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Local Perspectives on Actions

Michael P. Fourman

April 18, 2007

Abstract

Giving an account of agents acting in the world—sensing, planning, com-
municating, doing—requires a coordinated account of, at least, three differ-
ent kinds of action: ontic, epistemic, and communicative, which focus, re-
spectively, on fact, knowledge and communication.

In this note we are concerned primarily with ontic actions. The motivat-
ing example is the STRIPS approach to the frame problem, where actions are
restricted to change only specified fluents.

We present an algebraic setting for ontic actions modeled as relations de-
scribing controlled state change. We start from a standard model that encodes
STRIPS updates to address the frame problem in logical terms. This model is
a system, in the sense of Resende and Baltag.

We describe a structure that introduces a notion of local perspective or
experiment. This provides a novel treatment of causal relations (which are
closely related to integrity constraints and domain axioms in the AI-planning
literature).

We show how this local structure arises naturally from the semantic struc-
ture of the set of possible states, and suggest that it may also help in modeling
agents with different perspectives.

1 Introduction

Algebras of actions can be traced back to Tarski’s calculus of relations [26], and
beyond (see [22]). This provided the foundation for fifty years of fertile study
(see, for example, [21, 10, 22, 14]). More recently, there has been revived interest,
placing these algebraic ideas in a more abstract setting, and extending them—for
example, to encompass semantics of knowledge and give an account of epistemic
actions [23, 2].

Meanwhile, the AI planning community has worked on syntax and semantics
of languages for specifying planning domains and actions, and on algorithms for
solving for generating plans—sequences of actions that lead from presumed initial
(or pre-)conditions to desired outcomes, or post-conditions.

The frame-problem [24] has been a recurrent issue for practical planning. Early
syntactic approaches are now superseded, or subsumed, by more robust semantic
accounts. However, these assume that all fluents are independent.
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Inspired by [9], [20], and [2], we introduce a local structure on the set of fluents
that can be derived from dependencies inherent in the world model, or can be
established beforehand to impose such dependencies.

2 Properties and Actions

We consider systems in the sense of Resende [23] (see also Baltag et al. [3, 1, 2,
4]). A complete

W
-lattice of properties, ', , . . ., is operated on by a quantale of

actions, ↵,�, . . ..
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3 The Standard Model

Let I be a set of state-variables, with each x 2 I ranging over a non-empty set S
x

of possible values. States are valuations, v—functions that assign a value to each
state-variable. So, valuations are elements of the product state-space, S:

v 2 S =
Y

x2I

S
x

v = hv
x

2 S
x

| x 2 Ii (3)

We often consider only a subset P ✓ S of states. A property, ' ✓ S, is a subset
of the state space. (P will be an invariant property.) The set of properties is a
complete lattice—indeed, in this case, a complete boolean algebra.

A many-sorted first-order predicate calculus with a sort corresponding to each
state variable provides a convenient language for defining properties. For any first-
order formula ✓ whose free variables are contained in I , a standard definition of
satisfaction defines an associated property, [[✓]]:1

[[✓]] = {v | v ✏ ✓} (4)

A non-deterministic action is represented by a relation ↵ ✓ S ⇥ S from states
to states. The relationship, x ↵ y, has an operational reading as, “doing ↵ in state
x may lead to state y”. Actions, composed sequentially by relation composition,
and ordered by inclusion, form a quantale.

An alternative, but isomorphic, representation of the quantale of actions, as
sup-preserving functions }(S)! }(S), equipped with function composition and
point-wise ordering, has a logical reading: the result, ' • ↵, is the strongest post-
condition including all states that may be reached by doing ↵ in a state satisfying
'.

1Context is usually sufficient to distinguish ✓ from [[✓]], so we may abuse notation by omitting the
Scott brackets, [[ ]]. We will also let a boolean variable stand for itself: b ⌘ b =>.
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We call this the standard model, since it has emerged as a common foundation
for much work on actions and planning (sometimes explicitly, often implicitly:
see, e.g. [8, 19, 17, 18, 11, 16, 6, 15, 7, 13]). In this setting, we define some basic
actions.2

For every property, ', we have an action ?', called require ':

 ?' =  ^ ' (5)

For every map, � : I ! I , we have an action [�(x)/x] (substitute �(x) for x):

'[�(x)/x] = {w | w � � 2 '} (6)

For every set of state variables, U ✓ I , we have an action,
g

U :

 

o

U = {w | w ⇠ U 2  ⇠ U} (7)

this action, preserve U , is the largest action that preserves the values of state vari-
ables in U . It allows other variables to change non-deterministically. We also write
m V , called change V , for

g

(I \ V ). This action may be expressed using quantifi-
cation over state variables: ' m V ⌘ 9V.�. A more refined version, permitting
change in one direction only, can be expressed using bounded quantification.

