work with region based JIT compilation schemes,
which offer higher simulation rates than their trace based counter-
parts.

In this paper we develop a new scheme for inserting asyn-
chronous interrupts checks in an ISS using a region based DBT.
We dynamically identify control flow loops and insert appropriate
interrupt checks within each control flow cycle to maintain cor-
rectness. This is important for loops which depend on interrupt



handling for their termination. Whilst inserting a strictly minimal
number of interrupt checks is an NP-hard problem [8], we utilise an
existing approximation algorithm suitable for use in a performance-
critical JIT environment, which for most practical cases computes
an almost optimal solution. We show how our region profiling in-
teracts with interrupt handling such that nested interrupts can be
processed and interrupt handlers themselves presented to the JIT
compiler, enabling further performance improvements. We demon-
strate the efficiency of our interrupt handling scheme using our re-
gion based DBT ISS targeting the ARM instruction set, reducing
the number of dynamic interrupt checks by 73%, reducing inter-
rupt service latency by 26% and improving the throughput of an
I/O-intensive workload by 7%.

1.1 Motivating Example
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Figure 1: In user-mode simulation our region-based ISS clearly
outperforms QEMU. Aggressive region-based optimisations sub-
stantially reduce absolute run times (in seconds, lower is bet-
ter) of the SPEC CPU2006 benchmarks. Region-based DBT, how-
ever, presents a challenge to full-system simulation, where interrupt
checks need to be performed. We present a methodology, which is
(a) correct and (b) retains the performance advantage of region-
based DBT in a full-system simulation context.

A basic-block-based DBT is one which translates guest basic-
blocks one-at-a-time into corresponding host code (see Figure 2a).
These blocks are treated as independent units, and control-flow is
performed by jumping to existing code in a cache, or causing an
on-demand translation if the code has not yet been seen. Extending
a basic-block based DBT to consider multiple blocks along a path
leads to a trace-based DBT, which allows for optimisations to cross
basic-block boundaries, as the trace is considered its own unit (see
Figure 2b). Whilst trace-based DBTs consider linear control flow
only, a region-based DBT can exploit control-flow (such as loops)
within a particular region of code (see Figures 2c and 2d).

User-mode simulation of applications require only that a target
binary is emulated on the host, and do not usually require interrupts
or device emulation – a simple OS emulation layer is enough to
execute most user binaries. Notable exceptions are applications that
require or depend on asynchronous Unix signals, but the majority
of benchmarks (and certainly those present in the SPEC CPU2006
suite [13]) do not depend on this behaviour and so are ill-suited to
testing this important requirement of full-system simulation. Figure
1 shows that in user-mode simulation, where interrupt checks can
be ignored, our simulator performs on average 2.23x faster than
QEMU [4], also in user-mode configuration.

The increase in simulation performance seen in Figure 1 is due
to our region-based approach (implementing techniques such as

1 void main()
2 {
3 // Wait for some hardware signal
4 while (received_irq == 0) usleep(10);
5

6 //Now do some computation in a loop
7 for (int i = 0; i < 10; ++i) {
8 output[i] = inputa[i] * inputb[i]
9 if((i & 1) == 0) {

10 output[i] += inputc[i];
11 } else {
12 output[i] -= inputc[i];
13 }
14 }
15 }

Figure 3: Example code requiring interrupt checking. Termination
of the while loop in main is dependent on an interrupt, hence we
must insert an interrupt check inside this loop. Termination of the
for loop is not dependent on an interrupt, but delaying interrupt
checking until after the loop may introduce an unacceptably large
interrupt latency. We want to insert as few as possible interrupt
checks in this loop such that we (a) check on every iteration, and
(b) do not perform more checks than necessary for performance
reasons.

optimised end-of-block handling [25]), and down to the aggressive
optimisations that we can perform within a region of code.

However, it is possible to hinder these optimisations by inserting
additional side exits into a region. Such an additional side exit may
be an interrupt check, where a flag is tested to determine if an inter-
rupt is pending, and then exit the region so that the simulator may
process the pending interrupt. It is therefore desirable to reduce the
amount of these side exits, so that our aggressive region optimisa-
tions can continue to be effective in full-system simulation, where
interrupt checks are mandatory.

As of later versions, QEMU’s approach to interrupt checking is
to insert a check at the head of every translation block, resulting in
a check before a guest basic-block is executed. If an event occurs
which requires QEMU to leave native code, a flag is set and the
native code will exit to the main execution loop where the event
is processed. Our approach is similar, in that we maintain a flag to
indicate if an asynchronous action is pending, and we insert a check
into a block to determine if the flag is non-zero. If this condition is
met, we will exit native code.

The difference arises when we consider the different approaches
taken to native code generation between our ISS and QEMU.

