

Edinburgh Research Explorer

Explaining Unwanted Behaviours in Context
Citation for published version:
Chen, W, Aspinall, D, Gordon, A, Sutton, C & Muttik, I 2016, Explaining Unwanted Behaviours in Context. in
Proceedings of the 1st International Workshop on Innovations in Mobile Privacy and Security co-located
with the International Symposium on Engineering Secure Software and Systems (ESSoS 2016). CEUR-
WS.org, pp. 38-45, 1st International Workshop on Innovations in Mobile Privacy and Security co-located
with the International Symposium on Engineering Secure Software and Systems, London, United Kingdom,
6/04/16.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the 1st International Workshop on Innovations in Mobile Privacy and Security co-located with the
International Symposium on Engineering Secure Software and Systems (ESSoS 2016)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/explaining-unwanted-behaviours-in-context(781cfc7e-1cba-4948-ab9a-38b730cff09d).html

Explaining Unwanted Behaviours in Context

Wei Chen

University of Edinburgh

wchen2@inf.ed.ac.uk

David Aspinall

University of Edinburgh

David.Aspinall@ed.ac.uk

Andrew D. Gordon

Microsoft Research Cambridge

University of Edinburgh

Andy.Gordon@ed.ac.uk

Charles Sutton

University of Edinburgh

csutton@inf.ed.ac.uk

Igor Muttik

Intel Security

igor.muttik@intel.com

Abstract

Mobile malware has been increasingly identi-
fied based on unwanted behaviours like send-
ing premium SMS messages. However, un-
wanted behaviours for a group of apps can
be normal for another, i.e., they are context-
sensitive. We develop an approach to au-
tomatically explain unwanted behaviours in
context and evaluate the automatic explana-
tions via a user-study with favourable results.
These explanations not only state whether an
app is malware but also elaborate how and in
what kind of context a decision was made.

1 Introduction

Researchers and malware analysts have identified
hundreds and thousands of mobile apps as mal-
ware [EOMC11, ZJ12] and organised them into fami-
lies based on some unwanted behaviours, e.g., steal-
ing personal information, accessing locations, col-
lecting contacts information, sending premium mes-
sages constantly, etc. However, except some mal-
ware analysis reports for several famous malware fam-
ilies [ZJ12, S+13], e.g., Geinimi, Basebridge, Spitmo,
Zitmo, Ginmaster, Ggtracker, Droidkungfu, etc., peo-
ple don’t know what kind of behaviour makes a mobile
app bad. This suggests a research problem: automati-
cally producing a short paragraph to explain unwanted
behaviours.

Copyright c© by the paper’s authors. Copying permitted for

private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ
Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

A naive method is to: train a linear classifier from
a collection of identified malware instances and be-
nign apps, choose features with top weights which are
assigned by this classifier, then process selected fea-
tures through templates to output text. This method
has been adopted in research, e.g., the Drebin sys-
tem [A+14a].

However, by greedily choosing features to output
text, the generated explanations are inaccurate. This
is mainly because unwanted behaviours of mobile apps
are context-sensitive, i.e., an unwanted behaviour in
one group of apps can be normal in another. For exam-
ple, collecting locations is normal for jogging tracker
apps, but unwanted for card game apps.

Instead, our new approach is to organise sample
apps into fine-grained groups by their behavioural sim-
ilarity. We set the context of an app in question to the
group whose members’ behaviours are the most simi-
lar to this app’s behaviours. By exploiting behavioural
difference between malware and benign apps in this
context, we decide whether the target app is malware,
and if so, we produce an explanation. Here are two
example automatic explanations.

a. This app is a chatting app, but, after a USB
massive storage is connected, it will: retrieve a class in
a runnable package; read information about networks;
connect to Internet.

b. This app is an anti-virus app, but, it will: read
your phone state after a phone call is made; read your
phone state then connect to Internet; send SMS mes-
sages after a phone call is made.

These explanations not only elaborate which be-
haviour is unwanted but also give the context, e.g.,
chatting and anti-virus, in which a decision was made.

