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Abstract
The electromagnetic field phasors in an isotropic chiral material (ICM) are superpositions of two
Beltrami fields of different handedness. Application of the Bruggeman homogenization
formalism to two-component composite materials delivers ICMs wherein Beltrami fields of one
handedness attenuate whereas Beltrami fields of the other handedness amplify. One component
material is a dissipative ICM, the other an active dielectric material. The range of the volume
fraction of the active component material for which simultaneous amplification and attenuation is
exhibited decreases—but does not vanish—as the ICM component becomes more dissipative
and as its chirality parameter reduces in magnitude.

Keywords: attenuation, amplification, Beltrami field, Bruggeman homogenization formalism,
left-circular polarization, right-circular polarization

(Some figures may appear in colour only in the online journal)

1. Introduction

The issues of gain and loss are currently prominent ones in
electromagnetics, as active component materials are being
introduced in electromagnetic metamaterials in order to over-
come losses [1–3]. Depending on the imaginary part of its
permittivity scalar ( )e w at angular frequency ω, an isotropic
dielectric material is either (i) dissipative if Im 0[ ( )]e w > or
(ii) active if Im 0[ ( )]e w < or (iii) neither if Im 0[ ( )]e w = ,
provided that the electromagnetic fields are assumed to depend
as texp i( )w- on time t [4]. Whether an anisotropic dielectric
material is dissipative or active is determined by the imaginary
part of its permittivity dyadic ( )e w [5]. Furthermore, aniso-
tropic dielectric materials for which the imaginary part of ( )e w

is indefinite can exhibit gain for certain propagation directions
and loss for other propagation directions [6].

This article concerns the issue of simultaneous attenuation
and amplification during plane wave propagation along any
specific direction in an isotropic chiral material (ICM). Exam-
ples of such materials abound in nature, e.g., organic substances
whose molecules contain mirror-asymmetric arrangements of
atoms [7–9]. Also, artificial ICMs can be engineered [10–12].
Very notably, during the last ten years chiral metamaterials
have been the subject of vigorous research directed towards the
manifestation of negative refraction [13–15].

2. Plane wave propagation in ICMs

An ICM is characterized by the frequency-domain Tellegen
constitutive relations [16]4

D r E r H r
B r E r H r

i
i

. 1
( ) ( ) ( )
( ) ( ) ( )

( )
e x

x m
= +
= - +

⎫⎬⎭
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4 Here, and henceforth, the dependencies of the constitutive parameters and
field phasors on ω are not explicitly displayed.
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The permittivity scalar e, the permeability scalar μ, and the
chirality pseudoscalar ξ are frequency dependent and complex
valued, in consequence of the principle of causality enshrined
as the Kramers–Kronig relations [17]. The Bohren decom-
position [18]

E r Q r Q r

H r Q r Q r

i

i
2

L R

1
L R

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
h

h
= -
= +-

⎫⎬⎭
is employed to represent E and H as superpositions of a left-
handed Beltrami field QL and a right-handed Beltrami field
QR, with 1 2 1 2h m e= - as the intrinsic impedance [16]. In
source-free regions, the two Beltrami fields obey the relations

k
k

Q r Q r
Q r Q r

, 3L L L

R R R

( ) ( )
( ) ( )

( ) ´ =
 ´ = -

⎫⎬⎭
where the wavenumbers

k

k
. 4L
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w m e x
w m e x

= +
= -
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Let us consider plane wave propagation along the z+
direction. Then k zQ u ui exp ix yL L( ˆ ˆ ) ( )= + is a left-circularly
polarized (LCP) plane wave and k zQ u ui exp ix yR R( ˆ ˆ ) ( )= -
is a right-circularly polarized (RCP) plane wave. Could the
LCP plane wave lose energy and the RCP plane wave gain
energy, or vice versa, as z increases? More generally, could
Beltrami waves of one handedness attenuate while Beltrami
waves of the other handedness amplify, even if these Beltrami
waves are not plane waves, but, say, spherical or cylindrical
waves? In other words, could kIm L( ) and kIm R( ) be of
opposite signs, but kRe L( ) and kRe R( ) have the same signs? If
yes, then ICM research is promising for circular polarizers of
a new type.

