
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Task Variability in Autonomous Robots: Offline Learning for
Online Performance

Citation for published version:
Hawasly, M & Ramamoorthy, S 2012, Task Variability in Autonomous Robots: Offline Learning for Online
Performance. in Proceedings of the 5th International Workshop on Evolutionary and Reinforcement
Learning for Autonomous Robot Systems (ERLARS).

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 5th International Workshop on Evolutionary and Reinforcement Learning for Autonomous
Robot Systems (ERLARS)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/task-variability-in-autonomous-robots-offline-learning-for-online-performance(5c3589a9-7570-419e-be8b-b6f9173f2a0f).html


Task Variability in Autonomous Robots:
Offline Learning for Online Performance

Majd Hawasly and Subramanian Ramamoorthy1

Abstract. A problem faced by autonomous robots is that of achiev-
ing quick, efficient operation in unseen variations of their tasks after
experiencing a subset of these variations sampled offline at training
time. We model the task variability in terms of a family of MDPs dif-
fering in transition dynamics and reward processes. In the case when
it is not possible to experiment in the new world, e.g., in real-time
situations, a policy for novel instances may be defined by averaging
over the policies of the offline instances. This would be suboptimal
in the general case, and for this we propose an alternate model that
draws on the methodology of hierarchical reinforcement learning,
wherein we learn partial policies for partial goals (subtasks) in the
offline MDPs, in the form of options, and we treat solving a novel
MDP as one of sequential composition of partial policies. Our pro-
cedure utilises a modified version of option interruption for control
switching where the interruption signal is acquired from offline ex-
perience. We also show that desirable performance advantages can
be attained in situations where the task can be decomposed into con-
current subtasks, allowing us to devise an alternate control structure
that emphasises flexible switching and concurrent use of policy frag-
ments. We demonstrate the utility of these ideas using example grid-
world domains with variability in task.

1 Introduction
In this paper we address the autonomous agent’s problem of perform-
ing a specific task in a world drawn from a family of related worlds
with no opportunity to experiment afresh. Modelling these as MDPs,
we consider that all the processes have the same state-action space,
but differ in dynamics and/or reward processes. The agent, typically
a robot with limited knowledge of context, may have no knowledge
of the type of the new MDP; but it is asked to perform the task as
well as possible and in real-time, without further experimentation in
this new world.

1.1 Motivation
A robot is considered autonomous when it is capable of achieving
relatively sophisticated tasks in changing worlds and over an ex-
tended deployment time. A characteristic of these changing worlds is
that they are arbitrarily rich and may continuously change. In prac-
tice, the robot has only limited time in any newly-assigned task to
act efficiently. This real-time requirement is due to the change in the
world or the expiry of the task.

Consider, as an example, the case of a self-driving car in an urban
area. Even though the task is structured and probably well known,

1 School of Informatics, The University of Edinburgh, 10 Crichton Street,
Edinburgh, United Kingdom, EH8 9AB, email: m.hawasly@sms.ed.ac.uk

the vehicle has to interact with the unmodelled dynamics emerging
from the existence of other vehicles and pedestrians. The agent would
have been trained in many different situations, but given the size and
the richness of the problem, no specific instance would ever happen
twice. The vehicle should achieve its task, of navigating toward a
goal location, in real-time under the possibly unseen dynamics, and
with no chance to repeat the same interaction again as learning al-
gorithms usually require. The issue is more pronounced when the
task is inherently unstructured, like the navigation problem for field
robotics, or in the domain of disaster response.

1.2 Rationale

The question we are tackling then is: how should the offline expe-
rience be utilised to enable the robot to survive the online, real-
time task? Here, utilisation is interpreted as determining which be-
haviours, representations and control structures should be learnt and
how they should be used afterwards.

A standard reinforcement learning approach to deal with the vari-
ability might be to treat it as uncertainty generated by a big, latent
stochastic process. That is, to consider the family of MDPs as one
giant MDP. Then, a policy may be learnt for that stochastic process
if given enough time and experience. This form of learning across
the set of MDPs experienced in the offline phase would yield a sub-
optimal averaging policy.