1.1.1 State-of-the-Art QEMU

Since QEMU does not apply any form of inter-block optimisation,
the problem does not exist that an extra check can affect optimisa-
tions – only an easily predicted branch-not-taken penalty will oc-
cur. However, since we are considering a region of basic blocks as a
unit, and wish to optimise across these basic blocks, the insertion of
interrupt checks can inhibit our ability to perform certain optimisa-
tions that we could otherwise make in the absence of these checks,
and significantly increase the amount of code our JIT compiler must
translate.

1.1.2 Correct Handling of Interrupt Dependent Behaviour
Considering the code shown in Figure 3, it can be seen to contain a
loop that waits for an interrupt handler to run, followed by a loop-
based computation on three input arrays. In order for this program
to be simulated correctly, it must be able to receive and process



(a) Block based DBT. Interrupt
checks inserted after each basic
block, resulting in poor performance
due to excessive number of checks.

(b) Trace based DBT. Checks in-
serted at the start and end of each
linear trace. Control flow flattened,
prohibiting loop optimisations.

(c) Region DBT. Optimal insertion
of interrupt checks. Minimal num-
ber, but requires solving an NP-hard
problem at JIT compilation time.

(d) Region DBT. Approximation al-
gorithm results in higher number of
checks, but is close to optimal and
fast enough for JIT compilation.

Figure 2: Interrupt checks, represented by bars on control flow edges, inserted by various interrupt check policies in the control flow graph
representing the example program from Figure 3. Translation units (basic blocks, linear traces, regions) are highlighted.

asynchronous interrupts during the initial while loop. The com-
putation in and termination of the for loop is not dependent on an
interrupt, but we must nonetheless insert an interrupt check to avoid
an unacceptably large latency, should an interrupt be signalled. The
control flow graph for this code can be seen in Figure 2.

This kind of behaviour is present in full-system simulation,
most prominently in operating system kernels, which may wait for
an external device to indicate that a buffer is full and ready for
processing.

Checking for interrupts in an interpreted-only, functional (i.e.,
non-cycle-accurate) simulator is straightforward – we can simply
check at the end of each interpreted instruction or basic block, or
alternatively check after a given number of instructions have been
executed. These all produce correct behaviour, and impose varying
latencies on servicing the interrupts depending on the scheme we
use. For a JIT based DBT selection of the interrupt checking strategy
is significantly more challenging, though.

1.2 Contributions
In this paper we make the following contributions:

1. We devise a new scheme for the optimised handling of asyn-
chronous interrupts in the context of a region based DBT ISS,

2. we show that our algorithm for inserting interrupt checks is
efficient and suitable for JIT processing and does not introduce
unbounded interrupt response times, and

3. we demonstrate that our scheme improves simulation perfor-
mance and I/O throughput on full-system simulation of Linux
targeting the ARM instruction set.

1.3 Overview
The remainder of this paper is structured as follows. In Section 2 we
briefly introduce the problem of interrupt check placement present
in a DBT. This is followed by an overview of the various schemes

available, and a description of our new interrupt handling scheme in
Section 3. In Section 4 we present our empirical evaluation results,
before we discuss related work in Section 5. Finally, we summarise
and conclude in Section 6.

2. DBT Granularity and the Problem of Inserting
Interrupt Checks

When implementing interrupt checking in a DBT system, we have
many more options for inserting interrupt checks. One of the
biggest details in a DBT system (and thus one of the biggest factors
in how interrupts are addressed) is whether it translates on a basic
block basis, a trace basis, or a region basis (see Figure 2).

Basic block based DBTs must check for interrupts at least once
per basic block. This is shown in Figure 2a. Since each block is
permitted to be entered from any predecessor, then if we did not
perform an interrupt check at the end of a block we may get stuck in
a loop waiting for an interrupt which is never detected. As control-
flow between basic-blocks in this kind of DBT is relatively straight-
forward (usually a map lookup from virtual address to translated
code), returning from interrupt handlers is also straightforward as
the next instruction to be executed will be the head of a basic block
and can be looked up from the mapping.

Trace based DBTs have slightly more flexibility in that we can
either check for interrupts at the end of each block (within a par-
ticular trace), or we can check at the start of each trace. This is
illustrated in 2b. Control-flow within a trace is linear, but there may
be multiple exit points and so checking at the trace head ensures
that if we exit a trace early, we can check for interrupts in the head
of the next trace. Checking more frequently may reduce interrupt
latency but will impact performance. Checking less frequently may
result in the same problem as in the basic block case, where we
never detect an interrupt necessary for the simulated program to
proceed.



Although the strategies discussed so far work effectively for
block and trace based DBT systems, they are inadequate for region
based DBTs, which take advantage of dynamically-extracted con-
trol flow information to optimise the generated code across basic
block boundaries, and to apply certain loop optimisations to a re-
gion of code (Figures 2c and 2d). An optimisation phase may even
split or merge guest program basic blocks during a transformation
pass, which will produce highly optimised and correct behaviour,
but the representation of the original basic block will be lost.