Our approach combines static analysis, clustering,
supervised-learning, and text mining techniques, and
proceeds as follows.

1

• Formalisation. We approximate the behaviour
of an Android app by a finite-state automaton,
i.e., a collection of finite control-sequences of
events, actions, and annotated API calls. From
this automaton we extract happen-before features
to denote that something happens before another.

• Learning. We organise sample apps into groups
using clustering methods, and characterise un-
wanted behaviours for each group by exploring
the difference between malware instances and be-
nign apps within the same group.

• Explanation. We decide whether a target app
is malware by choosing a group then checking
against this group whether the app has any un-
wanted behaviour, i.e., a behaviour exhibited by a
malware instance in the group. The correspond-
ing features are fed through hand-built templates
to produce text as explanations.

The main contributions of this paper are to:

- demonstrate that the happen-before feature is an
appropriate abstract of app behaviours with re-
spect to learning and explaining;

- introduce the context into behaviour explanations
and develop a clustering-based method to organ-
ise sample apps into groups;

- remove redundancy in features by carefully choos-
ing phrases to present;

- compare our approach with several alternative
methods and report favourable evaluation results
based on surveying end users.

1.1 Related Work

To automatically detect Android malware, machine
learning methods have been applied to train classi-
fiers [ADY13, GYAR13, GTGZ14, YSMM13]. All of
them were to obtain good fits to the training data by
trying different methods and features. Explanations of
chosen features have received much less consideration.

The tool Drebin [A+14a] is the first attempt to au-
tomatically generate explanations of Android malware.
It generates explanations by choosing features with top
weights from a linear classifier then processes them
through hand-built templates to output text. A broad
range of syntax-based features, e.g., permissions, API
calls, intents, URLs, etc., were collected for training.
However, the syntax-based features cannot capture so-
phisticated behaviours; greedily choosing features with
top weights might produce inaccurate explanations;
the selected features include redundancy which will
clutter the final explanation.

Our approach overcomes these limitations by: using
semantics-based features, e.g., happen-befores; intro-
ducing the context and collecting context-sensitive un-
wanted behaviours; aggregating and selecting phrases
to present.

A recent prototype DescribeMe [ZDFY15] generates
text from data-flows by feeding features through hand-
built templates. The main drawback is its scalablility:
to produce data-flows is too expensive for most apps.

The idea of context is similar with the cluster used
in the tool CHABADA [GTGZ14]. This tool detects
the outliers (abnormal API usage) within the clusters
of apps by using OC-SVM (one-class SVM). These
clusters were grouped by the descriptions of apps using
LDA (Latent Dirichlet Allocation). However, for most
sample apps which were collected from alternative An-
droid markets, e.g., Wandoujia, Baidu, and Tencent in
China, it is hard to get their descriptions, not mention-
ing that these descriptions are in different languages.

Automata are much more accurate than the mani-
fest information, e.g., permissions and actions, which
were often used as input features for malware detection
or mitigation [BKvOS10, EOM09, F+11]. Compared
with a simple list of API calls appearing in the code, an
automaton can capture more sophisticated behaviours.
This is needed in practice, because: API calls appear-
ing in the code contain “noise” caused by the dead
code and libraries [ADY13]; and, some unwanted be-
haviours only arise when some API methods are called
in certain orders [C+13, KB15, Y+14]. On the other
hand, automata are less accurate than models which
capture data-flows. But, it is much easier to generate
automata using our tool for apps en masse than gen-
erating data-flows using tools like FlowDroid [A+14b]
or Amandroid [WROR14]. In particular, people can
annotate appealing API methods to generate compact
behaviour automata more efficiently, rather than con-
sidering all data-dependence between statements.

2 Characterising App Behaviours

We use a simplified synthetic example to illustrate the
characterisation of app behaviours. It is an Android
app which constantly sends out the device ID and the
phone number by SMS messages in the background
when an incoming SMS message is received.

