

Edinburgh Research Explorer

A Machine Learning Approach to Mapping Streaming Workloads
to Dynamic Multicore Processors
Citation for published version:
Micolet, P-J, Smith, A & Dubach, C 2016, A Machine Learning Approach to Mapping Streaming Workloads
to Dynamic Multicore Processors. in LCTES 2016 Proceedings of the 17th ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, Tools, and Theory for Embedded Systems. ACM, Santa Barbara,
USA, pp. 113-122, 17th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools, and Theory
for Embedded Systems, Santa Barbara, United States, 13/06/16. DOI: 10.1145/2907950.2907951

Digital Object Identifier (DOI):
10.1145/2907950.2907951

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
LCTES 2016 Proceedings of the 17th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools,
and Theory for Embedded Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2907950.2907951
https://www.research.ed.ac.uk/portal/en/publications/a-machine-learning-approach-to-mapping-streaming-workloads-to-dynamic-multicore-processors(b2650c3e-425d-414a-9b7b-305d238bd694).html

A Machine Learning Approach to Mapping Streaming
Workloads to Dynamic Multicore Processors

Paul-Jules Micolet
University of Edinburgh
p.r.r.micolet@ed.ac.uk

Aaron Smith
Microsoft Research

University of Edinburgh
aaron.smith@microsoft

Christophe Dubach
University of Edinburgh

christophe.dubach@ed.ac.uk

Abstract
Dataflow programming languages facilitate the design of data in-
tensive programs such as streaming applications commonly found
in embedded systems. They also expose parallelism that can be ex-
ploited using multicore processors which are now part of the mobile
landscape. In recent years a shift has occurred towards heterogene-
ity (e. g. ARM big.LITTLE) and reconfigurability. Dynamic Mul-
ticore Processors (DMPs) bridge the gap between fully reconfig-
urable processors and homogeneous multicore systems. They can
re-allocate their resources at runtime to create larger more powerful
logical processors fine-tuned to the workload.

Unfortunately, there exists no accurate method to determine
how to partition the cores in a DMP among application threads.
Often programmers rely on analyzing the application manually and
using a set of hand picked heuristics. This leads to sub-optimal
performance, reducing the potential of DMPs. What is needed
is a way to determine the optimal partitioning and grouping of
resources to maximize performance.

As a first step, this paper studies the effect of thread partition-
ing and hardware resource allocation on a set of StreamIt applica-
tions. We show that the resulting space is not trivial and exhibits a
large performance variation depending on the combination of pa-
rameters. We introduce a machine-learning based methodology to
tackle the space complexity. Our machine-learning model is able
to directly predict the best combination of parameters using static
code features. The predicted set of parameters leads to performance
on-par with the best performance found in a space of more than
32,000 configurations per application.

Categories and Subject Descriptors C.1.3 [Computer Systems
Organization]: Other Architecture Styles— Heterogeneous, Data-
Flow Architectures; D.3.4 [Programming Languages]:
Processors—Code Generation, Optimization

Keywords Machine Learning, Dynamic Multicore Processor,
Streaming Programming Languages

1. Introduction
Multicore processors are now common in all computing systems
ranging from mobile devices to data centers. As advances in sin-
gle threaded performance have slowed, multicore processors have
offered a way to use the increasing numbers of transistors avail-
able. However, designing processors that scale to a large number
of cores is difficult and a shift towards tiled architecture seems in-
evitable. A tiled architecture such as Tilera [2] or Raw [22] is com-
posed of smaller simpler cores that are placed on a regular grid.
This improves hardware scalability and enables multi-threaded ap-
plications to exploit the large core count.

However, workloads that require high single threaded perfor-
mance are penalized by the simple nature of each core [7]. One
solution to this problem is heterogeneous multicores which utilize
cores with different levels of power and performance. Although
heterogeneous multicores are common place in mobile devices,
they have little reconfiguration or adaptive capabilities (e. g. only
two type of cores available for ARM big.LITTLE). Dynamic mul-
ticore processors offer a solution to this problem by allowing cores
to compose (or fuse) together [12] into larger logical cores to ac-
celerate single threads. This produces “on-demand” heterogeneity
where cores are grouped to adapt to the workload’s demand.

While dynamic multicore processors sound like a promising
approach, they come with their own challenges, particularly on the
software side [25]. In most parallel programming models such as
OpenMP, the user is directly responsible for mapping parallelism
to the hardware; a difficult and time consuming task. This problem
is further exacerbated when hardware resources can be combined
since programmers have to take into account the dynamic behavior
of the architecture [3].

To solve this problem, we first argue that there is a need to
raise the programming abstraction and remove the burden of map-
ping parallelism from programmers. Dataflow programming mod-
els such as StreamIt [20] and Lime [1] offer one part of the solu-
tion. Applications are expressed as dataflow graphs and — ideally
— the compiler or runtime determines the mapping of parallelism
onto the available hardware and controls the grouping of hardware
resources. However, optimally mapping parallelism and managing
hardware resources remains an open problem given the sheer com-
plexity of the resulting design space.

In this paper, we first conduct an analysis of the design space
and show the impact of modifying resources and thread mapping.
We conduct this analysis using a set of StreamIt programs and run
them on a verified cycle-level simulator for a tiled reconfigurable
architecture with support for core composition. We develop a ma-
chine learning model using the information gathered from our ex-
ploration. This model predicts the best number of threads for a
given application and an optimal number of cores to allocate to
each thread.

To demonstrate the viability of our approach we compare the
results of the predictive model to the best sampled thread and
core composition pairing in a space of more than 32,000 design
points. The model matches, and even outperforms in some cases,
the performance of the best sampled points in the space, with
speedups of up to 9x on a 16 core processor compared to single
threaded execution on a single core.