Unlike in basic block or trace based DBT systems, the gener-
ated translations are able to contain looping control flow, which
means certain care must be taken to ensure interrupts are serviced
in a timely manner. A naïve DBT system may decide to insert in-
terrupt checks at the end of each translated basic block. However,
this negates many of the benefits of a region based DBT as each
interrupt check may result in an exit from translated code, making
optimisations which span loops and basic blocks much less effec-
tive. Making interrupt checks on entry to or exit from a region (as in
tracing DBT systems) will also cause incorrect behaviour, as inter-
rupt dependent loops may be encountered within a region, as shown
in the example above.

Instead, we should analyse the control flow graph of the region
to identify the minimum set of blocks that must contain interrupt
checks, while still ensuring correct behaviour. In this case, we must
ensure that we have at least one interrupt check in at least one un-
conditional basic block of each loop in the CFG. If we fail to insert
an interrupt check into a very long running loop, we may postpone
an interrupt for an unacceptable length of time (potentially indef-
initely). Furthermore, if we fail to insert an interrupt check into a
loop that has behaviour which depends on an interrupt being ser-
viced, then our DBT will behave incorrectly.

An algorithm for computing the minimum set of blocks which
must contain interrupt checks can be based on computing the mini-
mum feedback edge set [8, 15] of the control flow graph. This iden-
tifies the minimum set of edges in the CFG which, when cut, remove
all cycles from the CFG. By inserting interrupt checks into the root
blocks (source nodes) of these edges, we can ensure we do the min-
imum number of interrupt checks necessary, thus ensuring correct
behaviour while maintaining good performance. In our example,
this would give us the interrupt checks seen in Figure 2c.

However, in order to ensure good performance in our DBT, we
must also ensure that we have good ‘warm-up’ time. That is to say,
we must balance the performance of generated code against how
quickly that code can be produced. Computing the exact feedback
arc set of a graph is expensive (the problem is NP-hard [8]), whereas
computing an approximation is much faster [9], and is unlikely to
result in a significant degradation of performance in generated code
versus computing the exact feedback arc set. An approximation of
the feedback arc set algorithm on our example might give us the
interrupt checks shown in Figure 2d, but of course there are many
other possibilities.

3. Region-based Interrupt Checking
3.1 Overview
Our ISS is a region-based DBT that exploits optimisation opportuni-
ties within hot regions of code to maximise simulation throughput.
Taking collected profiling information, the system applies optimi-
sations across basic-blocks within a particular region to generate
highly efficient host machine code that can accurately emulate a tar-
get instruction set. There is not necessarily a one-to-one mapping
between basic-blocks in target machine code and the code gener-
ated by our JIT compiler. The optimisation phases may decide to
merge or split basic-blocks arbitrarily and this is a perfectly valid
operation, provided the behaviour of the binary being translated is

1 define ApplyChecks(WorkUnit):
2 NextIndex := 0
3 do:
4 RMCount := 0
5

6 foreach Block in WorkUnit.Blocks:
7 if Block.HasSelfLoop:
8 Block.HasInterruptCheck := True
9 else if not Block.HasInterruptCheck:

10 call StrongConnect(WorkUnit, Block)
11 while RMCount != 0
12

13 define StrongConnect(WorkUnit, StartBlock):
14 StartBlock.Index := NextIndex
15 StartBlock.LowLink := NextIndex
16 StartBlock.Seen := True
17 NextIndex++
18

19 BlockStack.Push(StartBlock)
20 StartBlock.OnBlockStack := True
21

22 foreach Successor in StartBlock.SuccessorBlocks:
23 if Successor.HasInterruptCheck:
24 continue
25

26 if not Successor.Seen:
27 StrongConnect(WorkUnit, Successor)
28 StartBlock.LowLink :=
29 min(StartBlock.LowLink, Successor.LowLink)
30 else if Successor.OnBlockStack:
31 StartBlock.LowLink :=
32 min(StartBlock.LowLink, Successor.Index)
33

34 if StartBlock.LowLink == StartBlock.Index:
35 Count := 0
36 do:
37 StackedBlock := BlockStack.Pop()
38 StackedBlock.OnBlockStack := False
39 Count++
40 while StackedBlock != StartBlock
41

42 if Count > 1:
43 StartBlock.HasInterruptCheck := True
44 RMCount++

Figure 4: Optimised interrupt check placement algorithm for arbi-
trary code regions, based on Tarjan’s [26] algorithm. The algorithm
implements the suggestion of maintaining a flag for each node to
determine if it exists on the block stack in constant time, and a test
to handle blocks which loop to themselves

honoured. The profiling information identifies which basic-blocks
may be local to a region, i.e. not accessed from outside the region,
and so the ability to jump arbitrarily to these blocks is removed.
This important distinction allows region local blocks to be arbitrar-
ily transformed by the optimisation phase, allowing for optimisa-
tions to be performed across these blocks within a region. If we
allowed entering (and exiting) the region by any basic-block, then
we would have to make certain guarantees about the simulated CPU
state (for example, modified register values are written back to the
state structure), which would introduce unnecessary overheads to
the generated native code.