We approximate its behaviour by using the automa-
ton in Figure 1. It tells us: this app has two entries
which are respectively specified by actions MAIN and
SMS RECEIVED; it will collect the device ID and the
phone number in a Broadcast Receiver, then send SMS
messages out in an AsyncTask; the behaviour of send-
ing SMS messages can also be triggered by an interac-
tion from the user, e.g., clicking a button, touching the
screen, long-pressing a picture, etc., which is denoted

2

// ?>=<89:;76540123q0
MAIN //

SMS RECEIVED

��

?>=<89:;76540123q1
AsyncTask: sendTextMessage //

click

		
?>=<89:;76540123q2

AsyncTask: sendTextMessage

		

?>=<89:;76540123q3
Receiver: getDeviceId

// ?>=<89:;76540123q4

Receiver: getLine1Number

OO

Figure 1: An example behaviour automaton.

by the word “click”. All states in this automaton are
accepting states since any prefix of an app’s behaviours
is one of its behaviours as well.

This automaton is a collection of finite control-
sequences of actions, events, and annotated API calls,
which is constructed from the bytecode of an Android
app. Actions reflect what happens in the environment
and what kind of service an app requests for, e.g., an
incoming message is received, the device finishes boot-
ing, the application wants to send an email by using
the service supplied by an email-client, etc. Events de-
note the interaction from the user, e.g., clicking a pic-
ture, pressing a button, scrolling down the screen, etc.
Annotated API calls tell us whether the app does any-
thing we are interested in. For instance, getDeviceID,
getLine1Number, and sendTextMessage are annotated
API calls in the above example.

To construct such an automaton directly from the
bytecode, we have to model complex real-world fea-
tures of the Android framework, including: inter-
procedural calls, callbacks, component life-cycles, per-
missions, actions, events, inter-component communi-
cations, multiple threads, multiple entries, interfaces,
nested classes, and runtime-registered listeners. We
don’t model registers, fields, assignments, operators,
pointer-aliases, arrays or exceptions. The choice of
which features to model is a trade-off between effi-
ciency and precision.

In our implementation, we use an extension
of permission-governed API methods generated by
PScout [AZHL12] as annotations. The Android plat-
form tools aapt and dexdump are respectively used to
extract the manifest information and to decompile the
bytecode into the assembly code, from which we con-
struct the automaton.

Once automata are constructed, we can extract fea-
tures for the purpose of learning unwanted behaviours.
In particular, we extract pairs of edge labels occurring
in sequence, i.e., denoting that something happens be-
fore another, so-called happen-befores. Generally, one
can extract n-tuples. But, in practice, we found that
constructing triples was already too expensive: the or-
der of magnitude for the average number of triples in
a typical automaton is 104.

3 Learning Unwanted Behaviours

A behaviour that is unwanted for one kind of app
can be innocuous for another. For example, sending
SMS messages is normal for messaging apps, but un-
wanted for an E-reader app; a user might expect that
a weather forecast app accesses his or her locations,
but might feel uncomfortable if a messaging app does
so. Therefore, to understand and explain unwanted
behaviour, we need a notion of context.

3.1 Constructing Context

Unwanted behaviours in general only account for a
small part of a malicious app’s activities. This is
by design: malicious apps seek to hide their bad
behaviours, and are often constructed by repackag-
ing benign applications [Z+14, Z+13]. This obser-
vation gives us a notion of context: we group to-
gether apps, benign or malicious, whose behaviours
are mostly the same. Then, within the context, we
distinguish unwanted from normal behaviours by ex-
ploring features which are mostly associated with mal-
ware. This produces a fine-grained, behavioural notion
of context, that is more discriminating than categories,
e.g., GAME, TOOLS, and WEATHER, etc., or clus-
ters produced from developer-written textual descrip-
tions [GTGZ14].

We formalise this idea in Figure 2. Sample apps
are organised into groups. Apps in the same group
share common behaviours, in the sense hat their fea-
ture vectors are similar. Ideally, repackaged apps will
be in the same group with the original benign apps.
A group can consist of only benign apps or only mal-
ware. Two sets of features are constructed: normal
and unwanted. The normal set is the union of all be-
haviours of benign apps. The unwanted set consists
of abnormal behaviours of malware, that is, the rela-
tive complement of the normal set in the collection of
behaviours of malware instances.