In the control theory literature, where the goal is typically to
handle disturbances and dynamics abnormalities by devising large
basins of attraction, it is known that it is very hard to find suitably
robust large-basin controllers for many complex but realistic sys-
tems. So, a collection of controllers is devised instead, with each
controller specialised to stabilise a certain context, which then can
be sequenced in a way that achieves the desired robustness in the
complete task [3, 21]. Composing controllers in robotics has been an
issue of interest recently, and, besides control, the question of rea-
soning about generic robot capabilities to generate viable plans that
adhere to task specification has been investigated, e.g., using sym-
bolic reasoning [2].

Here, we take a similar approach but posing the question using
reinforcement learning. In [3], Burridge et al. employ a backchain-
ing mechanism on a set of hand-designed feedback controllers with
overlapping domains of attraction and goal sets, creating a hierar-
chy of ‘funnels’, to produce robust trajectories that lead to the goal
starting from a large applicability domain (specifically, the union of
individual controllers’ domains of attraction). Here, we learn a set of
policy fragments from the offline instances, we organise these poli-
cies in an appropriate control hierarchy, and we employ a switching
paradigm that promotes reactivity to the environment ‘feedback’, ex-



tracted from the changes caused by the unmodelled dynamics.

1.3 Approach

Reinforcement Learning (RL) is the classical technique for learning
from online interaction [18] giving automatic guarantees for station-
ary environments, but careful thought and design effort are needed
to make it work properly in situations with levels of change that
cannot be described as slight parameter drifts. Besides, RL meth-
ods require many training episodes to achieve good performance in
any task, which is problematic with our real-time ‘one-shot’ require-
ment. Model-based methods can achieve acceptable performance
faster than model-free methods but need a good model of the environ-
ment, which is a ‘moving target’ that we assume we cannot identify
fully. Hence, our focus is on the problem of structuring the RL prob-
lem so as to exploit the structure in the world and the task to achieve
the stated requirements.

We propose to decompose the task into a collection of subtasks,
then learn policies for these subtasks from the offline instances. We
claim that factoring the variability into these components is bene-
ficial to the quality of the produced policies. After that, we learn
to compose these subtasks for novel instances, producing a policy
that takes into account the new instance through an indirect feedback
mechanism.

We argue that decomposing the task into subtasks, in the spirit
of hierarchical reinforcement learning [1], and learning component-
wise policies from the experienced MDPs may be beneficial to online
performance. The intuition comes from the benefits of decomposition
as a standard approach to learning in intricately complex stochastic
systems, such as the process that generates all the variation in our
problem, by factoring the variation to multiple subtasks and how they
are put together, reducing the blurring effect induced by policy av-
eraging. Our proposed method applies to any domain where the task
has internal structure that supports such a decomposition, and many
practical domains of interests satisfy this requirement.

We require that the robot has sufficient offline training time to
learn in a few samples of the MDP family. In practice, this needs not
be a separate phase, but all the experience accumulated in past inter-
actions can be included to handle the new instance (cf. lifelong learn-
ing [22]). In the training phase, the robot may develop a set of capa-
bilities - generic, reusable controllers that target relevant subtasks
across the family of experienced worlds. To interpret these in the
language of Hierarchical Reinforcement Learning (HRL), one may
consider them to be options [19]: temporally-abstracted actions. If
the task supports a set of variation-persistent subtasks, we can utilise
the offline phase to develop a hierarchical model describing the task.
A key aspect of our proposed approach is that through such a decom-
position, a hierarchical model of offline-developed capabilities might
outperform the alternative of an averaging policy learnt across the set
of unstructured MDPs. In particular, we will show that this enables
the agent to ’jump start’ in terms of performance in a novel instance,
without having to learn afresh.

A caveat that must be associated with any usage of hierarchical
models in RL is that the best policy that can be achieved, in the gen-
eral case, may be suboptimal. The notion of optimality in HRL is
known as hierarchical optimality which refers to the goodness of
policies in the hierarchy-induced policy subspace [5]. Nonetheless,
the true optimality can be approached by modifications to the hierar-
chy or its induced control [7, 5].