The main contributions of this paper are:
• An analysis of the co-design space of thread partitioning and

core composition;
• A study on the impact of a simple loop transformation on the

optimal core composition;
• A machine-learning model to determine the optimal core com-

position and thread partitioning;
• An analysis of the most important static code features used by

the model.

The rest of the paper is structured as follow. Section 2 presents
information on dynamic multicore processors and dataflow pro-
gramming models. Section 3 motivates this work by showing the
complexity of the design space. Section 4 describes our methodol-
ogy and section 5 presents an in-depth analysis of the design space.
Section 6 develops a machine-learning model to predict the best
thread mapping and core composition while Section 7 shows the
performance achieved by our model. Related work is discussed in
Section 8 and Section 9 concludes this paper.

2. Background
This section reviews the main features of a dynamic multicore
processor. It also briefly introduces streaming programming models
and their relevance to dynamic multicore processors.

2.1 Dynamic Multicore Processors
Chip Multiprocessors (CMPs) have become ubiquitous due to the
difficulty in scaling single core performance. CMPs with homo-
geneous cores have dominated the space as they reduce the com-
plexity of the design problem. Yet research shows that using het-
erogeneous cores allows for better performance [18], albeit with
increased design complexity. In both cases, once the chip is fab-
ricated, the design cannot be modified, meaning that many of the
trade-offs between power, performance and area cannot be changed
later on.

Dynamic Multicore Processors (DMPs) attempt to bridge the
gap between the two previous designs by allowing the execution
substrate to adapt dynamically at runtime. A DMP is composed of
a group of homogeneous cores (in this study) with a reconfigurable
fabric. The advantage of DMPs over the traditional CMP is the
ability to reconfigure the processor to better match the tasks at
hand. For example, large sequential sections of code with high
Instruction Level Parallelism (ILP) can be accelerated on a set of
fused cores that mimic a wide superscalar processor. On a parallel
workload the DMP can be reconfigured to match the Thread Level
Parallelism (TLP).

In this paper we consider a dynamic multicore processor which
allows cores to compose their execution resources, register files and
private L1 caches to create logical processors to accelerate a single
thread. Figure 1 shows a high-level view of the architecture and
the two possible states: composed and decomposed. The composed
state represents a set of physical cores fused to create a larger
logical core. Multiple sets of cores can be fused to create logical
cores of different sizes. In Figure 1 for example, LP1 is composed
of four physical cores whereas LP2 is composed of two. At runtime,
physical cores may be decomposed from a logical processor to
remove them from the core composition.

Figure 1: High-level view of a dynamic multicore processor con-
sidered in this paper.

2.2 Streaming Programming Languages
Streaming programming languages are a branch of dataflow pro-
gramming that focus on applications that deal with a constant
stream of data. These applications, such as audio or video decod-
ing can be commonly found in mobile devices. Unlike conventional
programming languages such as C++, these languages abstract the
concept of incoming and outgoing data to permit the programmer
to focus on how the data should be treated. Programs are described
as directed graphs where nodes are functions and their edges rep-
resent their input and output streams. These languages offer primi-
tives to describe such a graph [20] which expose parallelizable and
serial sections of the application directly to the compiler. Rates of
incoming and outcoming data can also be defined to facilitate load
balancing optimizations [6].

Features of streaming programming languages make them an
ideal language for targeting multicore processors. The explicit data
communication between the different tasks in the program, the
ability to estimate the amount of work performed in each task and
information about data rates between tasks allows the compiler
to easily generate a multi-threaded application that can run on a
dynamic multicore processor. However, the main challenge consists
of deciding how to map the different tasks onto threads and how to
allocate the right amount of resources to maximize performance.

3. Motivation
This section illustrates the difficulty of finding a good partition and
resource allocation. A simple experiment is conducted where we
take one StreamIt benchmark, Beamformer, and partition its tasks
into threads and allocate various number of cores to each thread. A
co-design of more than 32,000 combinations (exhaustive space) of
thread mappings and core compositions is generated. Each design
point is executed on a dynamic multicore simulator (exact details
about the experimental setup are presented later in section 4).

Figure 2 presents the distribution of the execution times from
the co-design space as a violin plot. For the unfamiliar reader, an
intuitive way to think about this violin plot is to consider it as
a smoothed histogram rotated by 90 degrees and mirrored. We
observed that the majority of the sampled points have a cycle
count around 525,000 with the worst points taking more than 2
millions cycles. The best performance is around 275,000 cycles
which is about 2x faster than the majority of the data points. This
shows that finding the right combination of thread mapping and
core composition is critical since a wrong choice often leads to
suboptimal performance.

This example illustrates the necessity for designing the tech-
nique to predict the optimal number of threads and core composi-
tion to use. The next section will present a more in-depth analysis
of the design space before presenting our machine-learning predic-
tive model.

275000

525000

775000

1025000

1275000

1525000

1775000

2025000

Beamformer

C
y
c
le

s

Figure 2: Distribution of the runtime for Beamformer resulting
from an exhaustively exploration of the hardware/software co-
design space. The application has been partitioned into different
number of threads and core compositions.

Figure 3: Description of our workflow. Two distinct machine-
learning models are used to predict the optimal thread partitioning
and core composition based on static code features.

4. Methodology
In this section we present our design exploration of a set of stream-
ing applications being executed on a DMP. We describe how chang-
ing the thread mapping and core composition affect the benchmarks
and what we can learn from this. In addition, we look at the impact
of loop unrolling and how it helps exploit larger fused cores.

