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ABSTRACT
Two active dielectric materials may be blended together to realize
a homogenized composite material (HCM) which exhibits more gain
than either component material. Likewise, two dissipative dielectric
materials may be blended together to realize an HCM which exhibits
more loss than either component material. Sufficient conditions for
such gain/loss enhancement were established using the Bruggeman
homogenization formalism. Gain/loss enhancement arises when (i)
the imaginary parts of the relative permittivities of both component
materials are similar in magnitude and (ii) the real parts of the
relative permittivities of both component materials are dissimilar in
magnitude.
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1. Introduction

Two (or more) particulate materials may be mixed together to realize a homogenized
composite material (HCM), provided that the particles making up the component materials
are much smaller than the wavelengths involved.[1] To be of practical value, an HCM
is generally required to exhibit a desirable blend of certain properties of its component
materials. Metamaterials are HCMs whose performances exceed those of their component
materials.[2,3] Within the electromagnetic realm, many instances of such HCMs can be
found. For examples: through the process of homogenization, the phenomenon of weak
nonlinearity may be enhanced,[4–6] and the group speed may be enhanced beyond the
maximum group speed in the component materials [7,8] or weakened below theminimum
group speed in the component materials.[9]

In this short article, the prospect of enhancing gain by means of homogenization is
explored for HCMs arising from active component materials. The dual process of loss
enhancement in HCMs arising from dissipative component materials is also considered.
The well-established Bruggeman homogenization formalism [10–12] is employed, all com-
ponent materials being thereby treated on the same footing. Accordingly, this formalism is
applicable for all values of the volume fractions of the component materials.

CONTACT Tom G. Mackay T.Mackay@ed.ac.uk

© 2016 The Author(s). Published by Taylor & Francis
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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2 T. G. MACKAY AND A. LAKHTAKIA

2. Homogenization via the Bruggeman formalism

Let us consider a composite material comprising two distinct materials labeled ‘a’ and ‘b’
that are distributed randomly as electrically small spheres. Both component materials are
isotropic dielectric materials with relative permittivities εa = εra + iεia and εb = εrb + iεib,
respectively, wherein ε

r,i
a,b ∈ R and εa �= εb. Physical plausibility requires the imposition of

the restriction εraε
r
b > 0 on the Bruggeman formalism.[13]

The Bruggeman estimate εBr = εrBr + iεiBr of the HCM relative permittivity is provided
implicitly by the quadratic equation [10]

2ε2Br + εBr
[
εa

(
1 − 3fa

) + εb
(
3fa − 2

)] − εaεb = 0 , (1)

with fa being the volume fraction of component material ‘a’. The limiting conditions εBr →
εb as fa → 0, and εBr → εa as fa → 1 allow the correct root to be extracted from Equation
(1).

When both component materials are active (i.e. εia,b < 0),[14] the phenomenon of
gain enhancement is signified by εiBr < min

{
εia, ε

i
b

}
. When both component materials

are dissipative (i.e. εia,b > 0), the phenomenon of loss enhancement is signified by εiBr >
max

{
εia, ε

i
b

}
.

To illustrate the phenomenon of gain enhancement, let us consider a specific example.
Suppose that the component materials are active ones, specified by εa = 2 − 0.05i and
εb = 5−0.04i. The real and imaginary parts of the Bruggeman estimate of the HCM relative
permittivity are plotted against volume fraction in Figure 1. Also plotted in this figure are
two well-established bounds on the HCM relative permittivity, namely the Wiener bounds
[15]

Wα = faεa + fbεb

Wβ =
(
fa
εa

+ fb
εb

)−1

⎫⎪⎪⎬
⎪⎪⎭

(2)

and the Hashin–Shtrikman bounds [16]

HSα = εb + 3faεb
(
εa − εb

)
εa + 2εb − fa

(
εa − εb

)

HSβ = εa + 3fbεa
(
εb − εa

)
εb + 2εa − fb

(
εb − εa

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (3)

Herein, fb = 1 − fa is the volume fraction of component material ‘b’. Originally, the Wiener
bounds and the Hashin–Shtrikman bounds were derived for HCMs characterized by wholly
real-valued constitutive parameters, but generalizations to complex-valued constitutive
parameters later emerged.[17]