One such modification in the options framework is known as in-
terrupting options [19], which is a means that plays on option termi-

nation conditions to improve global performance in a specific MDP.
The termination condition of an option is not restricted anymore to
reaching a terminal state, but also in cases when a better option at
some intermediate step can be invoked. This would loosen the con-
straints on the policy space, allowing policies that are chains of sub-
trajectories rather than chains of complete option-generated trajecto-
ries. To generate the interruption signal, the knowledge of all option
values at all states in the specific MDP is usually assumed. This re-
quirement is strong if the world is not known a priori. We propose
that this can be relaxed by using values that are not immediately from
the current instance, but rather statistics from the offline MDPs.

Another improvement can come from the hierarchical decompo-
sition itself. Usually, subtasks are chosen to represent different ob-
jectives that the agent may need to achieve while seeking its goal.
This decomposition does not often produce truly ‘orthogonal’ sub-
tasks. The resulting policies, in many cases, share the state-action
space and may have overlapping or non-compatible reward signals.
Nonetheless, the hierarchical model eventually handles them as if
they are truly independent, just as the standard RL framework han-
dles primitive actions. To tackle that, we propose to include in the
hierarchy, along with the original subtasks, a collection of composed
subtasks: policies that achieve the goals of some subtasks concur-
rently, optimising their overlap.

In this paper, we will use the options framework to build a hier-
archy to organise a set of policies (and compositions) learnt from
extended offline experience, and plan with a reactive interruption
mechanism allowing flexible sequencing in response to changes in
the environment. Also, we relax the decomposition boundaries in-
duced by the hierarchy by learning to achieve multiple subtasks at
once for subtasks that support concurrency, and propose an alter-
nate control hierarchy around that. We demonstrate these techniques
using two gridworld tasks: a navigation task with changing, unpre-
dictable wind, and a resource gathering task with partial observability
and adversaries.

2 Setup

2.1 Markov decision process

We assume that the task of the robot can be modelled as a discrete-
time Markov decision process (MDP). An MDP m is the tuple
(S,A, T,R), where S is a finite state space,A is a finite action space,
T : S × A × S → [0, 1] is the (stationary) dynamics of the world,
and R : S × A × S → R is the (stationary) reward process that
encodes the goal of the task.

A (Markov) policy for an MDP is a (stochastic) mapping from
states to actions, π : S × A → [0, 1], and the optimal policy π∗

is the policy that maximises expected cumulative reward. The cu-
mulative reward is summarised using a state-action value function:
Qπ(s, a) = Eπ{rt + γrt+1 + γ2rt+2 + . . . |s, a} for the future
rewards {rt} and the discounting factor γ. The optimal action value
function is Q∗(s, a) = maxπ Q

π(s, a) for all pairs (s, a).

2.2 Family of MDPs

We model the variability in a task using a family of related Markov
decision processes M with the same goal. The family shares the
state-action space S×A, but the dynamics Ti : S×A×S → [0, 1]
and the reward process Ri : S × A × S → R may be different
for each MDP in the family mi ∈ M. We assume that the vari-
ability model, formally defined as {T ,R} where Ti = T (i) and



Ri = R(i), to be unknown to the agent. The agent ‘samples’ from
the variability model during the offline learning phase.

2.3 Semi-Markov decision process

In a semi-Markov decision process (SMDP), actions are allowed to
extend over multiple time steps. This makes reasoning about time ex-
plicit in learning and planning. This kind of process emerges when
dealing with temporally extended actions in MDPs, e.g. in hierarchi-
cal reinforcement learning.

2.4 Options and Interruption

The framework of options is one approach to hierarchical reinforce-
ment learning [1, 19] using temporally-extended actions. An option
is the three-tuple 〈I, π, β〉: I ⊆ S is the initiation state set where
the agent is allowed to invoke the option, π is a (Markov or semi-
Markov) policy which be followed when the option is invoked, and
β is a termination probability distribution over the state space, which
encodes stochastically the termination condition of the option. Op-
tions are flexible objects that generalise primitive actions which can
be considered as (trivial) 1-step options for planning purposes.