4.1 Overview
Figure 3 presents the workflow of our system. First, we use the
source-to-source StreamIt compiler to unroll loops as this is usually
beneficial when cores are composed as we will see later. Then, we
extract static code features such as the program’s graph structure.
These features are used as an input to our first machine-learning
model to determine the Thread Level Parallelism (TLP). This in-
formation is used to partition the program into threads and the
StreamIt compiler produces a C++ program which is then compiled
using our C++ compiler.

Parameter Values

of cores in the processor 16
threads per application 1 – 15
cores per thread 1 – 15

sampled core compositions 100
our sampled space 1316
total sample space 32762

Table 1: Design space considered per application.

Then, a second machine-learning model is used which uses
static code features extracted from the SteamIt code. This model is
used to decide on the core topology. This is achieved by finding the
amount of Instruction Level Parallelism (ILP) in each thread and
by determining how many physical cores should be fused for that
thread. Finally, we reconfigure the processor to fuse the requested
resources and execute the partitioned program.

4.2 Dynamic Multicore Processor
We use a Dynamic Multicore Processor for our research based on
an Explicit Data Graph Execution (EDGE) Instruction Set Archi-
tecture that resembles [10]. This differs from other DMPs such as
CoreFusion, WidGET and Shared Architecture [12, 24, 26] which
utilize a CISC/RISC instruction set. To evaluate our work we use a
customizable cycle-level simulator verified within 4% of RTL. The
simulator is highly configurable, allowing us to model a variety of
parameters such as the number of cores, details of the memory hi-
erarchy and synchronisation schemes. For our experiments we use
a 16 core dual issue configuration with 16 KB private L1 caches
and a 2 MB shared L2.

4.3 StreamIt Benchmarks
StreamIt is a high-level synchronous dataflow streaming program-
ming language that defines programs as directed graphs. StreamIt
offers an elegant way of describing streaming applications, ab-
stracting away how infinite data streams are managed to allow the
programmer to solely focus on how the data must be treated. A
StreamIt program is composed of functions - called Filters - which
operate on streams of data. Filters can be connected via Pipelines,
SplitJoins or Feedback Loops.

Pipelines represent a sequence of connecting filters operating on
the same stream, each filter operating on the output of the previous
filter. In a SplitJoin, data in the stream is passed through a split
filter and either duplicated and passed on in parallel to the filters or
distributed amongst the filters in a round-robin manner. The output
of all the filters in a SplitJoin are then concatenated in a round-robin
fashion through a joiner filter. Finally a Feedback Loop provides a
way for filters to operate on their outputs. The resulting program
written in StreamIt represents a graph where the nodes are filters
and their edges represent the incoming and outgoing data streams.

In this paper, we use 15 StreamIt benchmark all taken from
the official StreamIt repository. For each benchmark we used the
default input provided in the repository and the default iteration
count of 10.

4.4 Design space
The parameters and size of the space are given in table 1. In this
study we use 16 cores and assign core 0 to the main thread and
for runtime management. This leaves 15 cores available for each
application. We restrict each core to running only a single thread
(no preemptive scheduling) which leads to a possible number of
threads between 1 and 15. Cores can be fused together to form a
logical core with up to 15 physical cores, making the total number

Audiobeam Beamformer BitonicSort BubbleSort CFAR

ChannelVocoder FFT FFT3 FFT6 FilterBank

FIR FMRadio InsertionSort Matmul−Block RadixSort

4e+05

5e+05

6e+05

7e+05

8e+05

1e+06

2e+06

3e+06

500000

1000000

1500000

2000000

500000

1000000

1500000

2000000

450000

500000

550000

600000

650000

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2e+05

4e+05

6e+05

8e+05

1e+06

3e+05

6e+05

9e+05

250000

500000

750000

1000000

2e+05

4e+05

6e+05

8e+05

0e+00

2e+06

4e+06

6e+06

8e+06

2e+05

4e+05

6e+05

8e+05

60000

70000

80000

90000

400000

600000

800000

1000000

1200000

2e+05

4e+05

6e+05

8e+05

4 8 12 4 8 12 4 8 12 4 8 12 1 2 3 4

4 8 12 4 8 12 4 8 12 4 8 12 4 8 12

4 8 12 4 8 12 1 2 3 4 5 4 8 12 5 10
Thread Count

C
y
c
le

s

Partitioning Schemes PartitionWithComposition PartitionWithoutComposition

Figure 5: Performance as a function of the number of threads. The performance metric is number of cycles. Each benchmark has the
performance measured with cores composed and with threads mapped to a single core.

Audiobeam Beamformer BitonicSort BubbleSort CFAR

ChannelVocoder FFT FFT3 FFT6 FilterBank

FIR FMRadio InsertionSort MatmulBlock RadixSort

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 300 600 900 0 300 600 900 0 300 600 900 0 300 600 900 0 300 600 900

Sample Size

P
ro

x
im

it
y
 T

o
 B

e
s
t

Figure 4: Statistical (plain line) and actual proximity (dotted line)
to best performance using a subset of the sample space.of cores assigned to a thread between 1 and 15. This leads to a total
space size of 32,767 unique combination per benchmark.

4.5 Sample Space
Given a partitioning, any benchmark that is split into 15 threads
requires 32,767 executions to cover the entire space. Running an
exhaustive exploration of the space requires approximately a week
of simulation on a 572+ node supercomputer. For this reason, we
decided to sample 1,316 random points from the entire space. This
roughly corresponds to 100 core compositions for each number of
threads (the actual number, 1,316 is smaller than 1,500 since for
low thread counts there are less than 100 possible different core
composition). InsertionSort is the only exception since it can at
most only be split into 5 threads leading to 415 sample points.

To gain confidence that the best configuration from the sample
space is indeed close to the real best in the entire space, we used
a statistical model based on the Stopping Criterion defined in [21].