The Hashin–Shtrikman bound HSα is equivalent to the Maxwell Garnett estimate of the
HCM relative permittivity, based on the homogenization of a randomdispersal of spheres of
componentmaterial ‘a’ embedded in the host componentmaterial ‘b’, valid for fa � 0.3.[18]
Similarly, HSβ is equivalent to theMaxwell Garnett estimate of theHCM relative permittivity,
based on the homogenization of a random dispersal of spheres of component material ‘b’
embedded in the host component material ‘a’, valid for fb � 0.3.
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WAVES IN RANDOM AND COMPLEX MEDIA 3

Figure 1. The real and imaginary parts of the HCM relative permittivity εBr estimated by the Bruggeman
formalism (red, solid curves) plotted against volume fraction fa, when εa = 2−0.05i and εa = 5−0.04i.
Also plotted are the Hashin–Shtrikman bounds: HSα (thin, green, broken dashed curves) and HSβ (thick,
green, broken dashed curves); and the Wiener bounds: Wα (thin, blue, dashed curves) and Wβ (thick,
blue, dashed curves).

The real part of εBr is seen in Figure 1 to decrease uniformly from εrb to εra as fa increases
from 0 to 1. Furthermore, εrBr is tightly bounded by HSα and HSβ , and less tightly bounded
byWα andWβ . The imaginary part of εBr follows amore interesting trajectory as fa increases:
εiBr decreases from εib at fa = 0, reaches a minimum value at fa ≈ 0.8, and then increases to
reach εia at fa = 1. Thus, according to the Bruggeman formalism, gain enhancement arises
in the vicinity of fa ≈ 0.8, with the minimum value of εiBr (≈−0.0515) being approximately
3% smaller than min

{
εia, ε

i
b

}
. Furthermore, Im

(
HSβ

)
< min

{
εia, ε

i
b

}
when 0.7 � fa < 1.

Thus, gain enhancement is also predicted by the Maxwell Garnett formalism.
Loss enhancement mirrors gain enhancement. To support this assertion, let us consider

the dissipative counterpart of the active HCM considered in Figure 1. In Figure 2, plots are
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4 T. G. MACKAY AND A. LAKHTAKIA

Figure 2. As Figure 1 except that both component materials are dissipative, having the relative
permittivities εa = 2 + 0.05i and εa = 5 + 0.04i.

presented which are equivalent to those presented in Figure 1 but now the component
materials are dissipative ones, specified by εa = 2+0.05i and εb = 5+0.04i. As in Figure 1,
εrBr in Figure 2 decreases uniformly from εrb to εra as fa increases from 0 to 1; moreover,
εrBr is tightly bounded by HSα and HSβ , and less tightly bounded by Wα and Wβ . The plot
of εiBr in Figure 2 displays loss enhancement with the maximum value of εiBr (≈ 0.0515)
being approximately 3% larger than max

{
εia, ε

i
b

}
. In addition, Im

(
HSβ

)
> max

{
εia, ε

i
b

}
when 0.7 � fa < 1. Thus, loss enhancement is predicted by both the Bruggeman formalism
and the Maxwell Garnett formalism.

Since the active and dissipative scenarios effectively represent two different sides of the
same coin, henceforth in this section, we focus on gain enhancement. Let us now turn to
the gain-enhancement index

ρ = εiBr

min
{
εia, ε

i
b

} (4)
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WAVES IN RANDOM AND COMPLEX MEDIA 5

Figure 3. The gain-enhancement index ρ plotted against fa ∈ [0, 1] and εia/ε
i
b ∈ [0.9, 1.1], when

εra = 2, εrb = 5, and εib = −0.04.

estimated using the Bruggeman formalism. Gain enhancement is signified by ρ > 1. For
εra = 2, εrb = 5, and εib = −0.04, ρ is plotted against volume fraction fa and the ratio
εia/ε

i
b in Figure 3. Gain enhancement is evident for mid-range values of fa when εia/ε

i
b � 1.

Specifically for this particular example,

(a) ρ is as high as about 1.05, with its maximum value occurring for fa ≈ 0.6 and
εia/ε

i
b = 1; and

(b) there is no gain enhancement for εia/ε
i
b � 0.95 and for εia/ε

i
b � 1.07, regardless of

the value of fa.