For a set of options O, an option switching policy µ : S × O →
[0, 1] is a (stochastic) map from states to options. It is proven that
sequencing a set of (Markov or semi-Markov) options from O de-
fined over an MDP gives a well-defined semi-Markov decision pro-
cess (SMDP), allowing planning and learning of µ via similar ap-
proaches to planning and learning in MDPs [19]. Qµ is the option
value function for µ.

Normally, an option selected by µ at some state continues to run
until its termination condition is satisfied. On the other hand, option
interruption is the process of switching control from the running op-
tion before its normal termination if its value at the current state st
is inferior to the expected value of the policy at st: Qµ(st, o) <∑

q∈O µ(st, q)Q
µ(st, q). This is a kind of non-hierarchical execu-

tion in HRL, and it allows for performance improvement over the
SMDP policy.

3 Handling task variability

3.1 Averaging policy

For a set of sampled MDPsM′ ⊆M, the mean MDP m̄ is the pro-
cess that has the same state-action space S×A as the members ofM
but has the dynamics and reward processes {T̄ , R̄} = EM′{T ,R}.

The averaging policy π̄ is the optimal policy for the mean MDP
m̄. Note that the value function of this policy averages sample returns
generated from the models of sampled members in the family. If the
variability inM is extensive, the performance of π̄ would be poor in
general. Intuitively, This is due to the policy trying to choose actions
that suit the full spectrum of dynamics and rewards, and thus ending
up with actions that are conservative for many of the task instances.
Note that the specific averaging policy that will emerge from training
on someM′ will depend on the nature of the sampled MDPs as well
as the sampled trajectories in them.

3.2 Capabilities: offline options

A capability is a skill that targets a specific subtask that occur fre-
quently in the worlds that an agent has experienced. We model that

subtask as an MDP that possibly lives in a subspace of M’s state-
action space, and which has a localised dynamics and a special re-
ward function.

A capability can be described as an option 〈I, π, β〉, with I and β
specifying the subtask (where the capability is viable, and when to
stop it), and π being the policy learnt for the subtask across the set
of offline instances that have been experienced. For this, we call a
capability an offline option.

Because it is a smaller problem, we argue, as we show later in
the experiments, that a capability will be less affected by variability
compared to the full task. Intuitively, the initiation set I ⊆ S and the
policy π will limit the generated trajectories to a subset of all trajecto-
ries, which will reduce the dynamics variability effect on the option.
Also, the capability’s reward targets, by definition, a more persistent
component of the complete task reward, making it less susceptible to
reward variability.

Defining capabilities as options allows us to interpret the capabil-
ity switching strategy as as an option switching policy µ that can be
learnt over the SMDP induced from the set of offline options. Re-
member that in our case, however, the agent is unable to learn the
switching policy µ for the online instance directly, due to the real-
time requirement. If an averaging switching policy µ̄ is to be learnt
to achieve the task from offline experience, this would only produce a
hierarchically-optimal policy for the mean MDP, which will be sub-
optimal to the averaging policy π̄ in the general case. To improve on
that, we propose to incorporate a notion of option interruption into
the process. This is described in the next section.

3.3 Offline interruption
Employing interruption in the options framework not only improves
performance through non-hierarchical execution of hierarchical poli-
cies, but also adds an element of ‘reactivity’ in the control structure
by making it sensitive to the state of interaction. This appears to be
useful for handling unknown situations, but the interruption condi-
tion in the original concept [19] requires knowledge of all option
values in the desired instance, which we do not have. We propose
a modified notion of interruption that depends on values extracted
form the offline experience.