This model estimates, given a sample of the total space, if the best
observed performance of that sample space is within a percentage
of the statistical best performance. Our results demonstrate that the
sample space selected is representative of the whole space.

Figure 4 shows, for each of the benchmarks, the proximity to
the statistical best when increasing the sub-sample space given a
maximal uncertainty of 5% (i. e. minimum 95% confidence). As
can be seen by the plain line, the model shows that the best sam-
ple point is actually within 5% (0.05 proximity) of the best for all
benchmark. To further prove that the statistical model based on the
Stopping Criterion is indeed accurate, we conducted an exhaustive
exploration for five benchmarks. The dotted line in figure 4 shows
the actual proximity to the best for Audiobeam, Beamformer, Biton-
icSort, CFAR and FMRadio. As can be seen after 1316 samples,
the performance we achieve is actually very similar to the one pre-
dicted by the statistical model, hence confirming prior work [21].
To summarize, we can conclude that the best point found in our
sample space of 1,316 points is at least within 5% of the real best
in the exhaustive space with 95% confidence.

5. Design Space Exploration
We now conduct an exploration of the software/hardware co-design
space. The software side includes partitioning the program, deter-
mining the number of threads and the loop unrolling compiler op-
timization. The hardware side is about finding out the best core
composition that maximizes performance for a given partitioning.

5.1 Thread Partitioning
We start by analyzing the impact of thread partitioning on perfor-
mance. Thread partitioning is about deciding how many threads to
create and how to partition StreamIt filters into these threads. To
simplify this study, we use the default streaming partitioner to de-
cide on how to allocate filters to cores which is based on simulated
annealing. On the hardware side, we consider two scenarios: the
“without composition scenario” where there is exactly one core per
thread and the “with composition scenario” where each thread re-
ceives between 1 and 15 cores.

Figure 5 shows how performance varies under both scenarios as
a function of the number of threads. We observe that regardless of
how cores are composed all curves follow the same trend. The opti-
mal number of threads using core composition is very similar to the
scenario without composition. This important observation means
that we can estimate the optimal number of threads for a bench-

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

0.5
1.0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

4e
+0

5

5e
+0

5

6e
+0

5

7e
+0

5

8e
+0

5

9e
+0

5

Cycles

D
e
n
s
it
y

T
h
re

a
d
s

Figure 6: Distribution of Audiobeam performance when modify-
ing the amount of threads and compositions.

mark independently of the hardware composition. Our system can
therefore proceed in two stages: first determine the optimal number
of threads and then decide on a core composition.

Figure 5 also shows that the performance of most benchmarks
starts deteriorating passed a certain number of threads making it
critical to not over-allocate threads. This motivates our use of ma-
chine learning to decide the optimal number of threads to use. Fi-
nally we also observe that executions without compositions always
perform worse. This demonstrates that composing cores is essential
to obtain the best performance from a workload.

5.2 Core Composition
Using core composition, the processor fuses a number of cores and
associates them to a thread to increase single threaded performance.
Whilst this flexibility is advantageous, choosing the right amount
of cores for a given thread is difficult due to the large number of
possible configurations [11].

Figure 6 shows how threading and composition affects perfor-
mance for the Audiobeam benchmark. The curves represent the
density distribution for different core compositions as a function
of the number of threads. The right hand side Y-axis represents the
number of threads present in the current version of the benchmark
normalized by the total number of points in the design space. For
each of the threaded versions we ran the benchmark using on aver-
age 100 different compositions. The density curve for thread 15 is
composed of a single point as there exists only a single composition
for it.

The variance of each of the curves represents the influence of
composition on the benchmark’s performance for a given number
of threads. For this benchmark the impact of core composition is
actually very large for the best performing number of threads (1–5).
Interestingly, as more threads are used, performance shifts worsens,
echoing the results shown in the previous section.

Figure 7: Distribution of FMRadio performance when modifying
the amount of threads, composition and unrolling factor.

5.3 Impact of Loop Unrolling

In this section we study the impact of one compiler optimization
by focusing on loop unrolling. Filters containing large amounts
of loops potentially contain high degrees of instruction level and
memory level parallelism. Unrolling may increase the degree of
parallelism which is advantageous to a wider fused processor. Loop
unrolling may also yield similar results to vectorization when vec-
torization may not easily be applied or available.

Figure 7 presents an example of how loop unrolling affects
performance on the FMRadio benchmark. The graph presents the
same information as Figure 6 but with different executions of the
benchmark when optimizing for speed and unroll factors 4, 16, and
64. Figure 7 shows that unrolling loops for FMRadio can greatly
improve performance.

Another observation is that the best execution times for each
of the threaded versions when unrolling does not follow the same
trend previously described. The leftmost curve performance peaks
at two threads whereas the rightmost peaks at five. As the number
of cores fused can now be greater we encounter a resource problem
when increasing the number of threads.

This example demonstrates that whilst the optimal number of
threads is independent of the number of cores there still exists
trade-offs between the two. This signifies that the amount of re-
sources available to each thread must be taken into consideration
before generating the program to balance the trade off between ILP
and TLP.