The dependency of ρ upon εra and εrb is delineated in Figure 4, wherein ρ is plotted
against fa and εra/ε

r
b for εia = −0.05, εib = −0.04, and εrb = 5. As in Figure 3, ρ is high for

mid-range values of fawhen the ratio εra/ε
r
b deviatesmost fromunity in Figure 4. Specifically

for this particular example,

(a) ρ is as high as about 1.4, with its maximum value occurring for fa ≈ 0.7 and εra/ε
r
b =

0.1;
(b) ρ is as high as about 1.2, with its maximum value occurring for fa ≈ 0.5 and εra/ε

r
b =

10; and
(c) there is no gain enhancement for εra/ε

r
b ≈ 1, regardless of the value of fa.

3. Conditions for gain/loss enhancement

The foregoing and similar calculations led us to conclude that gain enhancement should
be expected when

(i) εia < 0 and εib < 0,
(ii) the ratio εia/ε

i
b is close to unity, and

(iii) the ratio εra/ε
r
b is either very small or very large.
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6 T. G. MACKAY AND A. LAKHTAKIA

Figure 4. The gain-enhancement index ρ plotted against fa ∈ [0, 1] and εra/ε
r
b ∈ [0.1, 1]∪ [1, 10], when

εia = −0.05, εib = −0.04, and εrb = 5.

Loss enhancement should be expected when εia > 0, εib > 0, and the conditions (ii) and
(iii) are satisfied. In order to formally establish this understanding soundly, we used the
Bruggeman equation (1) to obtain the gradient

dεBr

dfa
= 3εBr

(
εa − εb

)
4εBr + εa

(
1 − 3fa

) + εb
(
3fa − 2

) . (5)

This expression underlies further analysis.
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WAVES IN RANDOM AND COMPLEX MEDIA 7

3.1. Gain enhancement

Suppose that both component materials are active, i.e. εia < 0 and εib < 0. If εia ≥ εib, then a
sufficient condition for gain enhancement is that the gradient

lim
fa→0

dεiBr

dfa
< 0 . (6)

Given that

lim
fa→0

εBr = εb , (7)

Equation (5) yields

lim
fa→0

dεiBr

dfa
= 3εb

(
εa − εb

)
2εb + εa

, (8)

and hence

lim
fa→0

dεiBr

dfa

= 3
{[

εib

(
εra − εrb

) + εrb

(
εia − εib

)] (
2εrb + εra

) − [
εrb

(
εra − εrb

) − εib

(
εia − εib

)] (
2εib + εia

)}
(
2εrb + εra

)2 + (
2εib + εia

)2 .

(9)

The sufficient condition (6) for gain enhancement is therefore logically equivalent to

[
εib

(
εra − εrb

) + εrb

(
εia − εib

)] (
2εrb + εra

)
<

[
εrb

(
εra − εrb

) − εib

(
εia − εib

)] (
2εib + εia

)
.

(10)

If εib ≥ εia, then a sufficient condition for gain enhancement is that the gradient

lim
fa→1

dεiBr

dfa
> 0 . (11)

Following the same argument as used to derive condition (10), we found that the sufficient
condition (11) for gain enhancement is logically equivalent to

[
εia

(
εra − εrb

) + εra

(
εia − εib

)] (
2εra + εrb

)
>

[
εra

(
εra − εrb

) − εia

(
εia − εib

)] (
2εia + εib

)
.

(12)

The special case εia = εib is noteworthy. Both the conditions (10) and (12) then reduce to

(
εra − εrb

)2 > 0. (13)

Since condition (13) is always satisfied because εa �= εb, gain enhancement is guaranteed
for all values of εra and εrb, provided that εia = εib.
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8 T. G. MACKAY AND A. LAKHTAKIA

Figure 5. Top: Gain-enhancement subspace in the
(−εia,−εib

)
space, when εra = 2 and εrb = 5. Bottom:

Gain-enhancement subspaces in the
(
εra, ε

r
b

)
space, when εia = −0.05 and εrb = −0.04.
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WAVES IN RANDOM AND COMPLEX MEDIA 9

3.2. Loss enhancement

Suppose both component materials are dissipative, i.e. εia > 0 and εib > 0. If εia ≤ εib, then a
sufficient condition for loss enhancement is that the gradient

lim
fa→0

dεi

dfa
> 0 , (14)

which, in the manner described in Section 3.1, is logically equivalent to the condition

[
εib

(
εra − εrb

) + εrb

(
εia − εib

)] (
2εrb + εra

)
>

[
εrb

(
εra − εrb

) − εib

(
εia − εib

)] (
2εib + εia

)
.