3. Homogenization

A perusal of literature on ICMs did not turn up any example
for which k kIm Im 0L R( ) ( ) < but k kRe Re 0L R( ) ( ) > . Hence,
we decided to investigate the effective electromagnetic
properties of a particulate composite material comprising an
active dielectric material and a dissipative ICM. If the
component materials can be regarded as being randomly
distributed as electrically small particles, then the composite
material could be homogenized into an ICM itself [19].

3.1. Simultaneous amplification and attenuation

Let the component material labeled ‘a’ be an active isotropic
dielectric material specified by the permittivity ae such that
Re 0a( )e > and Im 0a( )e < . Let the component material ‘b’
be a dissipative ICM, characterized by constitutive relations
of the form given in equation (1), but with the superscript ‘b’
attached to the constitutive parameters e, ξ, and μ therein. We
used the well-established Bruggeman formalism [20] to esti-
mate the constitutive parameters Bre , Brx , and Brm of the
homogenized composite material (HCM), per equation (1) but

with the superscript ‘Br’ attached to the constitutive para-
meters e, ξ, and μ therein. Let f 0, 1a [ ]Î denote the volume
fraction of component material ‘a’, the volume fraction of
component material ‘b’ being f f1b a= - .

Significantly, for the ICM component we set Re 0b( )e > ,
thereby avoiding the condition Re Re 0a b( ) ( )e e < that is
likely to give rise to physically implausible results (by
extrapolation from the corresponding homogenization sce-
nario for isotropic dielectric HCMs [21, 22]). This is not at all
a limitation. For examples, the isotropic chiral metamaterials
of Kwon et al [14] has a permittivity scalar with a positive
real part in the near-infrared regime, and ICMs that do not
involve metallic components are generally characterized by
permittivity scalars with positive real parts.

Figure 1 shows the real and imaginary parts of Bre ,
Brx , and Brm as functions of fa, when i2.0 0.02a

0( )e e= - ,
i3 0.01b

0( )e e= + , i c0.1 0.001b
0( )x = + , and bm =

i0.95 0.0002 0( )m+ , with 0e and 0m being the permittivity and
permeability of free space, respectively, and c 10 0 0e m= .
The component material ‘b’ is guaranteed to be dissipative
since Im Im Imb 2 b b[ ( )] ( ) ( )x e m< [23]. The chosen values
of ae , be , bx , and bm are physically plausible [6, 24, 25].

The real and imaginary parts of Bre , Brx , and Brm vary
almost linearly in figure 1 as fa increases from 0 to 1, with

Figure 1. The real and imaginary parts of the constitutive parameters
Br

0e e (red solid curves), cBr
0x (blue dashed curves), and Br

0m m
(green broken-dashed curves) of the HCM, as estimated using the
Bruggeman formalism, plotted against volume fraction fa. The real
and imaginary parts of cBr

0x are scaled by a factor of 10. See the text
for values of ae , be , bx , and bm .
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their endpoints complying with the limits
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⎧⎨⎩
⎧⎨⎩

In particular, the sign of Im Br( )e changes at f 0.27a » .
The real and imaginary parts of the wavenumbers for the

HCM—namely kL
Br and kR

Br per equation (4) with the super-
script ‘Br’ attached to kL, kR, e, ξ, and μ therein—are plotted
against volume fraction fa in figure 2. Whereas kRe 0L

Br( ) >
and kRe 0R

Br( ) > for any f 0, 1a [ ]Î , three mutually disjoint
fa-regimes can be identified for the signs of kIm L

Br( ) and
kIm R

Br( ) as follows:

(i) f 0, 0.22a [ )Î , when kIm 0L
Br( ) > and kIm 0;R

Br( ) >
(ii) f 0.22, 0.33a ( )Î , when kIm 0L

Br( ) > and kIm R
Br( )

0;< and
(iii) f 0.33, 1a ( ]Î , when kIm 0L

Br( ) < and kIm 0R
Br( ) < .