5.4 Co-Design Space Best Results
This section presents the results of the entire co-design space explo-
ration. Figure 8 characterizes how much of a performance increase
is obtainable using a baseline of executing the benchmark on a sin-
gle thread and single core without unrolling. For each benchmark,
the THREAD bar represents the maximal speedup obtained by di-
viding the program into threads without fusing cores. The CORE
bar represents the best speedup when we execute the benchmark in

Audiobeam BeamFormer Bitonic−Sort BubbleSort CFAR ChannelVocoder FFT FFT3 FFT6 FilterBank FIR FMRadio InsertionSort Matmul−Block RadixSort Geometric Mean

0

1

2

3

4

5

6

7

8

9

10

11

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

T
H

R
E

A
D

C
O

R
E

B
O

T
H

Types

s
p
e
e
d
u
p

Compiler Optimisation Unrolling WithoutUnrolling

Figure 8: Speedup obtained by choosing best core composition, best thread number and the combination of both optimisations. The baseline
for the speedup measurement is single core, single thread execution using O2 compiler optimisations. Higher is better.

a single thread and fuse cores. BOTH represents the best speedup
obtained for each benchmark using a combination of THREAD and
CORE. Finally, for each benchmark, we obtained these results for
both an unrolled and not unrolled to compare how unrolling af-
fects performance. Figure 8 shows that when loops are not unrolled,
composing cores will not greatly improve performance.

When studying the geometric mean we see that, without un-
rolling, finding the correct number of threads gives a speedup of
1.92 compared to 1.33 when using only core composition. This
changes when taking unrolling into account as the core composi-
tions can be used more efficiently. In this case, the speedup obtained
from only composing cores is 13% worse than using only threads.
The unrolling demonstrates that the StreamIt programs must be
modified to take advantage of the core composition. Finally, it is
important to note that whilst finding the optimal thread mapping
is better than the best composition, the best performance is always
obtained through a combination of both optimizations.

5.5 Summary
This section demonstrated that each parameter has a large effect on
the performance of the workload. We have seen that regardless of
using core composition or not, there exists for each benchmark an
optimal number of threads. Unrolling is effective at exposing more
opportunities for composition due to increased ILP but there is a
balance to strike between extracting ILP and TLP. Figure 8 shows
there is a 3x benefit (overall) by automating the partitioning of both
the software (threads) and hardware (cores).

6. Machine Learning Models
As seen in the previous section, selecting the right number of
threads and a good combination of cores is difficult. This difficulty
arises from trying to balance between exploiting larger composed
cores with block speculation and ILP and between exploiting a
larger number of logical cores via TLP.

The problem can be decomposed into two stages; first, de-
termining the right number of threads and then selecting a good
core composition. In this section, we present two machine-learning
models that predict the best thread partitioning and core composi-
tion to maximize performance.

6.1 Predicting the Best Number of Threads
Synthetic Benchmark Generation One of the difficulties of
building a machine learning based model for StreamIt is the lack of
benchmarks available [23]. Whilst there exists at least 30 realistic

applications for StreamIt [19] this is simply not enough to create
a large enough data set. To overcome this problem we generate
synthetic StreamIt benchmarks and gather statistics from them in
a similar style as in [23]. To ensure that the synthetic benchmarks
are representative of realistic benchmarks we created them using
filters from a set of micro-kernels found in some StreamIt exam-
ples. We have 30 different possible filters with different incoming
and outgoing rates, different inputs and outputs. We also ensured
that the total number of filters and split joins found in a synthetic
benchmark are within the average of the realistic benchmarks.

For each generated application, 15 different threaded versions
are generated. Each of these versions is ran using a single core
per thread and the cycle count is recorded. We repeated this for
1000 unique randomly generated applications and record the best
number of threads each time.

Extracting Features Once the benchmarks have been generated,
the next step consists of gathering features for each applications. In
order to build our two machine learning models we used an initial
set of over 50 features extracted from StreamIt programs. These
features were extracted using pre-existing tools within StreamIt
and some extra counters added by us. The features selected for our
models were determine through correlation analysis. In this section,
when discussing correlation we specifically look at which variables
correlate with the optimal number of threads. These features are
used by the model to make a prediction about the number of threads
to use.

Figure 9 shows the 10 variables that correlate the most with
the optimal thread number. In StreamIt the term multiplicity ref-
erences the number of times a filter will have to execute in a time
slice when the graph is in a steady state [9]. In Figure 9 the highest
correlating value, Number of Distinct Multiplicities, determines all
different multiplicities found in the StreamIt graph. Uncondition-
ally executed blocks represent sets of operations in a filter that will
always execute.

There are very little variables that highly correlate beyond Num-
ber of Distinct Multiplicities. A high number of distinct multiplici-
ties implies that subsets of filters will execute at different rates. This
means that certain filters may be local bottlenecks in a Pipeline for
example. We suspect that when the number of distinct multiplici-
ties is high this requires more threads to group filters with similar
multiplicities. We can also see that the number of threads will de-
pend on certain structural features such as Pipelines, SplitJoins and
number of Filters. Yet, these variables seem to hold less influence
on the number of threads a program needs than the different mul-

Total n. of filters in SplitJoins						

Accumulated Uncond. Work						

Smallest Multiplicity						

Average Work in All SplitJoin						

N. of Vector Operations						

N. of loops							

Pipelines						

Filters							

N. Of Uncond. Exec. Blocks						

N. Distinct Multiplicities			

0.0 0.2 0.4 0.6

Correlation

 Positive

Figure 9: The ten highest correlating features with the best number
of threads for 1000 synthetic benchmarks.

tiplicities found in the graph. This is most certainly due to the fact
that whilst SplitJoins make parallelizable areas more visible, the
amount of work contained in each stream of the SplitJoin, espe-
cially when this size is small, may actually make parallelizing the
program worse due to ratio of communication to computation.

KNN Model We chose to use a k-Nearest Neighbor (kNN) to
determine the number of threads to use for the application. Given
a new application to predict, the kNN classifier determines the k
closest generated applications in terms of the features. The distance
between the features is measured using the Euclidean for each
application. Once the set of k nearest neighbors has been identified,
the model simply averages the best number of threads for each of
the k nearest neighbors to make a prediction. The parameter k was
determined experimentally using only the generated benchmarks.
A value of k = 7 was found to lead to the best performance.