Definition 1 (Offline interruption). A running option o in the un-
known MDP m may be offline-interrupted at state st if the maximum
value of o at that state in all instances under the averaging option
policy, Q̂µ̄(st, o) = maxm∈MQm,µ̄(st, o), is strictly less than the
averaging value of interrupting o and selecting a new option accord-
ing to the policy µ̄: Q̂µ̄(st, o) < V µ̄(st) =

∑
q
µ̄(st, q)Q

µ̄(st, q).

The intuition is that the choices of µ̄ would be conservative and
‘safe’ across the set of experienced MDPs, and following µ̄ would
be suboptimal in general. When the best seen value of the running
option goes below that stable safety threshold upon reaching some
state, it is reasonable to follow the safe choice. Because the agent
only observes a subset of all instances M′ ⊆ M, we estimate
the maximum value function from the seen instances: Q̂µ̄(st, o) ≈
maxm∈M′ Qm,µ̄(st, o). Then, there implicitly lies an assumption
that the real value of the option at the current instance would not be
higher than what have been seen so far in the offline instances.

Following the original theorem of option interruption [19], we give
a condition for offline interruption soundness in the next theorem.

Theorem 1 (Offline interruption). For a family of MDPsM, a set
of options O defined over the family, and an averaging switching



policy µ̄ : S × O → [0, 1], define a new set of option O′ with one-
to-one mapping between the two option sets except for termination
conditions which are defined as follows: β = β′ for all states but the
ones in which Q̂µ̄(s, o) < V µ̄(s) – that is, the maximum value at
s for an option o is less than the expected value of that state under
the averaging policy – then we may make the termination condition
β′(s) = 1. Let µ̄′ be the policy over O′, µ̄ = µ̄′. If the averaging
policy is pessimistic with respect to values in an instance m ∈ M,
then µ̄′ is no worse than µ̄: V m,µ̄

′
(s) ≥ V m,µ̄(s) for all s ∈ S.

Proof. We follow the proof in [19]. In some arbitrary MDP m,
for V m,µ̄

′
(s) ≥ V m,µ̄(s) to be true for arbitrary s, it is enough

to show that following µ′ from s then continuing with µ is no
worse than following µ all the time. So, it is enough to show that:
ro

′
s +

∑
s′ p

o′

ss′V
m,µ̄(s′) ≥ ros +

∑
s′ p

o
ss′V

m,µ̄(s′). The two sides
are equal for any history ss′ that is not interrupted (because the poli-
cies are the same in that case), therefore we shall only consider the
expected value under interrupted histories. That is, we would like to
prove that: E{r + γkV m,µ̄(s′)} ≥ E{β(s′)[r + γkV m,µ̄(s′)] +
(1 − β(s′))[r + γkQm,µ̄(s′, o)]}, for the interrupted histories ss′

under o′ followed by o. This is true if Qm,µ̄(s′, o) ≤ V m,µ̄(s′), i.e.
the return from the interrupted option o at interruption state s′ in the
specific instance m is less than the return of µ̄ in m.

We know that Qm,µ̄(s′, o) ≤ Q̂µ̄(s′, o) (by the definition of Q̂µ̄),
and that Q̂µ̄(s′, o) < V µ̄(s′) for all interruption states s′ (by the
definition of offline interruption). For that, the proof will be com-
pleted when V µ̄(s′) ≤ V m,µ̄(s′), ∀s′, i.e. the averaging policy pes-
simistically underestimates the values of the interruption states in the
instance m.

Although the premise would not be true always for any instance
m ∈M, the method is still able to produce good results empirically.
Algorithm 1 gives a simple procedure for decision making with of-
fline options and offline interruption.

Algorithm 1 Decision making with Offline Interruption

Require: O: option set; µ̄: averaging option policy; Qµ̄: value
function of µ̄ over O; Q̂µ̄: maximum values of the option set
O under µ̄; st: current state.

1: orun ← φ.
2: for every time step t do
3: if orun is empty then
4: orun ← arg maxo∈O Q

µ̄(st, o).
5: else
6: if Q̂µ̄(st, orun) <

∑
q
µ̄(st, q)Q

µ̄(st, q) then
7: o ∼ µ̄(st, .)
8: orun ← o.
9: end if

10: end if
11: at ∼ πorun(st, .).
12: end for

In the algorithm, µ̄(s, .) is a probability distribution over options,
corresponding to the option switching averaging policy, and πo(s, .)
is a probability distribution over other options or primitive actions,
corresponding to option o’s policy.

