

Edinburgh Research Explorer

A Text-Mining Approach to Explain Unwanted Behaviours

Citation for published version:
Chen, W, Aspinall, D, Gordon, A, Sutton, C & Muttik, I 2016, A Text-Mining Approach to Explain Unwanted
Behaviours. in EuroSec '16 Proceedings of the 9th European Workshop on System Security ., 4, ACM, 9th
European Workshop on System Security , London, United Kingdom, 18/04/16. DOI:
10.1145/2905760.2905763

Digital Object Identifier (DOI):
10.1145/2905760.2905763

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
EuroSec '16 Proceedings of the 9th European Workshop on System Security

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2905760.2905763
https://www.research.ed.ac.uk/portal/en/publications/a-textmining-approach-to-explain-unwanted-behaviours(f3517298-cdb8-4257-9dad-9488223953d6).html

A Text-Mining Approach to Explain Unwanted Behaviours

Wei Chen
University of Edinburgh, UK
wchen2@inf.ed.ac.uk

David Aspinall
University of Edinburgh, UK

david.aspinall@ed.ac.uk
Andrew D. Gordon

Microsoft Research
Cambridge, UK

University of Edinburgh, UK
andy.gordon@ed.ac.uk

Charles Sutton
University of Edinburgh, UK
csutton@inf.ed.ac.uk

Igor Muttik
Intel Security, UK

igor.muttik@intel.com

ABSTRACT
Current machine-learning-based malware detection seldom
provides information about why an app is considered bad.
We study the automatic explanation of unwanted behaviours
in mobile malware, e.g., sending premium SMS messages.
Our approach combines machine learning and text mining
techniques to produce explanations in natural language. It
selects keywords from features used in malware classifiers,
and presents the sentences chosen from human-authored mal-
ware analysis reports by using these keywords. The expla-
nation elaborates how a system decision was made. As far
as we know, this is the first attempt to generate explana-
tions in natural language by mining the reports written by
human malware analysts, resulting in a scalable and entirely
data-driven method.

CCS Concepts
•Computing methodologies → Learning paradigms;
•Security and privacy → Mobile and wireless secu-
rity; •Information systems → Data mining;

Keywords
Mobile security; Android system; malware detection; text
mining; machine learning.

1. INTRODUCTION
Mobile malware, including trojans, spyware and other kinds
of unwanted software, has been increasingly seen in the wild
and even on official app stores [9, 26]. This has motivated re-
cent research on dedicated methods for automatically iden-
tifying mobile malware, including methods based on static
analysis [6, 11, 22, 23], dynamic analysis [8, 15, 19], and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EUROSEC’16,April 18-21, 2016, London, United Kingdom
Copyright 2016 ACM 978-1-4503-4295-7/16/04. . . $15.00
http://dx.doi.org/10.1145/2905760.2905763

machine learning [4, 5, 13, 14, 24]. However, except some
descriptions [20, 26] of several famous malware families, e.g.,
Geinimi, Basebridge, Droidkungfu, etc., people have no idea
of which behaviour makes an app bad. It is not enough to
simply identify an app as malware. We also need to give con-
fidence that the identification is correct and explain what it
means, so that appropriate actions are taken. This suggests
an important research problem which has received far less
attention: automatically generating a short paragraph to
explain unwanted behaviours of an app if it has been auto-
matically decided as malware.

Here are example automatic explanations for some instances
in families: Zitmo, Opfake, and Droidkungfu [20, 26].

a. Allows applications to open network sockets, and uploads
the data to a specific url. (an instance of Zitmo)
b. It sends SMS messages to premium rated numbers. (an
instance of Opfake)
c. This is a trojan which steals personal information from
the infected device. It can be controlled over the web through
HTTP. (an instance of Droidkungfu)

This research has several potential benefits, including: pro-
ducing hints for malware analysts before costly investiga-
tion, supporting the automatic generation of analysis re-
ports, improving the understanding of threats in apps, etc.

Our approach combines machine learning and text mining
techniques, and proceeds as follows.

• Classifiers. We train a linear classifier using per-
missions, actions, and API calls as input features. It
not only automatically decides whether an app is mal-
ware but also characterises unwanted behaviours, i.e.,
a small set of features selected by their weights.