3.1 Local Change

The standard solution to the frame-problem is to confine attention to actions that
leave most observations unchanged.

The STRIPS representation of actions was originally defined operationally, for
a setting with only boolean state variables. A state is represented by the set of
true variables. The STRIPS action ↵, given by a triple, (pre, add, delete), of sets of
variables, can be applied to a set U ✓ I of state variables, iff pre ✓ U ; if applied,
it produces the result (U \ delete) [ add.

In the present setting, we can define the action corresponding to a STRIPS triple
by

STRIPS(pre, add, delete) =

(?
^

pre;m (add[ delete); ?(
^

add^¬
_

delete)) (8)

It is straightforward to calculate that applying this action to the property corre-
sponding to the single state in which U is the set of true variables, simulates the
STRIPS procedure.

2We often omit the • and use simple postfix notation in place of � • ↵.

3



4 Causal Models

The treatment of domain axioms or integrity constraints remains an outstanding
problem. The issue is, how to model a world where the values of state variables
may be inter-related? When one variable is changed, others may require adjustment
to accommodate some universal constraint. It has seemed hard to restrict the ability
to change to the appropriate variables in a semantically principled way. Here,
we suggest an approach to this problem that may initially appear ad hoc. In the
following section we derive our treatment from purely semantic principles.

Rather than considering all state variables as independent atoms, we identify
a structure that encodes functional dependencies. This structure places the atomic
observations of fluents within a poset of perspectives, which is a complete

W
-lattice

with distributive joins—a frame.
Starting from any poset, the downsets constitute the frame of open sets of a

point-set topology on the poset. The poset is embedded, in the frame, by taking
each element, x to the down-set # x, composed of elements y  x. This embedding
preserves existing meets (^), but not joins (

W
).

The original poset has a natural map, ⌫, to any quotient of this frame (by ^,

W
-

congruences). Indeed, a quotient may be specified by stipulating covering condi-
tions, of the form ⌫(y)  W

i

⌫(x
i

) (algebraically ⌫(y) ^W
i

⌫(x
i

) =
W

i

⌫(x
i

)).
Consider an example. Pearl [20] models causal relationships as functional de-

pendencies, and defines a causal model (op cit. p27.) to be

a set of equations of the form

x

i

= f

i

(pa
i

, u

i

), i = 1, . . . , n, (9)

where pa
i

(connoting parents) stands for the set of variables judged
to be immediate causes of X

i

and where the U

i

represent errors (or
“disturbances”) due to omitted factors.

Such a model is represented as a directed graph, with a node for each variable,
and an arrow x ! y if x is a parameter of an equation defining y. In this note,
we confine our attention to causal models represented by a directed acyclic graph
(DAG). We take this graph as a pre-order on variables, and take the reflexive,
transitive closure of x! y, to give a partial order.

Consider a specific example: suppose that we want to include in our model
a particular dependency — that y = f(x1, . . . , xn

). In general, if one of the x

i

changes, then y may change. So, the set of fluents that may be changed by an
action cannot be entirely arbitrary. Moreover, y cannot change unless at least one
of the x

i

does.
We define a (point-set) topology on the set of fluents such that any closed set

of fluents a is a suitable candidate for changes.
First, we equip our poset with a topology in which down-sets are open. So any

open set containing y contains all of the x

i

. Second, we choose the topology a
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coarser topology, with fewer open sets, generated by letting the family hx
i

! y

i

|
i = 1, . . . , ni cover y. In other words, we enforce the condition that any open set
containing all of the x

i

contains y.
A closed set contains y iff it contains at least one of the x

i

; We allow changes
to a closed set—equivalently, we allow the action

g

U only where U is an open set.

4.1 Grothendieck Topology

Let P be a poset, and ⌫ a ^-preserving map from P to a frame. For y 2 P , we
say a family x

i

 y ⌫-covers y iff ⌫(y)  W
i

⌫(x
i

). The collection of ⌫-covers is
a Grothendieck topology on the poset. Every Grothendieck topology arises in this
way—we can construct a suitable frame, and the map, ⌫, from the topology. An
intersection of Grothendieck topologies is a Grothendieck topology—since a prod-
uct of frames is a frame. The coarse topology, in which every family is covering, is
a Grothendieck topology—since the singleton lattice is a frame. So any collection
of covering families generates a Grothendieck topology.

For details of Grothendieck topologies on posets, see [25], and, for a more
general account, [12].

5 Canonical Causal Dependencies

We revisit the example of the previous section. Instead of imposing a partial order
and topology, we derive these from the semantic structure. To do this we introduce
new structure, conservatively extending the standard model. In the next section we
introduce an abstract presentation of this extension, which is in general substantive.