The features chosen are the variables displayed in Figure 9. Us-
ing cross validation we determine the efficiency by observing how
close a classification is to our measured best thread number. We
have determined that our model, using cross validation has a 33%
accuracy of getting the predicted best thread number. This increases
to 57% when we allow a prediction to be 1 thread away from the
best and 67% when 2 threads away. Whilst the performance of pin-
point accuracy is disappointing we do not incur more than a 12%
performance penalty when choosing a thread number which is +/-
1 from the best and 19% when moving up to 2 threads away from
the best. This average is measured by looking at the thread perfor-
mances without composition.

6.2 Predicting Core Composition
Gathering Training Data Given that the optimal number of cores
for a thread is independent of the number of threads found in the
program, we only use the single threaded versions to determine the
optimal number of cores. For example, all benchmarks will only
have a single core per thread when the application is partitioned

Filters with mult. 1

Num. of Distinct Mult.

Num. of Arithm. Ops.

Filters with mode multiplicity.

% of Largest Sized Blocks

Ratio of Uncond. / Cond

Average / Largest Uncond. Size

Average / Smallest Uncond. Size

Average Size of Uncond. Block

Average Size of all Blocks

0.00 0.25 0.50 0.75

Correlation

Negative

Positive

Figure 11: The ten highest correlating features with the optimal
number of cores.

in 15 threads as this is the maximum amount of cores that may
be given to each thread rather than it being the optimal solution.
We include multiple versions of the benchmarks using different
amounts of unrolling. To determine the optimal number of cores
we only select training data that has a performance within 1% of
the best.

Analyzing Features Figure 11 shows the highest correlating fea-
tures with the optimal number of cores. The features are very differ-
ent from the ones presented in Figure 9 and overall there are higher
correlating features. The highest correlating value has a correlation
factor of 0.88 which represents the number of operations found in
a basic block of code. The second feature is similar but only takes
into account blocks that will be executed unconditionally, we have
chosen to exclude blocks found in loops for this metric as there is
still some form of condition for those blocks to be executed. The
next two feature compare the size of the average size of an un-
conditional block to the largest and smallest unconditional block.
The fifth feature measures the ratio of the number of unconditional
blocks to conditional.

Overall there are no features distinct to StreamIt, such as
pipelines or splitjoins that correlate highly with the optimal num-
ber of cores. We can thus infer that the optimal number of cores is
independent of the structure of a StreamIt program. Instead, it is
more dependent on the amount of computation.

EDGE architecture’s ability to fetch atomic instruction blocks
and out-of-order execution encourages the focus on determining
how much speculation is extracted from each filter. Unfortunately
StreamIt programs do not tend to have a large quantity of condi-
tional statements and when they do they tend to be quite small.
This statement is reinforced by the correlation between the average
number of conditional blocks with the optimal number of cores,
which is only 0.2, compared to 0.809 for the average size of un-
conditional blocks. We thus do not focus on using any speculative
features from the StreamIt graph.

● ●

● ●

●

●

●

● ●

● ●

●

●

●

● ● ●

●

●●

●

●

●

●

●●

●

●

●

●● ●

4

8

12

0 200 400 600
Av. Size of All Blocks

N
u

m
b

e
r

o
f

C
o

re
s

●●

● ●

●

●

●

● ●

●●

●

●

●

● ● ●

●

●●

●

●

●

●

●●

●

●

●

●●●

4

8

12

0 200 400 600
Av. Size of Unconditional Blocks

●●

● ●

●

●

●

● ●

● ●

●

●

●

●● ●

●

●●

●

●

●

●

●●

●

●

●

●●●

4

8

12

0 100 200 300
Diff. Between Average and Smallest Unconditional Block

Figure 10: Optimal number of cores in relation to the three highest correlating features. The maximum number of cores plateaus on the right
hand side as this is the maximum possible amount.

Linear Regression Model Given that the optimal number of cores
is highly correlated with a few features, a linear regressor is a
natural choice to predict the best number of threads. Figures 10
represent how the first three highest correlating values affect the
number of cores. This figure was obtained by finding the best
number of cores for a single threaded benchmark. It is important
to note that the top right corner points will always be flat as we can
only allocate a maximum of 15 cores.

7. Results
This section describes the performance achieved by the model
when predicting the number of threads and core composition to
use for each of the StreamIt benchmarks.

7.1 Evaluation Methodology
Leave-one-out cross-validation is used for testing the linear model.
This means that when testing the model on one application, this ap-
plication is removed from the training set, the model is trained with
the remaining application and finally the model is tested on the ap-
plication. This process is repeated for each application. This is stan-
dard methodology in the machine-learning community ensuring
that the training data is never used for testing. For the kNN model,
the training data consists of all the generated synthetic benchmarks
and we only test it on the real StreamIt applications not used for
training. To obtain the speedup we compare the performance of our
machine learning based result and the best from the sample space
to running the StreamIt benchmark on a single core, single thread,
using O2 compiler optimisations.

7.2 Evaluation
Figure 12 compares the performance of the machine-learning
model and the best performance from our sample space and core
composition. As explained in the earlier section, the sampled best
is drawn from a sample size of 1,316 combinations of core com-
positions and thread partitions for each application when possible.
The baseline is the original StreamIt application running with one
thread and one core on our dynamic multicore processor. The aver-
age speedup obtained through our machine learning model is 2.6,
this is only 16% smaller than the average of the best found, which
is a speedup of 3.1. These results are positive as it means we are

at least within 16% of the total best. As can been seen in Fig-
ure 12 our largest performance penalty resides in the performance
of ChannelVocoder.