• Keywords. The selected features are converted into a
set of keywords, i.e., natural language tokens extracted
from the documents of these features.

• Sentences. We use these keywords to retrieve sen-
tences from human-authored malware analysis reports.

If a target app is decided as malware by the classifier, the
sentences for its features will be presented as the explana-
tions of its unwanted behaviours.

This is the first to automatically generate explanations in
natural language by exploiting human-authored malware anal-
ysis reports. The main contributions follow.

- To generate explanations in natural language we lever-
age existing text, i.e., the text from the Android De-
velopers [2] and malware analysis reports [20, 26].

- To keep the explanation compact and precise, the fea-
tures and the keywords have to be carefully pruned.
Simply using features greedily extracted from the clas-
sifier will lead to a lot of redundancy. For exam-
ple, in the permission SEND_SMS, the API call SmsMana
ger.sendTextMessage, and the action SMS_RECEIVED,
the most informative keyword is “sms”. Such redun-
dancy wastes space that could have been used to add
more information in the explanation. To combat this,
we use the TF-IDF (term frequency - inverse document
frequency) weighting and develop a new subset-search
algorithm to choose the most informative keywords.

We evaluate our approach by comparing the automatic ex-
planations to the manual descriptions, which were collected
from malware analysis reports [20, 26] for around 200 mal-
ware families. We divided them into the training and testing
sets, respectively for the sentence searching and the evalu-
ation. We collected around 1, 500 malware instances across
the families contained in the testing set and generated ex-
planations for them. We measure the overlap between the
keywords extracted from the automatic explanations and
those extracted from the manual descriptions. This evalua-
tion shows that the keyword-generation method doubles the
precision of simply using features greedily extracted from
classifiers and maintains approximately the same recall.

Drebin [5] was the first attempt to generate explanations for
the mobile malware detection. It chooses the features with
the top weights from an SVM classifier, and processes them
through a set of hand-built templates to output text. The
recent prototype DescribeMe [25], which generates text from
data-flows, also uses hand-built templates. In our work, in-
stead of building the templates by hand, we automatically
infer the natural language templates, by leveraging the re-
ports that are routinely written by malware analysts from
anti-virus software vendors. We are unaware of previous
work that exploits this rich source of information to gener-
ate explanations.

2. OVERVIEW
The main process of the automatic explanation is formalised
as the function explain. It takes an app in question as input
and produces a collection of sentences as the explanations.

We train a linear classifier W on a collection D of sample
apps, which consists of 1, 500 malware instances and 1, 500
benign apps. The testing set also consists of 1, 500 mal-
ware instances and 1, 500 benign apps. It is disjoint with
the training set. These apps were labelled and supplied by
Intel Security. We adopt the L1-Regularized Logistic Re-
gression [21] as the training method.

We collected around 41, 000 features, including: system per-
missions, actions, and API function names, from more than

10, 000 real apps. Their brief documents on the Android De-
velopers were collected as well. From these documents we
extracted keywords, which are nouns and technical terms,
e.g., “sms”, “gps”, “url”, etc. Keywords for each feature are
ranked by their TF-IDF, then the top m keywords are cho-
sen, i.e., KU .

Function: explain(app, U,M,D,m, n, β, ω, δ)

Input: app – the application in question
U – a set of features and their documents
M – a training set of manual descriptions
D – a training set of applications
m – the maximum number of keywords per feature
n – the maximum number of features per application
β – the parameter for Fβ measure
ω – the search width δ – the search depth

Output: the explanation of the target application

——————— Offline Training —————————

W : from features to weights (L1-Regularized Logistic Regression)

W ← train(D)

KU : from features to keywords (TF-IDF)

KU ← keyword(U,m)

S: from keywords to sentences (Cosine Similarity of TF-IDF vectors)

S ← sentence(KU ,M)

KD(a) : keywords for an app a in D (top-n-negative)

KD ← select(D,n,W,KU)
——————— Online Explaining ————————

kapp : keywords for app

k ⊆ kapp : a subset of keywords for app

E ← ∅
l← benign

if classify(W,app) is malware then

{(app, kapp)} ← select({app}, n,W,KU)