We start from the standard model, but consider only those valuations that sat-
isfy the equations of the causal model: P = {v | v satisfies the causal constraints.}

We introduce a family U 2 O of perspectives—these may be thought of as
experiments. In the standard model, these are just sets of variables, U ✓ I . The
intuition is that these “perspectives” represent a local focus on some aspects of the
world, an isolated environment within which we may experiment independently of
outside influences. We write P(U) for the local states that may be hypothesized
from this perspective U . In the standard model these are just the restrictions of
global states to U .

Perspectives are partially-ordered: V ! U if V represents a narrower focus
than U , and we require that this be evidenced by a restriction map ⇠ V : P(U)!
P(V ). For the standard model this order is just set inclusion, and the restriction
maps are immediate.

We say a family of hypotheses a

i

2 P(U
i

) is coherent iff, whenever there is
a perspective W such that U

i

 W ! U

j

then a

i

⇠ W = a

j

⇠ W . A family
U

i

! W P -covers W iff for every coherent family a

i

2 P(U
i

), there is a unique
hypothesis ā 2 P(W ) such that, for all i, ā ⇠ U

i

= a

i

. We call ā an extension of
the a

i

.
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Now suppose we have a functional relationship y = f(x1, . . . , xn

). We have
a inclusions {x

i

} ! {x1, . . . , xn

, y}. Any selection of values a

i

2 P({x
i

}) is a
coherent family and it has a unique extension ā = ha1, . . . , an

, f(a1, . . . , a

n

)i 2
P(x1, . . . , xn

, y).
The collection of all covering families generates a Grothendieck topology on

the poset of perspectives. The sets P(U) together with restriction maps form a
presheaf whose sheafification is our substitute for the presentation-derived con-
struction of the previous section.

In the simple example with a single functional dependence, {x1, . . . , xn

, y}, in
the sheafification, plays the rôle of y in our earlier construction; {y} turns out to be
covered by the empty family—and so behaves as a minimal element accommodat-
ing a trivial, singleton-set of possibilities in the sheafification.

6 Perspectives

Algebraically, perspectives form a partially ordered set, equipped with a Grothendieck
topology; we take the state space P to be a sheaf over this site. Equivalently, let
X be a locale, whose open sets we call perspectives, and S a sheaf on X . We
say that the space of perspectives is irredundant if, whenever U

i

P-covers W thenW
i

U

i

= W .
Global states arise as global sections of P—which correspond to consistent

sets of hypotheses from each local perspective. Each perspective U induces an
equivalence relation on global states: v ⌘ w iff v ⇠ U = w ⇠ U these states
appear equivalent from this perspective. There may also be states, elements of
P(U), that appear possible from this perspective, but that do not extend to global
states. It may be interesting to link the appearance maps of [1] to these structures.

7 Conclusions

This is a preliminary report on ongoing work.
We have shown how a causal model, in the sense of Pearl, can arise naturally

from semantic analysis of a set of possible states. This leads to an account of local
perspectives as the open sets of a space of observations.

The structures introduced to this end suggest the beginnings of an account of
local perspective, hypothesis and experiment.
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[16] Jérôme Lang, P. Liberatore, and P. Marquis. Propositional independence:
Formula-variable independence and forgetting. JAIR, 18:391–443, 2003.

[17] Fangzhen Lin and Raymond Reiter. Forget it! In Russell Greiner and Devika
Subramanian, editors, Working Notes, AAAI Fall Symposium on Relevance,
pages 154–159, Menlo Park, California, 1994. American Association for Ar-
tificial Intelligence.

[18] John McCarthy. Formalization of common sense, papers by John McCarthy
edited by V. Lifschitz. Ablex, 1990.

[19] Erik T. Mueller. Event calculus reasoning through satisfiability. J Logic
Computation, 14(5):731–745, 2004.

[20] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge Uni-
versity Press, March 2000.

[21] Vaughan Pratt. Dynamic algebras: Examples, constructions, applications.

[22] Vaughan Pratt. Action logic and pure induction. In J. van Eijck, editor, Proc.
Logics in AI: European Workshop JELIA ’90, volume 478, pages 97–120.
Springer-Verlag Lecture Notes in Computer Science, 1990.

[23] P. Resende. Quantales and observational semantics. In B. Coecke, D. Moore,
and A. Wilce, editors, Current Research in Operational Quantum Logic: Al-
gebras, Categories and Languages, volume 111, pages 263–288. Kluwer
Academic Publishers, 2000.

[24] Murray Shanahan. Solving the Frame Problem: a mathematical investigation
of the common sense law of inertia. Artificial Intelligence. The MIT Press,
Cambridge, Mass, 1997.

[25] Isar Stubbe. The canonical topology on a meet-semilattice. International
Journal of Theoretical Physics, 2005.

[26] A. Tarski. On the calculus of relations. J. Symbolic Logic, 6:73–89, 1941.

8