3.3.1 Example - Windy gridworld

The aim of this experiment is to test offline options and offline in-
terruption. A gridworld of 5× 5 cells has an obstacle with two exits

(Figure 1). Wind blows immediately before the exits. It has an un-
known but fixed direction in any instance, and it blows strong gusts
with an unknown but fixed probability throughout the episode, push-
ing the agent one cell at a time. The goal of the agent, starting from
a cell in the the leftmost column (marked with ’S’), is to pass one
of the exits to the right side (marked with ’G’). The agent gets -1
penalty for every action taken until the goal is reached or the episode
elapsed (100 time steps). Moving towards a wall does not change the
location of the agent, but it will cost it the usual penalty.

Figure 1. The Windy gridworld. The agent starts randomly in one of the
cells marked with ‘S’ and is tasked with reaching any of the cells marked

with ‘G’. The arrow indicates the locations and possible directions of wind.

Each instance of this MDP family is characterised with two pa-
rameters (p, dir). p ∈ [0, 1] is the probability with which the wind
will succeed in changing the position of the agent, while dir ∈
{North, South} is the wind direction. The agent might be pushed
one cell in the direction dir with the probability p while in the windy
cells. Figure 1 shows the setup.

The agent experiences many instances of this family in the offline
phase, and learns an averaging policy across all these instances. This
is a policy over the primitive actions that reaches the goal via any
of the two exits. At the same time, the agent is made to learn two
options with handpicked goals, one for reaching the goal through
each of the exits. The agent learns an averaging option switching
policy as well, and estimates the maximum option values from these
training instances using a Monte-Carlo learning method.

Figure 2 shows the result of 5 runs of a 10000-episode testing
phase.

In each test episode, the agent is given 100 time steps in a new
instance (p, dir), in which both the flat averaging policy and the
offline-interrupted option policy are evaluated. The performance cri-
terion is the accumulated reward in the episode (ranging from -100
to 0). We report in Figure 2 the difference in performance between
the two methods, sorted in ascending order to ease interpretation.

As the figure shows, the offline-interrupted option policy is no
worse than the flat averaging policy in almost 80% of all episodes.
This can be justified by the ability of the leant partial-policies to cap-
ture delicate details about the interaction (e.g. the consistent correla-
tion of the wind direction in the windy cells), in contrast to the flat
averaging policy. Also, the interruption mechanism allowed for ac-
tive intervention in the control process (sensed through the change in
state) that put that knowledge into play. The results look similar if the
setup is not identical in the learning and testing phases, e.g. having
only southerly winds in the test phase.

3.4 Composition-based hierarchy

Although decomposition of a task is beneficial to manage variabil-
ity and improve performance in an unknown world, the hierarchy
does limit the producible policies to a policy subspace spanned by



Figure 2. Difference in performance between the offline-interrupted option
policy and the averaging policy in 5 runs. Values above zero are episodes
where the offline interruption outperforms the averaging policy. Note that

episodes are sorted in the figure by performance to facilitate interpretation.

sequences of (sub-)trajectories generated by the (interrupted) op-
tion policies. This is a known problem of hierarchical reinforcement
learning that resulted in adopting various optimality criteria by HRL
methods [5]. We propose next a representation for tasks that admit
concurrent execution of subtasks.

3.4.1 Subtask composition

In robotic applications, subtasks are rarely fully independent in the
way HRL frameworks handle them. That is, it is common that option
policies share state-action space and may have conflicting or interact-
ing goals. We propose to learn options that target the goals of more
than one subtask at once, and we call these composed subtasks. This
can be interpreted as a controlled kind of concurrency for policy syn-
thesis.