Subset-Search for Keywords (in Section 5)

k ← search(kapp, KD, β, ω, δ)

for w in k do
E ← E ∪ {S(w)}

end for
l← malware

end if
return (l, E)

We collected the manual descriptions from malware analysis
reports [20, 26]. These manual descriptions were produced
by malware analysts and third-party researchers. They were
divided into the training and test sets. For each keyword in
KU , we search through descriptions contained in the train-
ing set for a central sentence including this keyword. This
selection is based on the cosine similarity of TF-IDF vectors
of sentences. This process gives a mapping S from keywords
to sentences.

If the application in question is classified as malware by
using W , we choose a maximum of n features from those
with negative weights by ranking their absolute values, so-
called top-n-negative (abbreviated as TNN). The sentences
for these selected features are presented to explain its un-
wanted behaviours.

To improve the quality of generated keywords, in particu-
lar, the precision, we develop a subset-search algorithm, i.e.,
search in Section 5. It looks up a subset of keywords by
exploring the difference between keywords extracted from
malware instances and those from benign applications, such
that it largely covers and is strongly associated with malware

instances. The parameters β, ω and δ are used to adjust the
performance of this algorithm.

3. TRAINING A CLASSIFIER
From the manifest file of an Android app, we collect per-
missions requested by this app and actions registered in
its intent-filters. Permissions reflect the requirement for re-
sources. Actions are events which the app is interested in,
triggered by the Android platform or other apps. For exam-
ple, the permission INTERNET indicates that this app wants
to use the Internet and the action ACTION_ANSWER denotes
that this app can handle an incoming call. All API calls
appearing in the code of an app are collected as well. The
Android platform tools aapt and dexdump are used to help
extract these features. We do not consider specific strings,
e.g., IP addresses, URLs, etc., because they vary across dif-
ferent training sets.

We apply several popular machine learning methods to train
classifiers. We are not only interested in the usual mea-
sures, e.g., accuracy and FPR (false positive ratio), but also
especially in minimising the number of features which are
actually used by classifiers, because a classifier that uses
fewer features will be better suited for producing an expla-
nation. We choose SVM, KNN, and naive Bayes which have
been applied in Android malware detection respectively by
Drebin [5], DroidAPIMiner [4], and Yerima et.al. [24]. We
also compare to a decision tree classifier, because decision
trees naturally employ a small number of features for each
test instance, which could in principle be used to generate
explanations, although as we will see later, these explana-
tions turn out to be inferior.

We compare our target method L1-Regularized Logistic Re-
gression (abbreviated as L1LR) [21] with the above meth-
ods. We use tools liblinear [10] and libsvm [7] respectively
for L1LR and SVM. As for other methods, we use their im-
plementations in scikit-learn [18].

We use the training and testing sets described in Section 2.
The testing results are given as follows.

Method

Permission Perm. & Action Perm. & Action & API

Accuracy FPR Accuracy FPR Accuracy FPR
Used

Features

DT-C4.5 86.2% 14.6% 87.7% 13.6% 90.6% 9.5% 41, 007

NB 81.4% 20.4% 85.8% 17.7% 87.7% 8.1% 41, 007

KNN 86.8% 17.9% 86.4% 19.7% 86.8% 16.0% 41, 007

SVM 86.4% 17.1% 88.4% 13.1% 90.6% 2.5% 15, 140

L1LR 82.3% 26.0% 86.9% 17.7% 93.2% 7.0% 2, 265

Only a small part of input features are actually useful to
distinguish malware and benign apps, e.g., out of more than
41, 000 input features, only 2, 265 features are used in the
L1LR-classifier. Notice that except for SVM and L1LR, the
rest methods use all input features.

By adding new features, e.g., invoke-befores, denoting an
API call is invoked before another, and trigger-befores, de-
noting an event is triggered before an API call, the classifi-
cation accuracy of L1LR can be further improved to around
98% and the FPR can be reduced to around 2%. However,
since our goal is trying to understand unwanted behaviours
of malware, rather than incrementally obtaining better fits
to a training dataset, we prefer to keep our current choice
of input features: permissions, actions, and API calls.