The rule behind this construction is: a benign app
can not have any unwanted behaviour and a malware
instance must have some unwanted behaviour whatever
its other behaviours are. Every sample app in the same
group is required to follow this rule. Otherwise, there
is a conflict in the group. To solve this conflict, we split

3

Function construct context (group)
Input: a group of malware and benign applications
Output: fine-grained groups with normal and unwanted features.
G ← {group}
P ← {}
has conflict ← True

while has conflict do

has conflict ← False

for group in G do

normal, unwanted ← collect behaviour (group)
if detect conflict (group, normal, unwanted) then

group a, group b ← split group (group)
G = (G− {group}) ∪ {group a, group b}
has conflict ← True

else

G = G− {group}
P = P ∪ {(group, normal, unwanted)})

end if

end for

end while

return P

Function collect behaviour (group)
normal ← {}
unwanted ← {}
for app in group do

if app is benign then

normal = normal ∪ feature(app)
unwanted = unwanted− normal

else

unwanted = (unwanted ∪ feature(app))− normal
end if

end for

return normal, unwanted

Function detect conflict (group, normal, unwanted)
for app in group do

if app is benign and feature(app) 6⊆ normal then
return True

end if

if app is malicious and feature(app) ∩ unwanted = ∅ then

return True

end if

end for

return False

Figure 2: Context and unwanted behaviours.

the group into two disjoint subgroups. Then, the above
construction will be done respectively on subgroups
until all conflicts are solved.

The process starts in the function construct context
which is invoked on the whole collection of sample
apps. When the algorithm terminates the following
property is satisfied: for each app in a group, if it is
malware then feature(app) ∩ unwanted 6= ∅; if it is
benign then feature(app) ⊆ normal.

The function split group splits a group of apps into
two disjoint subgroups. Many implementations are
possible. We adopt the hierarchical clustering method
to group apps. The cosine dissimilarity between fea-
ture vectors is calculated and the average-linkage is
used to calculate the distances between clusters.

3.2 Classification

We want to decide whether an app in question is mal-
ware, by using the constructed context and unwanted
behaviours. The size and the portion of malware vary
largely across groups. This results in: it is hard to
train a classifier for each group using classical learn-

ing methods, e.g., SVM, naive Bayes, and logistic lin-
ear regression. Therefore, we calculate the distances
between the target app and each group. The clos-
est group is chosen as the context. Then, we decide
whether the target app is malware by applying the
following logic rules:

• Conservatively normal. The target app is
classified as benign if it has no unwanted be-
haviour and all its behaviours are normal, i.e.,
feature(app) ⊆ normal.

• Aggressively malicious. The target app is clas-
sified as malicious if one of its behaviours is un-
wanted, i.e., feature(app) ∩ unwanted 6= ∅.

• Neutrally suspicious. If the target app has no
malicious behaviour and some of its behaviours
are abnormal. We consider its abnormal be-
haviours as suspicious and label it as unknown.
That is, according to current knowledge we can
not decide whether it is malware. The decision
have to be postponed until more sample apps of
this group are acquired.

We randomly chose 1, 000 apps with benign and ma-
licious half-and-half as the training set; and an equal
number of apps as the testing set. They contain some
famous benign apps, i.e., Google Talk, Amazon Kin-
dle, Youtube, Facebook, etc., and some instances in fa-
mous malware families, e.g., DroidKungfu, Plankton,
Zitmo, etc. These apps spread in around 30 categories
from ARCADE GAME to WEATHER. Many adver-
tisement libraries were also found in these apps, e.g.,
Admob, Millennial Media, Airpush, etc.