Table 2 presents the actual configuration found for the best sam-
pled point and the machine learning model prediction. Each column
represent a different threads and the number in the cell represents
the number of core associated with that thread. We can see that for
ChannelVocoder our model predicts only 8 threads rather than the
optimal 13. Refering back to Figure 5 and Figure 8 from Section 5
ChannelVocoder always performs better when adding threads. This
is the cause of the performance penalty, for ChannelVocoder it is
more important to allocate a higher number of threads rather than
compose cores.

Aside from this case, our machine learning model obtains simi-
lar speedups to the best sample.

7.3 Summary
This section has demonstrated that it is possible to build a machine-
learning model that achieves high level of performance using sim-
ple source code static features. In many applications, the model
even comes very close to the best from the sampled space, showing
that the features used by the model contain enough information to
inform the model about the best decision.

8. Related Work
Dynamic Multicore Processors DMPs such as CoreFusion [12]
differentiate themselves to EDGE based DMPs on their Instruction
Set Architecture (ISA). CoreFusion uses a CISC/RISC based ar-
chitecture which limits the degree of scalability (fusion), whereas
EDGE based DMPs have shown promising scalability [10, 13].
Other types of DMPs such as WidGET [24] and Sharing Archi-
tecture [26] present a fine-grain level of composition. In these two
architectures, cores can be created out of different components on
the processor, including ALUs, floating point units and memory
units. This differs from CoreFusion and EDGE where a logical core
is composed out of a set of physical cores. This fine-grained com-
position can allow for even more optimisation but it increases the
complexity of the problem.

1 2 3 4 5 6 7 8 9 10
B Audiobeam 3 2
M Audiobeam 2 3
B Beamformer 1 4 2 4 4
M Beamformer 6 4 4
B BitonicSort 3 2 2 2
M BitonicSort 1 2 2 1 2 2 2
B BubbleSort 3 3
M BubbleSort 2
B CFAR 3 2
M CFAR 2 2 1 2
B ChannelVoc. 4 1 1 1 1 1 2 1 1 1
M ChannelVoc. 2 2 1 2 2 2 2
B FIR 3 2
M FIR 2 2
B FFT 3 3 5
M FFT 6 5 2
B FFT3 3 2 2
M FFT3 3 2 3 3 3 3
B FFT6 7 8
M FFT6 14
B FilterBank 4 5 6
M FilterBank 4 5
B FMRadio 7 6
M FMRadio 7 4
B InsertionSort 3 2
M InsertionSort 3
B MatmulBlock 3 4 6 2
M MatmulBlock 4 4
B RadixSort 3 3
M RadixSort 2 2

Table 2: Number of Threads and Cores used for Best of Sample
Space and Machine Learning Model.

Core Configuration Little work has been done on automatically
determining the correct core composition for a given application.
The work conducted in [12, 13] manually configure their proces-
sors before running benchmarks. In [17] they use information pro-
vided by the application to determine how to reconfigure some
components of the processor. This initial information then assists
the rest of the reconfiguration, this process still requires input from
the programmer though. Therefore we present a novel method for
automating the choice of core composition.

Streaming Programming Languages There exist streaming lan-
guages that target different architectures. For example Brook [4] is
designed to be used on GPUs and WaveScript for embedded sys-
tems [15]. These languages present different constructs to StreamIt,
in particular they lack the graph oriented constructs. Lacking such
constructs make these languages less attractive for tile based pro-
cessors.

Partitioning StreamIt on multicore chip Previous work on
scheduling streaming applications onto DMPs or heterogenous
multicore chips focuses on finding mathematical ways of par-
titioning the graph onto the chip [5, 14]. In Carpenter et al.’s
work [5] they restrain themselves to partitioning a StreamIt appli-
cation maintaining connectedness. Connectedness can be defined
as a subgraph where the filters are connected. This restriction re-
duces the number of potential partitions that can be generated by
their algorithm and will put TLP in favour of ILP. Kudlur et al.
in [14] choose to represent the partitioning problem as an integer

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

A

u
d
io

b
e
a
m

 B

e
a
m

fo
rm

e
r

B

it
o
n
ic

S
o
rt

 B

u
b
b
le

S
o
rt

 C

F
A

R

 C
h
a
n
n
e
lV

o
c
o
d
e
r

F

F
T

 F

F
T

3

 F

F
T

6

 F

ilt
e
rB

a
n
k

 F

IR

F

M
R

a
d
io

In

s
e
rt

io
n
S

o
rt

M

a
tm

u
lB

lo
c
k

R

a
d
ix

S
o
rt

G
e
o
m

e
tr

ic
 M

e
a
n

Benchmarks

S
p
e
e
d
u
p

Scheme

 Sample Best
 ML Performance

Figure 12: Performance of our machine learning model against
the best execution from random sampling. The baseline for the
speedup measurement is single core, single thread execution using
O2 compiler optimisations. Higher is better.

linear programming problem. They start by fissionioning stateless
filters to obtain the optimal load balance across all cores and assign
the filters to a core using a modulo scheduler. Farhad et al. also
use integer linear programming in [8] to schedule StreamIt pro-
grams on multicore. They profile the communication costs of the
streaming programs by running the program using different multi-
core allocations and feed that information into their integer linear
programming model.

Machine Learning Using a machine learning model to partition
StreamIt programs was previously explored in the work of Wang et
al. in [23]. They use a k nearest neighbor model to determine the
perfect partitioning of a StreamIt program for a multicore system.
The features we extracted using correlation analysis are similar to
those presented in the work of [23]. Unlike our work their model is
used to find ways of fusing and fissioning filters to discover a new
graph that can then be mapped onto a multicore system.