4. SELECTING FEATURES
We want to identify a small set of features that were respon-
sible for the classification decision, to characterise unwanted
behaviours. Intuitively, for a linear classifier, a feature with
a negative weight more likely indicates an unexpected be-
haviour, and a feature with a positive weight more likely
indicates a normal behaviour.

Based on this observation, we want to choose the best method
from the following: from the features of the app in ques-
tion, (a) select all features; (b) select all features with nega-
tive weights; (c) randomly select n features from those with
negative weights; (d) select top n features from those with
negative weights, ranked by their absolute values; (e) use
features appearing on a path from the root to a leaf in a
decision tree. Among them, (b), (c), and (d) work for fea-
tures used in SVM or L1LR classifiers. The method (e) only
works for decision trees.

We measure how well keywords extracted from selected fea-
tures match with those extracted from the manual descrip-
tions, i.e.,

precision =
|Kg ∩Kf |
|Kg|

and recall =
|Kg ∩Kf |
|Kf |

,

where Kg is the collection of generated keywords for a mal-
ware instance and Kf is the collection of keywords extracted
from the manual descriptions of its family.

By keywords, we denote the remaining words after remov-
ing meaningless words, stop-words, verbs, adjectives, and
adverbs. For instance, keywords for the text “this appli-
cation turns an Android smartphone into a GPS tracker”,
are “gps” and “tracker”. Here, the words “application”, “An-
droid”, and “smartphone” are considered as stop-words. For
each feature, we also extract keywords from its name, e.g.,
keywords for the action Telephony.SMS_RECEIVED are “tele-
phony” and “sms”.

Feature Selection Method Precision Recall

all-features (a) 0.091 0.362

DT-C4.5-path (e) 0.028 0.002

L1LR-all-negative (b) 0.109 0.295

SVM-all-negative (b) 0.100 0.331

L1LR-random-5-negative (c) 0.131 0.094

SVM-random-5-negative (c) 0.119 0.070

The method used in Drebin [5]

SVM-top-5-negative (d) 0.295 0.182

The target method

L1LR-top-5-negative (d) 0.327 0.184

In the above table, we give the evaluation results of differ-
ent methods to select features. We test on the testing set
described in Section 2. The method (d) achieves the best
precision and recall. It confirms that choosing features by
ranking their weights is more effective than using all features
or randomly selecting features with negative weights. The
upper bound of recall is around 36%. This reflects that the
language used in specifying features and the language used
in composing manual descriptions are very different.

To understand the change of precision and recall on the pa-
rameter n for methods (c) and (d), we apply them on fea-
tures used in L1LR and SVM classifiers respectively, with n
ranging from 1 to 100. We depict the results in Figure 1. It
shows that when the number of selected features increases,
the precision decreases very quickly while the recall doesn’t
increase much. That means more and more redundancy is
introduced into generated keywords when more negative fea-

20 40 60 80 100
n-Features

0.05

0.10

0.15

0.20

0.25

0.30

P
re

ci
si

o
n

L1LR_top_n_negative

SVM_top_n_negative

L1LR_random_n_negative

SVM_random_n_negative

20 40 60 80 100
n-Features

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
e
ca

ll

L1LR_top_n_negative

SVM_top_n_negative

L1LR_random_n_negative

SVM_random_n_negative

Figure 1: Top-n-negative versus random-n-negative. The precision decreases dramatically when the number
of selected features increases.

tures with smaller absolute values of weights are added. It
confirms that with respect to those features with negative
weights, the bigger the absolute value of a feature’s weight
is, the more likely this feature indicates an unwanted be-
haviour.

Based on the above discussions, we choose top-n-negative to
select features from those used by a linear classifier.

5. GENERATING KEYWORDS
To improve the quality of generated keywords, in particu-
lar, to boost the precision, we want to choose a subset X
of keywords such that it largely covers and is strongly asso-
ciated with malware instances. Formally, we write PD(X)
and RD(X) to respectively denote the probability of an app
is malware if it has all keywords from X and the probability
of an app has all keywords from X if it is malware, where
D is a collection of malware instances and benign apps. We
adopt Fβ-measure of them as the evaluation function, i.e.,

Fβ(X,D) = (1 + β2) · PD(X) ·RD(X)

β2 · PD(X) +RD(X)
.