To compare our classification method with general
classifiers, we train a classifier using an implementa-
tion liblinear [F+08] of L1-Regularized Logistic Re-
gression [Tib94] (abbreviated as L1LR). We apply our
method to construct context and collect unwanted
behaviours from happen-befores which are extracted
from the automata of apps in the training set. Fur-
ther, we apply the logic rules discussed earlier, to de-
cide whether a target app is malware against unwanted
behaviours for a chosen group.

classifier
edge labels in automata happen-befores

precision recall precision recall

context 83% 88% 80% 92%

L1LR 83% 89% 85% 88%

We report the classification performance as above.
It shows that for different features the classification
performance of our method is only slightly worse
than L1LR, with no more than a 5% drop in preci-
sion. This is because some apps are labelled as un-
known in our method. We can achieve better classi-
fication performance by adding syntax-based features,

4

e.g., permissions and API calls, as input features.
Rather, our goal is to develop a classification method
whose output yields better explanations. Considering
happen-befores can capture more sophisticated app
behaviours, we prefer to using unwanted behaviours
selected from happen-befores for the explanation gen-
eration.

4 Generating Explanations

In the classification against the context, the features
in the intersection between unwanted behaviours of a
context and behaviours of a target app are responsible
for a decision, so-called salient features. For a train-
ing app in a decision context, if one of its behaviours
is salient, then this app is a supporting app for this
decision. In this section, we want to exploit salient
features and their supporting apps to generate an ex-
planation for a target app. It explains how and in
what kind of context a decision was made. We want
to use these automatic explanations to convince people
of the system’s automatic decision. Here is an example
automatic explanation.
—————————————————————————————

com.keji.danti590 (v3.0.8)

This application is malware. Its malicious behaviours are:

after a USB mass storage is connected,

it gets the superclass of a class in a runnable package
it retrieves classes in a runnable package
it reads information about networks
it connects to Internet
it reads your phone state then connects to Internet

The supporting apps of this explanation are:

com.keji.danti607 (v3.0.8) (TROJAN)
com.jjdd (v1.3.1) (MALWARE)
com.keji.danti562 (v3.0.8) (TROJAN)
com.keji.danti599 (v3.0.8) (TROJAN)

—————————————————————————————

It not only shows the decision (malware or benign) but
also elaborates the most unwanted behaviours. A col-
lection of supporting apps is displayed as well. Before
presenting technical details, let us have a look at some
salient features:

a. (Object:ConnectivityManager.getActiveNetworkInfo,
Runnable:URL.openConnection)

b. (Activity:WifiManager.isWifiEnabled, Activity:WebView.loadUrl)
c. (Object:WebView.loadUrl, Runnable:WifiInfo.getMacAddress)
d. (Object:LocationManager.getLastKnownLocation,

Activity:WifiInfo.getMacAddress)
e. (AsyncTask:DefaultHttpClient.execute,

Runnable:URL.openConnection)
f. (Object:WebView.loadData,

Runnable:TelephonyManager.getDeviceId)
g. (AsyncTask:NotificationManager.notify,

Object:LocationManager.getLastKnownLocation)
h. (Click, Object:TelephonyManager.getDeviceId)
i. (Object:ConnectivityManager.getActiveNetworkInfo,

Object:DefaultHttpClient.execute)

They are pairs extracted from the automata of
the apps in question. Some of them are trivial,

e.g., the behaviour “access networks state then
connect to Internet”, supported by the feature
(Object:ConnectivityManager.getActiveNetwork

Info, Runnable:URL.openConnection), appears in
almost every app. Some of them are similar, e.g., if we
want to capture the behaviour “connect to Internet”,
then features URLConnection.openConnection and
DefaultHttpClient.execute are considered as re-
peated features. This redundancy will further clutter
the final explanation.

Based on these observations, we generate explana-
tions as follows: map these salient features into simple
phrases, process simple phrases through templates to
output compound phrases, then select the most repre-
sentative compound phrases to present.

First, for each permission, action, event, and each
API call which is not governed by any permission,
a phrase is assigned to describe its function. These
phrases were extracted from brief documents on An-
droid Developers. Second, for those permission-
governed API calls, we look up their corresponding
permissions and use phrases for these permissions.
Third, for pair features we combine phrases for their
coordinates to form compound phrases. The templates
used in explanation are listed in Table 1. This step ac-
tually aggregates features to reduce redundancy.