Execution in our simulator begins by using an interpreter, col-
lecting region information as we progress. Such information in-
cludes the heads and lengths of basic blocks, as well as all detected
edges between basic blocks, which may be direct branches, predi-
cated branches, or indirect (computed) branches.



block_0x00001000:
  %1 = load i32* %actions_pending_ptr
  %2 = icmp ne i32 %1, 0
  br i1 %2, label %handle_actions, label %proceed_with_block

handle_actions:
  tail call void @cpuHandlePendingActions(i8* %cpu_state_val)

proceed_with_block:
  ...

Execution Engine

Emulation Model

leave native code
return to native code

Figure 5: LLVM IR emitted for interrupt checking at the head of a block determined to be an interrupt check block. If the CPU state structure
indicates that an action is pending, control leaves native code via a tail-call back to the execution engine, where the pending action is handled.

Once we identify that a region contains hot basic blocks (i.e.,
some blocks in that region have been executed more than N times,
where N is a configurable threshold), it is dispatched to an asyn-
chronous JIT compilation task farm. An LLVM [16] bytecode trans-
lation is then produced for the region, and standard optimisations
are applied, before finally machine code is emitted for the region.
During the profiling phase, certain blocks are identified as region
entry points. These blocks are used to transition from interpreted
code to translated code, and serve to enable further optimisations
to take place within a region by limiting the number of region entry
points only to those which have been discovered. Since we may not
necessarily have encountered all code or control flow within a re-
gion before we translate it, we may need to return to the interpreter
in order to execute untranslated code. In this case, this untranslated
code may become ‘hot’ and make the region eligible for retransla-
tion.

Asynchronous interrupts are a source of adverse control-flow
and can significantly degrade collected profiling information by in-
troducing spurious edges from profiled basic-blocks. To account for
this, we maintain an interrupt stack, which allows for control-flow
to be profiled at the currently executing interrupt level. By default,
we begin execution in a special no interrupt level and collect profil-
ing information as execution progresses. When an interrupt check
indicates an interrupt is pending, the interrupt level is pushed to
the interrupt stack and execution continues in the interrupt handler
with the profiler now collecting information in the new level. Once
the interrupt handler completes (possibly returning to user-code),
the interrupt level is popped from the stack and execution contin-
ues from where it left off, with profiling information from the point
of interrupt maintained. A stack is used to accommodate nested in-
terrupts. Figure 6 shows how the region forming process proceeds
in the presence of interrupts. Rather than superfluous edges being
formed between block A and block A′, and D′ and B, control flow
is discovered as it exists in the original executable.

3.2 Interrupt Check Placement Schemes
We have implemented three interrupt check placement schemes
in our ISS. Whilst the most accurate algorithm for computing the
feedback arc set of the region graph could be used to select basic
blocks in which to emit interrupt checks, we instead use an approxi-
mate algorithm based on Tarjan’s Strongly Connected Components
(SCC) [26] algorithm as described in Figure 4. The use of the ap-
proximation ensures that our ISS retains its fast warm-up time, by
reducing the latency introduced in employing this analysis phase.

We always check for interrupts after a basic-block has been
executed by the interpreter (regardless of the scheme in use) –
our schemes apply to how interrupt checks are inserted by the JIT

compiler as it is the performance of generated native code that we
are interested in maintaining.

The placement schemes we implement are detailed below:

1. Full: An interrupt check is inserted before every basic-block.
This is identical to how QEMU performs interrupt checking.

2. Backwards: An interrupt check is inserted before every basic-
block that is the target of a backwards branch.

3. Optimised: An interrupt check is inserted before the basic-
blocks selected by the algorithm described in Figure 4.

During the compilation phase, a compilation work unit (containing
guest basic-blocks and their control-flow information) is subjected
to analysis by the selected interrupt checking scheme, which de-
termines which blocks should contain interrupt checks. Once those
blocks are identified, interrupt checks are inserted where necessary
by the translator, as each block is translated.

Tarjan’s SCC algorithm requires a minor modification to work
with our ISS. In particular, we must detect self-loops (a basic-block
with itself as a successor) which the algorithm proper does not, and
we implement the suggestion for testing whether a node is on the
stack in constant time by maintaining an OnBlockStack flag for
each node. Otherwise, the algorithm remains unmodified.