Clearly then, a continuous range of values of the volume
fraction fa, specifically f 0.22, 0.33a ( )Î for the example
presented in figure 2, can exist wherein QL attenuates whereas
QR amplifies.

3.2. Dissipation

The ICM used as the component material ‘b’ for the numer-
ical example considered in figures 1 and 2 exhibits weak
dissipation. Can simultaneous amplification and attenuation
still be achieved if the component material ‘b’ is rather more
dissipative? We address this question next.

In figure 3, the regions in the parameter space of Im b( )e
and fa where k kIm Im 0L

Br
R
Br( ) ( ) < (green) and

k kIm Im 0L
Br

R
Br( ) ( ) > (red) are delineated. The component

materials are the same as for figures 1 and 2, except that
Im 0.005, 0.025b

0( ) ( )e e Î . Clearly, simultaneous amplifi-
cation and attenuation is achieved for all values of Im b( )e
considered, and the range of fa over which

k kIm Im 0L
Br

R
Br( ) ( ) < decreases as Im b( )e increases. Par-

enthetically, kRe 0L
Br( ) > and kRe 0R

Br( ) > for all results
represented in figure 3.

In view of figure 3, the question arises: if Im b( )e becomes
much larger (i.e., sufficiently large that the component mat-
erial ‘b’ may be regarded as a strongly dissipative ICM), can
simultaneous amplification and attenuation still be achieved?
The answer to this question may be inferred from figure 4,
wherein the real and imaginary parts of kL

Br and kR
Br are

plotted against fa, as in figure 2 but with i2 0.1a
0( )e e= -

and i3b
0( )e e= + . We see that k kIm Im 0L

Br
R
Br( ) ( ) < , and

kRe 0L
Br( ) > and kRe 0R

Br( ) > , for the volume fraction range
f 0.872, 0.887a ( )Î . Therefore, we infer that a strongly dis-
sipative component material ‘b’ is no barrier to achieving
simultaneous amplification and attenuation, albeit the fa range
over which simultaneous amplification and attenuation is
achieved is very small when Im b( )e is large.

Let us next explore the ranges of values of Im a( )e and fa
for which simultaneous amplification and attenuation is pos-
sible. In figure 5, the regions in the parameter space of

Figure 2. The real and imaginary parts of the relative wavenumbers
kL

Br (red solid curves) and kR
Br (blue dashed curves) in the HCM,

normalized with respect to the free-space wavenumber k c0 0w= ,
plotted against volume fraction fa. The component materials are the
same as for figure 1. The volume fraction range where

k kIm Im 0L
Br

R
Br( ) ( ) < is shaded in yellow.

Figure 3. Regions in the parameter space of Im b
0( )e e and fa where

k kIm Im 0L
Br

R
Br( ) ( ) < (green) and k kIm Im 0L

Br
R
Br( ) ( ) > (red). The

component materials are the same as for figure 1, except
that Im 0.005, 0.025b

0( ) ( )e e Î .
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Im a( )e and fa where k kIm Im 0L
Br

R
Br( ) ( ) < (green) and

k kIm Im 0L
Br

R
Br( ) ( ) > (red) are delineated. The component

materials are the same as for figures 1 and 2, except that
Im 0.005, 0.045a

0( ) ( )e e- Î . For all values of Im a( )e con-
sidered, simultaneous amplification and attenuation is
achieved, and the size of the range of fa over which

k kIm Im 0L
Br

R
Br( ) ( ) < remains approximately the same

as Im a( )e increases. Parenthetically, kRe 0L
Br( ) > and

kRe 0R
Br( ) > for all results represented in figure 5.