By using the above method, for each supporting
app, we get a collection of phrases with their appear-
ance frequencies in this app. We rank phrases for each
supporting app using the TF-IDF (term frequency -
inverse document frequency) and choose the top-m
phrases as representatives. Then, we apply DF (docu-
ment frequency) to rank representatives of supporting
apps and choose the top-n phrases to present. We use

formulae
(

0.5 + 0.5×f(t,d)
max{f(t,d)|t∈d}

)

× log10
|C|

|{d|t∈d}| and

log10
|{d|t∈d}|
|C| to respectively calculate TF-IDF and

DF, where d is the collection of phrases for each app,
C is the collection of all d, and f(t, d) denotes the ap-
pearance frequency of t in d. This step helps remove
trivial phrases (features).

We formalise the above approach in Figure 3. The
function feature to phrase constructs a phrase for a
given feature by using templates given in Table 1.
Functions sel tfidf and sel df will respectively select
phrases for each supporting app and representatives
for the whole collection of supporting app. The func-
tion frequency produces the frequency of a feature ap-
pearing in an app.

5 Evaluation

In this section, we report a user-evaluation of the au-
tomatic explanations. We want to show: (a) explana-
tions produced from semantics-based features are bet-

5

feature type template example

permission request the permission to do sth.
request the permission

to change Wi-Fi connectivity state

API call might invoke the API: API name
might invoke the API:

android.content.Intent.<init>

annotation do sth. read your phone state

action sth. happens the app has finished booting

event the user does sth. the user clicks a view and holds

(annotation, annotation) do sth. then do sth.
read your phone state then

connect to Internet

(annotation, action) do sth. then sth. happens
read SMS then

the app makes a phone call

(action, annotation) after sth. happens do sth.
after the system has finished booting

read your phone state

(event, annotation) when the user does sth. do sth.
when the user touches the screen

get your precise location

(event, action) when the user does sth. sth. happens
when the user performs a gesture

the app sends some data to someone elsewhere

Table 1: Templates for the explanation generation.

Function gen exp (app, judge, group, normal, unwanted, m, n)
Input: the target app, the decision context,

and the control parameters m and n.
Output: the explanation of the target app.
salient ← {}
if judge is malicious then

salient← feature(app) ∩ unwanted
else

salient← feature(app) ∩ normal
end if

supp ← {}
corpus ← {}
for app in group do

features← feature(app) ∩ salient
if features 6= ∅ then

for feature in features do

phrase ← feature to phrase(feature)
if not phrase in doc then

doc[phrase] ← 0
end if

doc[phrase] ← doc[phrase] + frequency(feature, app)
end for

supp ← supp ∪ {app}
corpus ← corpus ∪ {(app, doc)}

end if

end for

exp ← sel df(sel tfidf(corpus, m), n)
return judge, exp, supp

Figure 3: Generating explanations.

ter than from syntax-based features; (b) explanations
with supporting apps are more understandable than
without; (c) explanations produced from context con-
struction are more accurate than from general classi-
fiers. That is, they can better improve people’s belief
on the system’s decision.

To test these hypotheses, we design the following
methods:

• M-Syntax: By applying the context construc-
tion, from syntax -based features (permissions and
API calls), we produce explanations without in-
cluding supporting apps.

• M-Semantics: By applying the context
construction, from semantics-based features

(happen-befores), we produce explanations
without including supporting apps.

• M-Context: By applying the context construc-
tion, from semantics-based features (happen-
befores), we produce explanations including sup-
porting apps.

• M-L1LR: By using features with top weights in
an L1LR classifier, which is trained from seman-
tics-based features (happen-befores), we produce
explanations including supporting apps.

Twelve apps are randomly chosen from the test set.
We apply the above methods to generate explanations
for these apps. The generated explanations are organ-
ised into samples. Each sample consists of two ex-
planations for the same app, which are respectively
produced by applying two different methods. Two ex-
ample samples are given in Figure 4.

For each sample, a participant of this survey was
invited to choose the explanation which he/she prefers,
and to give a convince-score between 1 and 5 to each
explanation. This score indicates to what extent an
explanation convinces the participant. We collected
participants’ preferences as well as convince-scores.