3.3 Taking an Interrupt
As we are dealing with asynchronous interrupts, an interrupt may
be asserted by any simulated component, at any time and on any
host machine thread. We use the concept of “pending actions”
to indicate the presence of an action that must interrupt normal
execution, and we use a bitfield in the CPU state structure to indicate
what type of action may be pending. It is this bitfield that is queried
when determining whether or not an interrupt is pending, and the
native code that we emit for interrupt checking simply tests the
bitfield. If the value is determined to be non-zero, then we know
that an asynchronous action is pending, and that we must leave
native code to service it.

A pending action may be an interrupt, a Unix signal or a spe-
cial internal signal such as “abort” or “dump state”. This allows a
guest program, for example, to register signal handlers and have
a host signal propagated through. Alternatively, if a full operating
system is being simulated, during the OS initialisation phase an in-
terrupt vector table (IVT) will have been initialised with locations
to branch to when a particular interrupt is pending. When an emu-
lated platform device asserts an interrupt, control-flow will branch
via this IVT to the correct location in the guest OS.

Figure 5 shows that when an interrupt check block is executed,
and the pending actions bitfield is non-zero, control returns from
native code via a tail-call back into the execution engine. The
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Figure 6: Flow of region forming when an interrupt occurs. At (1), while executing the IRQ-detection loop (and before any other code has
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execution engine then invokes the necessary routines to service the
pending action. Since the result of handling the action may result
in adverse control-flow, (i.e. a change to the PC) we cannot return
to native code from where we exited and instead must continue
execution via the normal execution engine path. This may result in
returning to native code, but if the interrupt service routines (ISR)
have not yet been compiled, then execution will proceed through
the interpreter (potentially marking the ISR as hot).

4. Experimental Evaluation
4.1 Experimental Methodology
We perform measurements on two different types of workloads to
evaluate the impact of our approach. One workload is an interrupt-
heavy workload in the form of an I/O benchmark, using the standard
Linux I/O benchmarking tool hdparm [20], another is a compute-
heavy workload using the SPEC CPU2006 integer benchmarks.
This comparison will evaluate the impact of our optimisations on
workloads that require low-latency interrupt servicing, and those
that do not rely on interrupts and hence are not sensitive to interrupt
latency.

4.2 Experimental Setup
All of our workloads are executed inside an ARM Linux 3.17.0
guest operating system (with an Arch Linux ARM user-space),
running inside our ISS in full-system mode. The host machine for
simulation is described in Table 1a, and the configuration of our ISS
is described in Table 1b.

State-of-the-art We also compare ourselves to the state-of-the-
art DBT QEMU version 2.1.50. This comparison is to indicate that
our region-based approach to compilation can give us significant
performance improvements, even with the added complexity of
inserting interrupt checks.

4.2.1 Platform Configuration
We are using a vanilla (unmodified) Linux 3.17.0 kernel as the sim-
ulator’s guest operating system to host our experiments. It is con-
figured for an ARM Versatile Application Baseboard, and contains

no extra configuration or modifications other than enabling the Vir-
tIO block device module. This kernel boots unmodified on both our
ISS and QEMU.

The ARM Versatile Application Baseboard includes a single
ARM926 CPU, as well as many external devices such as timers
and I/O modules. We support many of these devices, excluding
those which are irrelevant to our experiments (such as the FPGA), or
for which no documentation is publicly available. The platform as
specified includes only 128MB of RAM, which is not enough to run
the SPEC benchmark suite. For this reason we modify the platform
to include additional memory - this modification is made in both
our ISS, and in QEMU.

We have implemented the VirtIO specification in our ISS, as
detailed in [23] in order to provide a block device implementation
to the guest Linux operating system. This block device contains the
root filesystem for booting, and is also used as the target of the I/O
benchmark for testing.

4.3 Main Results for I/O-bound Workloads
For our I/O benchmarking, we are not interested in testing the un-
derlying storage device, but simply wish to stress our interrupt sys-
tem. Therefore, the hdparm benchmark is suitable for these inter-
rupt tests as our I/O device is implemented as a VirtIO [23] block
device which uses interrupts to convey I/O completion information
back to the guest. We can measure the performance of our system,
by measuring the I/O throughput of our system, as I/O throughput
will correspond directly to the rate at which we can service inter-
rupts. We do not need to test different I/O access patterns (such as
sequential, random, etc), as this will not have any effect on the in-
terrupt system.

In our ISS, when a simulated device raises an interrupt, it causes
an IRQ line to become asserted on the CPU, which in turn causes an
asynchronous action to become pending. This asynchronous action
will eventually cause the execution of the simulated CPU to branch
to an interrupt service routine (ISR). We define interrupt latency to
be time it takes for a simulated device to raise an interrupt and for
the CPU to branch to and begin executing the ISR.