(15)

If εib ≤ εia, then a sufficient condition for loss enhancement is that the gradient

lim
fa→1

dεi

dfa
< 0 , (16)

which is logically equivalent to the condition

[
εia

(
εra − εrb

) + εra

(
εia − εib

)] (
2εra + εrb

)
<

[
εra

(
εra − εrb

) − εia

(
εia − εib

)] (
2εia + εib

)
.

(17)

As in Section 3.1, both conditions (15) and (17) reduce to condition (13) for the special
case εia = εib. Therefore, loss enhancement is guaranteed for all values of εra and εrb when
εia = εib.

3.3. Numerical illustration

The conditions (10) and (12) provide a convenient means of exploring the parameter space
of the relative permittivities of the component materials that support gain enhancement,
and conditions (15) and (17) play the same role for loss enhancement. Let us illustrate this
assertion with a numerical example.

In Figure 5, the parameter spaces that support gain enhancement are mapped for:
(i)

(−εia,−εib

) ∈ (
0, 1

) × (
0, 1

)
with εra = 2 and εrb = 5; and (ii)

(
εra, ε

r
b

) ∈ (
0.5, 10

) ×(
0.5, 10

)
with εia = −0.05 and εrb = −0.04. For εra = 2 and εrb = 5, the gain-enhancement

subspace in the
(−εia,−εib

)
space is a window that contains εia = εib and becomes narrower

as the magnitudes of εia and εib are decreased. For εia = −0.05 and εib = −0.04, two
gain-enhancement subspaces in the

(
εra, ε

R
b

)
space exist where εra and εrb are dissimilar in

magnitude with greater scope for gain enhancement arising when the magnitudes of εra
and εrb are increased. These trends gleaned from Figure 5 are wholly consistent with those
evident in Figures 3 and 4.

3.4. Non-dissipative and non-active componentmaterials

In passing, let us remark on the special case when both component materials are neither
dissipative nor active, i.e. εia = εib = 0. Provided that the possibility εBr = 0 is excluded from
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10 T. G. MACKAY AND A. LAKHTAKIA

consideration (which is not physically plausible for the situation εaεb > 0 considered here),
we infer from Equation (5) that dεBr/dfa �= 0. Therefore, εBr is either a uniformly increasing
or a uniformly decreasing function of fa. Hence, εBr must lie between εa and εb for all values
of fa ∈ [0, 1].

4. Closing remarks

Using the Bruggeman formalism, we have established in the foregoing sections that an
HCM comprising two active (resp. dissipative) component materials may exhibit more gain
(resp. loss) than either of its component materials. For the range of εa and εb values
explored in numerical examples here, gain enhancements of up to 40% were found.
Furthermore, sufficient conditions for such gain enhancement and loss enhancement
have been established under conditions (10) and (12), and (15) and (17), respectively.
These enhancements arise when (i) the imaginary parts of the relative permittivities of
both component materials are similar in magnitude and (ii) the real parts of the relative
permittivities of both component materials are dissimilar in magnitude. Similar gain/loss
enhancements also emerge from the Maxwell Garnett formalism for dilute composite
materials.

The reported phenomena of gain enhancement and loss enhancement are likely to
be exacerbated by directional effects in anisotropic HCMs, as has been established for
nonlinearity enhancement [19,20] and group-speed enhancement.[21]

The Bruggeman homogenization formalism is rigorously established, since it represents
the lowest-order formulation of the strong-permittivity-fluctuation theory.[22] But the
formalismdoesnot shed light on thephysicalmechanisms that give rise to the reportedgain
and loss enhancements. Appropriate experimental studies may provide physical insight. In
this regard,we remark that themicrostructure (or nanostructure) of the compositematerials
considered in the foregoing study, i.e. a random dispersal of electrically small spheres, is a
relatively simple one that is amenable to experimental realization. This randommicrostruc-
ture is in contrast to the rather complex microstructures that are often associated with
metamaterials.[3] Moreover, the permittivity values chosen for the component materials
in the numerical illustrations of gain and loss enhancements provided in Figures 1–5 are
practicable ones for the most part.
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