We use the Google Form to create this survey. Peo-
ple from universities, software companies, and finance
firms in UK and China were invited by mailing lists to
participate in this survey. All participants have no idea
of the mechanism behind the automatic explanation
discussed in this paper. We collected data from the
first 20 responses. These respondents include: seven
junior and one senior software engineers, seven post-
graduate students, one lecturer, three data analysts,
and one malware analyst. Three of them declared to
be familiar with Android programming and malware
analysis. Two of them haven’t used any Android app.

6

—————————————————————————

com.android.security (v4.3)

Explanation A (M-Contex)
This app is malware. Its malicious behaviours are:

read your phone state then connect to Internet
connect to Internet then read your phone state
read your phone state after a phone call is made
send SMS then read your phone state
read your phone state then send SMS

Explanation B (M-Syntax)
This app is malware. Its malicious behaviours are:

request the permission to send SMS
request the permission to receive SMS
request the permission to read your phone state
request the permission to read SMS
might invoke the API:android.content.Intent.<init>

—————————————————————————

org.android.system (v1.0)

Explanation A (M-Context)
This app is malware. Its malicious behaviours are:

read your phone state after a phone call is made
read your phone state then connect to Internet
send SMS then read your phone state
read your phone state then send SMS
send SMS after a phone call is made

The supporting apps of this explanation are:
com.android.security (v4.3) (MALWARE)
org.android.system (v1.0) (MALWARE)
...

Explanation B (M-L1LR)
This app is malware. Its malicious behaviours are:

read your phone state after a phone call is made
The supporting apps of this explanation are:

com.googleapps.ru (v1.0) (TROJAN)
com.keji.danti562 (v3.0.8) (MALWARE)
...

—————————————————————————

Figure 4: Example explanations for hypothesis testing.

method
convince-score

Average Std.

M-Syntax 3.15 0.85

M-Semantics 3.03 0.66

M-Context 3.61 0.80

M-L1LR 3.32 0.81

comparison preference

M-Context 58%
M-Syntax 42%

M-Context 78%
M-Semantics 22%

M-Context 53%
M-L1LR 47%

We report the user-evaluation results as above. It
shows that the context construction achieves the high-
est average convince-score 3.61. Most respondents pre-
fer explanations produced by the context construction.
We do paired T-test respectively on the three compar-
isons: M-Context versus M-Syntax, M-Context

versus M-Semantics, and M-Context versus M-

L1LR. We set the significance level at 0.05, then cal-
culate the difference between their convince-scores and
test the null hypothesis: the average is less than or
equal to 0. Their p-values are 0.02, 0.0002, and 0.05
respectively. That is, all null hypotheses are rejected
at significance level 0.05. The automatic explanation
by applying the context construction is better than
alternative methods.

Respondents commented that explanations revealed
some behaviours they had not realised before, e.g.,
an app called “com.antivirus.kav” sends SMS after a

phone call is made, and supporting apps improve their
understanding of the given explanation, e.g., they pre-
fer to believing the given explanation is benign when
they see familiar benign app names like Google Talk
in the supporting apps. But, some of them, especially
the malware analyst and those postgraduate students,
wanted to see detailed features we use to produce ex-
planations. This explains why M-Syntax is slightly
better than M-Semantics in this surverying: API
names are included in explanations produced by M-

Syntax but not in M-Semantics. In practice, we
can hide detailed features from users and only present
them on-demand as evidence.

6 Conclusion

We have presented a new approach to automatically
generate explanations of unwanted behaviours for mo-
bile apps. A user-study by surveying end users shows
that this approach is effective. There are still certain
types of high-level behaviours that are exhibited in
Android malware but cannot be fully captured by our
approach, e.g., gain root access and perform DDoS at-
tacks [ZJ12]. This is because these complex behaviours
do not correspond to simple semantics-based features
like happen-befores. In further work, a promising ap-
proach to remove this limitation might be to exploit
more semantics-based features to capture these high-
level behaviours.

References

[A+14a] Daniel Arp et al. Drebin: Efficient and
explainable detection of Android malware
in your pocket. NDSS, pages 23–26, 2014.