Vendor & Model Dell™PowerEdge™ R610

Processor Architecture x86-64
Processor Model 2× Intel©Xeon™ X5660
Number of cores 2×6
Clock/FSB Frequency 2.80/1.33 GHz
L1-Cache 2×6× 32K Instruction/Data
L2-Cache 2×6× 256K
L3-Cache 2× 12 MB
Memory 36 GB across 6 channels
Operating System Linux version 2.6.32 (x86-64)

(a) ISS Host Configuration.

ISS Parameter Setting

Guest architecture ARMv5T
Guest operating system Linux 3.17.0
Host architecture x86-64
Translation/Execution Model Asynch. Mixed-Mode
Tracing Scheme Region-based [6, 25]
Tracing Interval 30000 blocks
JIT compiler LLVM 3.4
No. JIT Compilation Threads 10
JIT Optimisation -O3 & Part. Eval. [27]
JIT Threshold Adaptive [6]

(b) ISS System Configuration.

Table 1: Experimental setup: Host system parameters and configuration of the ISS system.
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Figure 7: Absolute I/O throughput in MB/s measured with the
hdparm benchmark – higher is better. We show that in all cases,
we have a higher I/O throughput than QEMU, and we improve over
our baseline full scheme by 7%.

Figure 7 shows a 61% improvement in I/O throughput on the
hdparm benchmark over QEMU, and a 7% relative improvement
when using the optimised placement scheme versus the backwards
and full checking schemes.

4.4 Main Results for CPU-bound Workloads
As we are simulating a complete operating system, it is not pos-
sible to remove all interrupt checks – even when no interrupts are
raised for some time – and as such CPU-bound workloads will in-
cur a small performance penalty due to occasional interrupt check-
ing. Therefore, we consider the impact our schemes have on the
runtime of a CPU-bound workload. Figure 8 shows that we expe-
rience a 13% reduction in the runtime of the SPEC CPU2006 in-
teger benchmarks when employing the more optimal placement al-
gorithms. This can be attributed to the higher quality of native code
that we generate as a result of inserting fewer interrupt checks.

The SPEC CPU2006 integer benchmark is widely used and
considered to be representative of a broad spectrum of application
domains. We have used it together with its reference data sets.
The benchmarks have been compiled using the GCC 4.6.0 C/C++
cross-compilers, targeting the ARM architecture (without hardware
floating-point support) and with -O2 optimisation settings.

4.4.1 Comparison to QEMU

An important metric for our ISS is to continue yielding a perfor-
mance improvement for our CPU-bound workloads over the state-
of-the-art QEMU. Figure 8 shows that against our baseline scheme
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Figure 8: Relative reduction in wall-clock runtime of the SPEC
CPU2006 integer benchmark against the full baseline – lower is
better. We show that in all cases, we are faster than QEMU, and im-
prove our simulation speed by 13% with the optimised placement
scheme.

(full placement), QEMU is 3x slower in full-system mode, confirm-
ing that our region-based DBT approach maintains its ability to
optimise code across block boundaries, despite inserted interrupt
checks.

Furthermore, an advantage of using the VirtIO infrastructure is
that we can configure QEMU to use exactly the same kernel image,
filesystem and block device configuration, allowing us to directly
compare our I/O throughput against QEMU.

4.5 Further Analysis
4.5.1 Static and Dynamic Interrupt Checks
A static interrupt check corresponds to the decision to place an
interrupt check in a given basic block, where a dynamic interrupt
check is an interrupt check that actually takes place at runtime.
We are looking to minimise the number of static interrupt checks
placed, and correspondingly reduce the number of dynamic checks
made. A reduction in static interrupt checks serves two purposes:

a. The amount of IR the LLVM JIT compiler is presented with is
lower, thereby reducing the amount of work the optimiser and
compiler have to do and subsequently improving compilation
time, and

b. the optimiser is free to perform more aggressive optimisations
across the region, and produce better native code.
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Figure 9: Reduction in static and dynamic interrupt checks for I/O and CPU-bound workloads on our three different interrupt checking
schemes – lower is better. For I/O-bound workloads, our optimised placement algorithm reduces the amount of static checks by 66% and
dynamic checks by 73%. For CPU-bound workloads, we reduce static checks by 63% and dynamic checks by 69%.

Figures 9a and 9b both show that we place fewer static interrupt
checks, and as a consequence generally perform fewer dynamic
checks. The exception to this is when using the backwards branch
scheme in a CPU bound workload where we observe an increase
in dynamic checks. This can be attributed to CPU-bound workloads
spending more time in hot looping control-flow, where we will nec-
essarily have inserted an interrupt check, and therefore increase the
dynamic interrupt check count. Our optimised placement scheme
places 66% less interrupt checks than the baseline scheme, and
causes 73% fewer dynamic checks to occur.