9. Conclusion
In this paper we presented the problem of partitioning both software
and hardware for a Dynamic Multicore Processor. We analysed a
set of streaming workloads based on StreamIt, extracting features
which highly influence both the required number of threads and
core composition. Using this data we introduced a machine learn-
ing model which is able to determine how many threads a StreamIt
application needs and pick an appropriate chip topology. The model
predicts configurations close to the performance of the best design
points from the sampled space. By automating the decision of core
composition we motivate the use of DMPs for accelerating appli-
cations without any involvement from the programmer.

Acknowledgements
This work has been supported by Microsoft Research through its
PhD Scholarship Programme and has made use of the resources of
the Edinburgh Compute and Data Facility (ECDF) [16].

References
[1] J. Auerbach, D. Bacon, I. Burcea, P. Cheng, S. Fink, R. Rabbah, and

S. Shukla. A compiler and runtime for heterogeneous computing. In
DAC, 2012, pages 271–276, June 2012.

[2] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks,
D. Khan, F. Montenegro, J. Stickney, and J. Zook. Tile64 - proces-
sor: A 64-core soc with mesh interconnect. In ISSCC 2008. IEEE
International, pages 88–598, Feb 2008.

[3] F. Bower, D. Sorin, and L. Cox. The impact of dynamically heteroge-
neous multicore processors on thread scheduling. Micro, IEEE, 28(3):
17–25, May 2008. ISSN 0272-1732. .

[4] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan. Brook for gpus: Stream computing on graphics
hardware. In ACM SIGGRAPH 2004, pages 777–786, New York, NY,
USA, 2004. ACM.

[5] P. M. Carpenter, A. Ramirez, and E. Ayguade. Mapping stream
programs onto heterogeneous multiprocessor systems. In CASES ’09,
pages 57–66, New York, NY, USA, 2009. ACM.

[6] J. Chen, M. I. Gordon, W. Thies, M. Zwicker, K. Pulli, and F. Durand.
A reconfigurable architecture for load-balanced rendering. In HWWS
’05, pages 71–80, New York, NY, USA, 2005. ACM.

[7] S. Eyerman and L. Eeckhout. Modeling critical sections in amdahl’s
law and its implications for multicore design. SIGARCH Comput.
Archit. News, 38(3):362–370, June 2010. .

[8] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz. Profile-guided
deployment of stream programs on multicores. LCTES ’12, pages
79–88, New York, NY, USA, 2012. ACM. .

[9] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A.
Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amaras-
inghe. A stream compiler for communication-exposed architectures.
SIGARCH Comput. Archit. News, 30(5):291–303, Oct. 2002. ISSN
0163-5964. .

[10] M. Govindan, B. Robatmili, D. Li, B. Maher, A. Smith, S. W. Keckler,
and D. Burger. Scaling power and performance via processor compos-
ability. IEEE Transactions on Computers, 63(8):2025–2038, 2014.

[11] D. P. Gulati, C. Kim, S. Sethumadhavan, S. W. Keckler, and D. Burger.
Multitasking workload scheduling on flexible core chip multiproces-
sors. SIGARCH Comput. Archit. News, 36(2):46–55, May 2008.

[12] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core fusion: Ac-
commodating software diversity in chip multiprocessors. SIGARCH
Comput. Archit. News, 35(2):186–197, June 2007.

[13] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gu-
lati, D. Burger, and S. W. Keckler. Composable lightweight proces-
sors. In MICRO ’07, pages 381–394, Washington, DC, USA, 2007.
IEEE Computer Society.

[14] M. Kudlur and S. Mahlke. Orchestrating the execution of stream
programs on multicore platforms. SIGPLAN Not., 43(6):114–124,
June 2008.

[15] R. R. Newton, L. D. Girod, M. B. Craig, S. R. Madden, and J. G.
Morrisett. Design and evaluation of a compiler for embedded stream
programs. In LCTES ’08, pages 131–140, New York, NY, USA, 2008.
ACM.

[16] U. of Edinburgh. Edinburgh compute and data facility web site, 1
August 2007, accessed 4th of April. 2016. www.ecdf.ed.ac.uk.

[17] P. Santos, G. Nazar, F. Anjam, S. Wong, D. Matos, and L. Carro.
A fully dynamic reconfigurable noc-based mpsoc: The advantages of
total reconfiguration. In HiPEAC ’13, Berlin, Germany, January 2013.

[18] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating
critical section execution with asymmetric multi-core architectures.
SIGPLAN Not., 44(3):253–264, Mar. 2009.

[19] W. Thies and S. Amarasinghe. An empirical characterization of stream
programs and its implications for language and compiler design. In
PACT ’10, pages 365–376, New York, NY, USA, 2010. ACM.

[20] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamit: A lan-
guage for streaming applications. In CC, pages 179–196, London,
UK, UK, 2002. Springer-Verlag.

[21] R. W. Vuduc. Automatic Performance Tuning of Sparse Matrix Ker-
nels. PhD thesis, 2003. AAI3121741.

[22] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and
A. Agarwal. Baring it all to software: Raw machines. Computer, 30
(9):86–93, Sep 1997.

[23] Z. Wang and M. F. P. O’boyle. Using machine learning to partition
streaming programs. ACM Trans. Archit. Code Optim., 10(3):20:1–
20:25, Sept. 2008.

[24] Y. Watanabe, J. D. Davis, and D. A. Wood. Widget: Wisconsin
decoupled grid execution tiles. SIGARCH Comput. Archit. News, 38
(3):2–13, June 2010.

[25] P. M. Wells, K. Chakraborty, and G. S. Sohi. Dynamic heterogeneity
and the need for multicore virtualization. SIGOPS Oper. Syst. Rev., 43
(2):5–14, Apr. 2009.

[26] Y. Zhou and D. Wentzlaff. The sharing architecture: Sub-core config-
urability for iaas clouds. SIGPLAN Not., 49(4):559–574, Feb. 2014.