To exhaustively search the space of the power-set of key-
words is expensive. Based on the Beam Search [17, Chap-
ter 6] we design an algorithm to approximate the best subset
with size at most δ. It is formalised as the following.

Function: search(k,KD, β, ω, δ)
Input: k – a set of keywords

KD – keywords for background dataset D
β – evaluation parameter
ω – search width δ – search depth

Output: an approximation of the best subset of keywords

p← []; q ← []; r ← [] {working max-priority-queues}
for t in k do
enqueue(q, ({t}, Fβ({t}, KD)))

end for
q ← dequeue(q, ω) {control the search width}
r ← dequeue(q, 1) {get the best singleton}
while q is not empty do

(l, e)← dequeue(q, 1)
if size(l) > δ then

continue {control the search depth}
end if
for t in k do

if t is not in l then
enqueue(p, (l ∪ {t}, Fβ(l ∪ {t}, KD)))
enqueue(r, (l ∪ {t}, Fβ(l ∪ {t}, KD)))

end if
end for

if q is empty then
q ← dequeue(p, ω) {add ω-best successors}
p← []
r ← dequeue(r, 1) {record the best subset}

end if
end while
(s,)← dequeue(r, 1) {get the best subset}
return s

In our implementation, we set the search width ω to 10 and
the search depth δ to 5. The parameter β in Fβ-measure
is set to 0.5 since we are more concerned with how largely
they covers malware instances.

Instead of extracting keywords directly from the names of
features, we extract keywords from their documents. For
example, the brief document for the action ACTION_ANSWER

is “Activity Action: Handle an incoming phone call”. We
choose keywords for each feature by ranking them using TF-
IDF. These documents provide more informative keywords,
e.g., “incoming” and “call”, than the feature names.

By subset-searching TF-IDF ranked keywords, the precision
increases from around 30% to around 60%, compared with
only using the top-n-negative. This is shown in Figure 2.
For L1LR the best precision is achieved when the parameter
n is set to 8. The recall is maintained at around 20%.

Keywords generated by using different methods are reported
in Table 1. Each row of this table denotes the selected fea-
tures and keywords of a malware instance.

No. Top-n-Negative (TNN) TNN & TF-IDF
TNN & TF-IDF

& subset-search

1

SEND SMS sms

sms
SmsManager.sendTextMessage text

FileChannel.force channels
READ PHONE STATE system
action.USER PRESENT

2

NetworkInfo.getSubtype

information
WebSettings.getUserAgentString information

READ PHONE STATE
httpTelephonyManager.getLine1Number

http.entity.HttpEntityWrapper

3

ACCESS COARSE LOCATION

location
ACCESS FINE LOCATION location

WAKE LOCK
internetVIBRATE

INTERNET

4

action.USER PRESENT device

device
action.BOOT COMPLETED sms
Telephony.SMS RECEIVED provider

conn.CONNECTIVITY CHANGE connectivity

Table 1: Salient features and keywords for malware.

5 10 15 20 25 30
n-Features

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
re

ci
si

o
n

L1LR_subset_search_doc

SVM_subset_search_doc

L1LR_subset_search

5 10 15 20 25 30
n-Features

0.1

0.0

0.1

0.2

0.3

0.4

R
e
ca

ll

L1LR_subset_search_doc

SVM_subset_search_doc

L1LR_subset_search

Figure 2: Subset-search TF-IDF ranked keywords. It doubles the precision and maintains the recall.

6. SEARCHING FOR SENTENCES
Keywords give some useful and concise information. But,
they are not so interesting to attract attentions. For ex-
ample, it is much better to present the sentence “It steals
information and uploads the stolen data to a remote server”.
than giving the keyword “information”.