Definition 2 (Composed subtask). If the domain of applicability of
two offline options happen to intersect in a non-trivial way, a new op-
tion can be defined for that intersection where both the correspond-
ing subtasks are tenable. For o1 and o2 being offline options with
domains S1 × A1 and S2 × A2 respectively, a composed subtask
o1,2 is a capability (of order 2) defined for the state space S1 ∪ S2

and the action spaceA1∪A2 that optimises the goals of the two sub-
tasks simultaneously. For the composed subtask o1,2, the subtasks o1

and o2 are called components.

Because o1,2 subsumes o1 and o2 in domain and reward, an action
taken by a component subtask policy is an action of the composed
subtask from a learning point of view. This leads to that every learn-
ing update of a component policy also triggers an update for its par-
ent, composed subtask. Thus, almost all learning in the hierarchy can
happen off-policy while learning the components at the leaves, and
very little additional learning effort is ever needed.

Composition is not limited to order 2. Three subtasks may be com-
posed to produce a higher-order subtask, but if the components are
pairwise-composable. The composition relation defines a tree hier-
archy with the primitive options at the leaves, and more complex
subtasks at higher levels.

3.4.2 Model description

Composed subtasks can be used as any other option for the purpose
of policy synthesis, along with their offline values and interruption.
This will produce richer policies that are closer to true optimality.
However, this ‘unstructured’ approach ignores the natural subsump-
tion of these subtasks. We would like to see the composed subtask
given the priority over its components when it is able to achieve
their joint objectives. That is, an appropriate component should take
charge only when the composed subtask is not tenable, but handles
control immediately when it is. The generic options framework does
not provide us with this flexibility.

To emphasise that, we propose a control hierarchy for concurrent,
rather than sequential, tasks that we impose over our offline option
implementation. In the composition-based hierarchy, control always
starts with the highest-order composed subtask (which achieves the
goals of all the subtasks underneath). Note that the policy of this sub-
task is the full task averaging policy. This process is allowed to run as
long as it is able to achieve its objectives. Otherwise, it is interrupted
and control is moved to an appropriate component. The component,
which may be composed from other subtasks as well, is run in a
similar fashion. The trick is that the status of the parent subtask is
continuously checked, and when it is ready to run again, the running
component is interrupted and the parent subtask regains control. In
short, control is moved up and down the tree hierarchy, from the more
general to the more specific and vice versa, in response to changes in
the world captured by the offline interruption function. This can be
seen as a special kind of polling execution of non-hierarchical exe-
cution of hierarchical policies [5].

3.4.3 Learning a model of subtask attainability

The mechanism of offline interruption is one way to learn control
switching from seen instances, but it is not by any means the only
one. Any function that has the quality of predicting the viability of
subtasks can be considered a generalisation to the interruption mech-
anism. This, for example, is important if the variability in rewards is
high in a way that makes relying on upper bounds less useful. Sub-
task robustness is one example of these generalisations.

Robustness is an offline estimate of goal attainability that does
not depend immediately on the rewards accumulated by the differ-
ent policies. Rather, it abstracts away from values and ask explicitly
about the success or failure of a subtask. It utilises a level of aspira-
tion as a threshold to control when to switch out from one policy.

One simple realisation of robustness can be in the form of a state-
action value function, e.g. acquired using Q-learning. The value
R(o, s, a) estimates the expectation that the option o will be able
to achieve its goals from state s and action a. Switching can be
controlled through a threshold τ that represents the level of relia-
bility/safety the agent requires. Whenever the option fails to deliver
robustness at least as high as the threshold, e.g. due to unobservable
task parameters, it is deemed unsafe to use and suspended. This is
a trade-off between performance and safety, as robustness prefers a
policy that is safe when the world unexpectedly changes, but cannot
in general guarantee performance. The robustness threshold τ can be
used as a tunable parameter to control the risk attitude of the agent.

Note, however, that the notion of robustness should not be re-
stricted to simple scalar value functions, but can have other forms
that reflect the viability of capabilities at states in different settings.
This may include, for example, a Pareto efficiency measure with a
Pareto frontier as a switching threshold in multi-objective capabil-



ities, or the utility of correlated equilibria with a minimax solution
threshold in interactive, multi-agent setting.