4.5.2 Interrupt Latency
The interrupt latency we are measuring is the time it takes for
a simulated interrupt to be raised, until the time our execution
engine begins executing the ISR. A reduction in interrupt latency
will improve the throughput of an I/O bound workload, as data
requests can be served more quickly. We measure the impact that
our placement schemes have on interrupt latency, to ensure we are
not deferring interrupts for an unacceptable period of time. These
measurements are taken for the I/O-bound workload, as interrupt
latency will not affect the throughput of CPU-bound workloads.

Whilst it may seem that we should have a lower latency for the
full placement scheme (i.e. more checks, means more opportuni-
ties to respond to an interrupt) the impact that the scheme has on
generated code quality is such that we actually observe higher la-
tencies (108µs, over 80µs on average) when employing this. Figure
10 shows that we reduce interrupt latency in the schemes which
reduce the amount of static checks inserted, and for our optimised
algorithm we reduce latency by 26%. The higher quality of native
code that we generate allows us to execute faster, and accounts for
the fact that we can serve interrupts more quickly.

4.5.3 Distribution of Interrupt Latencies
Figure 11 shows how various latencies for serviced interrupts are
distributed between execution with the full and optimised scheme.
The cosine similarity of the latencies produced between these
schemes is cosθ = 0.999, indicating that the differing schemes
do not significantly vary in the latencies yielded by the system.
The cumulative latency distribution shown in Figure 11 is in fact
comparable to that of the ARM port of the popular Xen hypervisor
running on actual hardware [28].
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Figure 10: Absolute interrupt latency in µs as measured when
running the hdparm I/O benchmark – lower is better. We show
that our optimised placement scheme reduces latency by 26%.

4.5.4 Scalability
We have presented a range of interrupt frequencies, from 1Hz to
1kHz to test how our system scales to higher frequencies, and
Figure 12 shows that our optimised scheme consistently performs
better than the naïve full scheme. Furthermore, it can be seen that
we maintain a relatively consistent level of performance across the
frequency range, only dropping by approximately 2%.

4.5.5 Comparison to Hardware
With simulation throughput approaching actual hardware perfor-
mance, it’s important to ensure that interrupt handling in our ISS is
on even terms with the hardware we are emulating, i.e. we are not
introducing an unacceptable amount of latency.

Interrupt response time observed on actual, non-simulated sys-
tems is the sum of a hardware dependent time and some operating
system induced overhead. The hardware dependent time is deter-
mined by the micro-architecture of the processor and its current
state, the system configuration and the type of interrupt. Operating
system overheads may vary greatly between best and worst case
scenarios, and are generally worst when the kernel (temporarily)
disables interrupts.

According to the manufacturer’s specification [2] the interrupt
latency seen by a Linux driver running on an ARM1176JZ(F)-S
with two levels of cache is approximately 5000 cycles. This is
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Figure 11: Cumulative distribution of interrupt latencies for our
optimised interrupt policy, compared against checking every basic
block.
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Figure 12: Comparison of full interrupt checking versus our inter-
rupt checking policy using a range of interrupt frequencies from
1Hz to 1kHz. Full interrupt checking incurs a significant perfor-
mance overhead at high interrupt frequencies, while our optimised
policy continues to provide good performance.

largely caused by overheads in the operating system itself. 5000
cycles at 300MHz is 16.7µs, and our ISS yields an average latency
of 80µs when configured with our optimised insertion algorithm.

5. Related Work
Sources of errors in full-system simulation have been recently anal-
ysed in [11]. The optimal placement of interrupt checks can be
compared to the optimal insertion of profiling counters, a prob-
lem which can exhibit similar issues as described in the previous
sections. However, updating profiling counters does not introduce
additional control-flow – since the majority of cases are simple
counter updates. Whilst reducing the number of counter updates
can lead to performance improvements by reducing the amount
of memory accesses, our problem is slightly different in that extra
control-flow must be added to perform interrupt checks, thus caus-
ing additional latency in the optimiser, and resulting in less optimal
code being generated. The technique described in [3] addresses the
optimal placing problem, but does not address the issues that are
encountered with additional exit points being introduced.

Whilst there are a number of full-system simulators available,
either open-source (e.g. QEMU [4], ARM-Iss [18] or MARSSx86

[22]) or under a commercial license (e.g. Simics [19]), only few
papers on interrupt handling in ISS have been published [7].

Older versions of QEMU utilised a zero-overhead interrupt
checking scheme, which suffered from serious race-conditions,
however later versions (including the version we compare against)
have addressed these issues by inserting checks at the head of every
basic-block. However the overall performance of our DBT is still
on average 3.4x faster, due to techniques we employ based on those
described in [6, 25, 27].