[A+14b] Steven Arzt et al. FlowDroid: Precise
context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android
apps. In PLDI, pages 259–269, 2014.

[ADY13] Yousra Aafer, Wenliang Du, and Heng
Yin. DroidAPIMiner: Mining API-level
features for robust malware detection in
Android. In SecureComm, pages 86–103.
Springer, 2013.

[AZHL12] Kathy Wain Yee Au, Yi Fan Zhou, Zhen
Huang, and David Lie. PScout: Analyz-
ing the Android permission specification.
In CCS, pages 217–228, 2012.

[BKvOS10] David Barrera, Hilmi Günes Kayacik,
Paul C. van Oorschot, and Anil Somayaji.
A methodology for empirical analysis of
permission-based security models and its
application to Android. In CCS, pages
73–84, 2010.

7

[C+13] Kevin Zhijie Chen et al. Contextual policy
enforcement in Android applications with
permission event graphs. In NDSS, 2013.

[EOM09] William Enck, Machigar Ongtang, and
Patrick Drew McDaniel. On lightweight
mobile phone application certification. In
CCS, pages 235–245, 2009.

[EOMC11] William Enck, Damien Octeau, Patrick
McDaniel, and Swarat Chaudhuri. A
study of Android application security. In
USENIX Security Symposium, 2011.

[F+08] Rong-En Fan et al. Liblinear: A library
for large linear classification. J. Mach.
Learn. Res., 9:1871–1874, June 2008.

[F+11] Adrienne Porter Felt et al. Android per-
missions demystified. In CCS, pages 627–
638, 2011.

[GTGZ14] Alessandra Gorla, Ilaria Tavecchia, Flo-
rian Gross, and Andreas Zeller. Checking
app behavior against app descriptions. In
ICSE, 2014.

[GYAR13] Hugo Gascon, Fabian Yamaguchi, Daniel
Arp, and Konrad Rieck. Structural detec-
tion of Android malware using embedded
call graphs. In AISec, pages 45–54, 2013.

[KB15] Jan-Christoph Kuester and Andreas
Bauer. Monitoring real android malware.
In Runtime Verification 2015, Vienna,
Austria, sep 2015.

[S+13] Michael Spreitzenbarth et al. Mobile-
sandbox: Having a deeper look into An-
droid applications. In ACM Sympo-
sium on Applied Computing (SAC), pages
1808–1815. ACM, 2013.

[Tib94] Robert Tibshirani. Regression shrinkage
and selection via the lasso. Journal of
the Royal Statistical Society, Series B,
58:267–288, 1994.

[WROR14] Fengguo Wei, Sankardas Roy, Xinming
Ou, and Robby. Amandroid: A precise
and general inter-component data flow
analysis framework for security vetting of
Android apps. In CCS, pages 1329–1341.
ACM, 2014.

[Y+14] Chao Yang et al. Droidminer: Au-
tomated mining and characterization of
fine-grained malicious behaviors in An-
droid applications. In ESORICS, Septem-
ber 2014.

[YSMM13] Suleiman Y. Yerima, Sakir Sezer, Gavin
McWilliams, and Igor Muttik. A new An-
droid malware detection approach using
bayesian classification. In AINA, pages
121–128, 2013.

[Z+13] Wu Zhou et al. Fast, scalable detec-
tion of ”piggybacked” mobile applica-
tions. In CODASPY ’13, pages 185–196,
New York, NY, USA, 2013. ACM.

[Z+14] Fangfang Zhang et al. Viewdroid: To-
wards obfuscation-resilient mobile appli-
cation repackaging detection. In WiSec
’14, pages 25–36, 2014.

[ZDFY15] Mu Zhang, Yue Duan, Qian Feng, and
Heng Yin. Towards automatic genera-
tion of security-centric descriptions for
Android apps. In CCS ’15, pages 518–
529, 2015.

[ZJ12] Yajin Zhou and Xuxian Jiang. Dissecting
Android malware: characterization and
evolution. In IEEE Symposium on Secu-
rity and Privacy, pages 95–109, 2012.

8