In our approach, we use keywords to look up sentences from
manual descriptions of malware families, resulting in a nat-
ural language explanation for a malware instance. For each
keyword, from the sentences including this keyword, we se-
lect a single central sentence, i.e., the sentence that is most
similar to all the others. We adopt the cosine similarity of
TF-IDF vectors of sentences as the evaluation function to
rank sentences. The details are as follows. Let C be the set
of all sentences containing a word w. For each sentence s in
C, we first construct its TF-IDF vector V [s] as:

V [s][a] =


tfidf (a, s, C), if a is a word in s;

0, otherwise.

for all words a appearing in C. Then, we use the following
sum of cosine similarity between TF-IDF vectors:

σV (s) =
X
t∈C

cos(θV [s],V [t]) =
X
t∈C

V [s]× V [t]

‖V [s]‖ · ‖V [t]‖

as the measure of a sentence s. The sentence in C having
the highest value is chosen.

Some example automatic explanations of malware instances
and the manual descriptions of their malware families are
given in Table 2. These examples are randomly selected
from the testing set. This comparison qualitatively shows
that the automatic explanations compare well to the manual
descriptions.

7. CONCLUSION AND FURTHER WORK
We have presented a new text-mining approach to gener-
ate natural language explanations of unwanted behaviours
of Android apps. Ours is the first method to leverage previ-
ously written malware descriptions from anti-virus vendors
in order to generate natural text for new malware instances.
In contrast, most previous work on malware detection fo-
cuses on obtaining good fits to a given collection of sample
apps by trying different methods and features [4, 12, 24].

Explanations of features which are responsible for the clas-
sification decision have received much less consideration.

The purpose of training and comparing classifiers in this
paper is to demonstrate that the weights assigned by linear
classifiers can help figure out indicative features. In practice,
our method can be extended to take any well-trained linear
classifier’s weights as input.

We evaluate our method by measuring the overlap between
keywords extracted from automatic explanations and those
extracted from malware analysis reports produced by human
malware analysts. This evaluation shows that the keyword
generation method doubles the precision of simply using fea-
tures greedily extracted from classifiers. Measuring the qual-
ity of generated sentences is difficult. To give a qualitative
evaluation of automatic explanations, in further work, we
want to survey end users and malware analysts to obtain
the most convincing automatic explanations.

The method to select central sentences from manual descrip-
tions is simple. In further work, we want to investigate and
apply more complex sentence synthesis techniques to pro-
duce explanations, especially, to improve the recall of gen-
erated sentences.

There are still certain types of behaviours exhibited in An-
droid malware but cannot be fully captured by our approach,
e.g., gaining root access [26], performing DDoS attacks [1],
intercepting incoming messages, etc. This is because these
behaviours do not correspond to single features in the clas-
sifiers. In further work, a promising approach to remove
this limitation might be to exploit more semantics-based fea-
tures, e.g., commands, modules, call graphs, subsequences
of API call traces, etc., to capture these behaviours. This
will lead to more accurate explanations.

On the other hand, the unwanted behaviours for a group of
apps might be normal for another. For example, people are
happy with a Jogging Tracer app accessing the locations but
uncomfortable with an E-Reader app doing so. So, in fur-
ther work, we want to investigate whether the information
like categories, family names, and clusters can help further
improve automatic explanations.

For zero-day malware and unknown unwanted behaviours,
this supervised-learning and text-mining approach will not
work. To produce explanations by combining semi-supervised

Malware Family Automatic Explanation Manual Description

BaseBridge It sends sms messages to premium rated num-
bers. This is a Trojan which steals personal in-
formation from the infected device.

“A Trojan horse that attempts to send premium-rate SMS mes-
sages to predetermined numbers.” from [3]. “Forwards confidential
details (SMS, IMSI, IMEI) to a remote server.” from [1].

Plankton It can be controlled over the web through http.
This is a Trojan which steals personal informa-
tion from the infected device, and uploads the
data to a specif ic url.

“A Trojan that steals sensitive information. The Trojan attempts
to send gathered information to a remote machine.” from [3].
“This malware has the capabilities to communicate with a remote
server, download and install other applications, send premium
rated SMS messages, and many many more...” from [1].

DroidKungfu This is a Trojan which steals personal informa-
tion from the infected device. It can be controlled
over the web through http.