ARM-Iss [18] is an instruction set simulator for the ARM ar-
chitecture. It is based on an interpretive execution model with addi-
tional instruction caching. Interpretive ISS are orders of magnitude
slower than DBT ISS such as the one discussed in this paper. ARM-
Iss checks for pending interrupts after each instruction. Whilst ac-
curate this further exacerbates the performance penalty of this sys-
tem.

MARSSx86 [22] is a full-system simulator for x86 CPUs. Under
the hood, MARSSx86 uses QEMU for functional simulation and
PTLsim for cycle-accurate modelling, using decomposition of x86
instructions into RISC-like µ-ops and using basic block buffers to
form traces of x86 µ-ops. MARSSx86 delays the interrupt issued
to the CPU until the CPU comes into the stable state, defined at
opcode commit boundaries. Once the interrupts are issued to the
CPU MARSSx86 switches from detailed simulation to functional
emulation for correctly decoding the interrupt. The emulator mode
sets up the correct CPU context to handle the interrupt but it does not
start executing the interrupt handler. After the correct CPU context
is set up, MARSSx86 switches back to the detailed simulation and
starts simulating the interrupt handler code in kernel mode. Due
to its cycle-accurate approach interrupt handling in MARSSx86 is
precise, but it only operates at a speed of about 200 kilo instruction
commits per second (KIPS), which is approximately 1000 times
slower than the (instruction-accurate) DBT ISS presented in this
paper.

An improved mechanism for the precise simulation of inter-
rupts in cycle-accurate simulators has been presented in [7]. The
simulator speculatively executes instructions of the emulated pro-
cessor assuming that no interrupts will occur. At restore-points this
assumption is verified and the processor state reverted to an ear-
lier restore-point if an interrupt did actually occur. Whilst effective
at speeding up cycle-accurate simulation this is still too costly for
high-speed functional ISS.

A software simulator based on COTSon [1] that faithfully sim-
ulates x86 hardware at a speed in the tens of MIPS range has been
described in [24]. Details on interrupt handling are not provided,
though. Similarly, the strategies for interrupt checking are not fur-
ther specified for Giano [10], SimFlex [12] or Graphite [21]. Gem5
[5] performs per-instruction interrupt checking due to its ambition
to support cycle-accurate simulation.

5.1 Virtual Machines
Somewhat related to interrupt checking in an ISS is exception han-
dling in a Java VM. Java exceptions are synchronous, though, i.e.
they are related to the currently executed instruction and not trig-
gered externally. Two techniques for dealing with Java exceptions
during JIT compilation, namely on-demand translation of excep-
tion handlers and exception handler prediction are presented in
[17]. In our system we implement a technique similar to on-demand
translation, where translation of an interrupt handler is delayed un-
til the interrupt really occurs. This, however, is a necessity of DBT
in general and not specific to interrupt handling.

A notable exception is the implementation of yield points in the
JikesRVM [14] Java VM, where interrupt checks are inserted in
method prologues and epilogues, and on backedges. These checks
are inserted to facilitate user-space scheduling of Java threads,



but have been deprecated (as of version 3.1.0) in favour of native
threading. JikesRVM inserts a yield point in a method prologue and
epilogue, and on a control-transfer instruction (such as an if) when
the target is backwards. However, this technique is not applicable
to our DBT, as we are discovering the structure of executing code
dynamically, by building a control-flow graph of a region, and must
take into account the possiblity of self-modifying code.

6. Summary & Conclusions
In this paper we have developed an optimised scheme for efficient
placement of asynchronous interrupt checks in full-system instruc-
tion set simulators using region-based dynamic binary translation.
Our technique detects control flow loops of any structure and nest-
ing level and inserts a near-minimal number of interrupt checks.
This technique provides correctness through the guarantee that at
least one check for pending interrupts is performed for each itera-
tion of any enclosing loop. On average, we reduce the number of
dynamic interrupt checks in our ARM simulator by 73% in com-
parison to a scheme that checks for interrupts at the end of each
basic block. Despite the reduced frequency of interrupt checks the
latency for serving interrupts is reduced by 26% due to increased
opportunities for code optimisation between interrupt checks. We
also show that we maintain a performance advantage over state-
of-the-art QEMU, where we improve I/O throughput by 1.6x and
simulation performance by 3.4x in full-system simulation across a
range of benchmarks.

6.1 Future Work
We intend to investigate the effect that the exact placement of
interrupt checks has on the quality of generated code. For example,
does the placement of an interrupt check enable the optimiser to
produce better code when inserted into a loop condition block, as
opposed to the loop body?

We will also investigate optimisation opportunities for syn-
chronous exceptions/interrupts, particularly exceptions caused by
memory instructions, which are frequently encountered.
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