3.3. Chirality parameter

If ξ is replaced by x- in equation (4), then kL and kR in
equation (4) are interchanged. Also, if the sign of Re( )x is
reversed in equation (4), then kRe L( ) and kRe R( ) are inter-
changed, but kIm L( ) and kIm R( ) remain unchanged. There-
fore, if bx were to be replaced by bx- for the homogenization
scenario represented in figures 1 and 2, then the handedness
of the Beltrami field that is amplified/attenuated for the
regime wherein k kIm Im 0L

Br
R
Br( ) ( ) < will be reversed. To

illustrate this point, in figure 6 the wavenumbers kL
Br and

kR
Br are plotted against fa for the same homogenization sce-

nario as represented in figures 1 and 2 but with
i c0.1 0.001b

0( )x = - + . For f 0.22, 0.33a ( )Î , we infer
from figure 6 that QL is amplified and QR is attenuated,
whereas from figure 2 it is QR that is amplified and QL that is
attenuated.

The magnitude of the chirality parameter used for the
component material ‘b’ in the calculations represented in
figures 1–6 is consistent with that associated with certain iso-
tropic chiral metamaterials [14], but is considerably larger than
the magnitude generally associated with organic ICMs [7, 26],
for example. Therefore the question arises: Can simultaneous
amplification and attenuation still be achieved for much
smaller magnitudes of bx , within the range associated with
organic ICMs [12], for example? This question is addressed via
figure 7, wherein the real and imaginary parts of kL

Br

and kR
Br are plotted against fa, as in figure 2 but with

i c0.1 0.001 10b 3
0( )x = + ´ - . The real parts of kL

Br and kR
Br

are indistinguishable to the naked eye in figure 2, but are
positive-valued for f 0, 1a ( )Î . For the volume fraction range
f 0.29120, 0.29131a ( )Î we see that k kIm Im 0L

Br
R
Br( ) ( ) < .

Therefore, simultaneous amplification and attenuation is
achievable for i c0.1 0.001 10b 3

0( )x = + ´ - , albeit for a
tiny range of the volume fraction of the active component
material.

4. Closing remarks

In the foregoing analysis, a physically plausible means of
achieving an ICM for which left-handed Beltrami fields are
amplified whereas right-handed Beltrami fields are attenuated
(or vice versa) is conceptualized. Specifically, for an ICM
arising from the homogenization of a dissipative ICM and an
active dielectric material, our numerical results reveal that:

(a) The HCM exhibits simultaneous amplification and
attenuation across a relatively wide range of the volume
fraction of the active component material, provided that

Figure 4. As figure 2 but with i2 0.1a
0( )e e= -

and i3b
0( )e e= + .

Figure 5. Regions in the parameter space of Im a
0( )e e and fa where

k kIm Im 0L
Br

R
Br( ) ( ) < (green) and k kIm Im 0L

Br
R
Br( ) ( ) > (red). The

component materials are the same as for figure 1, except
that Im 0.005, 0.045a

0( ) ( )e e- Î .
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the ICM component exhibits relatively low dissipation
and has a relatively large chirality parameter.

(b) The range of volume fraction of the active component
material for which simultaneous amplification and
attenuation is allowed decreases as the ICM component
becomes more dissipative and its chirality parameter
becomes smaller in magnitude.

(c) When the ICM component exhibits relatively high
dissipation or has a chirality parameter of relatively
small magnitude, simultaneous amplification and
attenuation can still be achieved albeit across a very
small range of volume fraction of the active component
material.

(d) If the chirality parameter of the ICM component
changes sign for an HCM that exhibits simultaneous
amplification and attenuation, then the handedness
of the Beltrami field that is amplified/attenuated swaps
over.

These results open the door for circular polarizers of a
new type.
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