“A Trojan that sends sensitive information to an attacker and
includes backdoor functionality. It also exploits vulnerabilities to
gain root access.” from [16]. “Collects a variety of information on
the infected phone (IMEI, device, OS version, etc.). The collected
information is dumped to a local file which is sent to a remote
server afterwards” from [1].

JiFake It sends sms messages to premium rated num-
bers. This is a Trojan which steals personal in-
formation from the infected device.

“This application sends premium rated SMS messages.” from [1].
“Sends SMS messages to a premium rate number.” from [16].

Table 2: Automatic explanations versus manual descriptions. The keywords are shown in boldface.

learning methods and sentence synthesis techniques might
be worth exploring.

8. REFERENCES
[1] Forensic Blog. http://forensics.spreitzenbarth.de/

android-malware/, 2014.

[2] Android Developers.
http://developer.android.com/index.html, 2015.

[3] Symantec security response.
http://www.symantec.com/security response/, 2015.

[4] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner:
Mining API-level features for robust malware
detection in Android. In SecureComm, 2013.

[5] D. Arp, M. Spreitzenbarth, M. HÃijbner, H. Gascon,
and K. Rieck. Drebin: Efficient and explainable
detection of Android malware in your pocket. NDSS,
pages 23–26, 2014.

[6] S. Arzt et al. FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for
Android apps. In PLDI, pages 259–269, 2014.

[7] C.-C. Chang and C.-J. Lin. Libsvm: A library for
support vector machines. ACM Trans. Intell. Syst.
Technol., 2(3):27:1–27:27, May 2011.

[8] W. Enck et al. TaintDroid: an information flow
tracking system for real-time privacy monitoring on
smartphones. Commun. ACM, 57(3):99–106, 2014.

[9] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A study of Android application security. In USENIX
Security Symposium, 2011.

[10] R.-E. Fan et al. Liblinear: A library for large linear
classification. J. Mach. Learn. Res., 9, 2008.

[11] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy:
Semantics-based detection of Android malware
through static analysis. In SIGSOFT FSE, 2014.

[12] M. Frank, B. Dong, A. P. Felt, and D. Song. Mining
permission request patterns from Android and
Facebook applications. In ICDM, pages 870–875, 2012.

[13] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck.
Structural detection of Android malware using
embedded call graphs. In AISec, pages 45–54, 2013.

[14] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller.
Checking app behavior against app descriptions. In
ICSE, 2014.

[15] J.-C. Kuester and A. Bauer. Monitoring real android
malware. In Runtime Verification 2015, Vienna,
Austria, sep 2015.

[16] McAfee Threat Center.
http://www.mcafee.com/uk/threat-center.aspx, 2015.

[17] P. Norvig. Paradigms of Artificial Intelligence
Programming: Case Studies in Common Lisp. Morgan
Kaufmann Publishers Inc., 1st edition, 1992.

[18] F. Pedregosa et al. Scikit-learn: Machine learning in
python. J. Mach. Learn. Res., 12:2825–2830, 2011.

[19] A. Reina, A. Fattori, and L. Cavallaro. A system
call-centric analysis and stimulation technique to
automatically reconstruct Android malware behaviors.
In European Workshop on System Security, 2013.

[20] M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp,
and J. Hoffmann. Mobile-sandbox: combining static
and dynamic analysis with machine-learning
techniques. International Journal of Information
Security, 14(2):141–153, 2015.

[21] R. Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society,
Series B, 58:267–288, 1994.

[22] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A
precise and general inter-component data flow analysis
framework for security vetting of Android apps. In
CCS, pages 1329–1341. ACM, 2014.

[23] C. Yang et al. Droidminer: Automated mining and
characterization of fine-grained malicious behaviors in
Android applications. In ESORICS, 2014.

[24] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik.
A new Android malware detection approach using
bayesian classification. In AINA, pages 121–128, 2013.

[25] M. Zhang, Y. Duan, Q. Feng, and H. Yin. Towards
automatic generation of security-centric descriptions
for Android apps. In CCS ’15, pages 518–529, 2015.

[26] Y. Zhou and X. Jiang. Dissecting Android malware:
characterization and evolution. In IEEE Symposium
on Security and Privacy, pages 95–109, 2012.