3.4.4 Algorithm

Algorithm 2 shows a simple procedure for action selection by hi-
erarchical search in a composition-based hierarchy K. The running
option o is used as long as it is able to produce satisfactory behaviour
as defined by its robustness function (line 6). If the robustness drops
below the threshold τ , o is suspended and one of its components are
selected using a suitable metric, e.g. robustness (line 10). The new
capability is used similarly (line 11) until the robustness of the par-
ent is recovered above its threshold (line 3).

Algorithm 2 HierarchicalSearch
Require: K: task hierarchy; orun: running subtask; p: parent sub-

task; τ : robustness threshold; st: current state.
1: ap ∼ πp(st, .).
2: if R(p, st, ap) > τ then
3: return ap.
4: else
5: a ∼ πorun(st, .).
6: if orun is primitive option or R(orun, st, a) > τ then
7: return a.
8: else
9: O′ ← components of orun in K.

10: q∗ ← arg maxq∈O′ R(q, st, a).
11: return HierarchicalSearch(K, q∗, orun, τ , st).
12: end if
13: end if

The first call to the algorithm takes the root of the hierarchy as
the running subtask. πo(s, .) is a probability distribution over prim-
itive actions related to the policy of option o at state s. The function
R(o, s, a) returns the robustness of state-action pair (s, a) for the
option o. Finally, the function HierarchicalSearch is a recursive
call for the procedure itself.

3.5 Example - Wargus resource gathering task
Following the setup in [14], we implemented Wargus resource gath-
ering task. On a gridworld of 32 × 32 cells, an agent has to collect
items while avoiding an adversarial patrol agent. Agents can move
in the eight compass directions, they can only see objects less than
8 cells away (but bearing is always observed), and the adversary can
shoot for a maximum range of 5 cells. The objective of the agent is to
collect as many items as possible in a specific duration. These items
appear in the world one at a time and stay in place until picked by the
agent, triggering a new item to appear in a random spot. The patrol
agent navigates in a random walk most of the time, but when it sees
the agent it uses the shortest path to it, then shoots once in range.

The variability in this task comes from the random (and, most of-
ten, unobservable) location of items, and the random (and, most of-
ten, unobservable) location of the adversary. A specific assignment of
these two parameters produces one MDP from the possible family.

3.5.1 Experimental setup

No relearning is allowed for our agent, and hence every instance of
the world is tried by the agent only once. We mix the training and
testing phases in this experiment, such that new instances use all the

knowledge gathered in all the previous episodes, an approach related
to the notion of lifelong learning [22].

For this, the agent starts with no prior knowledge of any sort and
learns everything (averaging policy, options, switching policies, ro-
bustness) from scratch.

An episode starts with a random positioning of the two agents
and a single item, and it only ends when the agent is destroyed or
when the episode elapses. Performance is measured by the number
of items the agent manages to gather throughout the episode. A set
of 30 episodes followed by a set of 5 nominal test episodes is called
a trial. The test episodes have fixed parameters, but the agent is not
allowed to learn in them. This is in order to test the improvement
in performance as more experience is gathered. We report the scores
achieved in the nominal test episodes.

The experiment is run for 500 trials, and repeated 5 times with the
final scores averaged and smoothed.

3.5.2 Methods

We compare the composition-based hierarchy with 3 other methods:
a simple averaging policy, offline options, and offline options with
interruption:

• Averaging policy: Q-learning over the 8 primitive actions, trained
across all the experienced instances.

• Offline options: three options, and their switching policy, are
learnt. The options are: ToGoal (TG) for navigating towards
the item, FromEnemy (FE) for navigating away from the pa-
trol agent, and TG+FE, the composition of the two. These options
are designed to start anywhere on the grid, and terminate upon the
occurrence of an event such as seeing the adversary or losing sight
of the goal item. The option policies and the switching policy are
averaging policies over the experienced instances.

• Offline options with interruption: we added to the previous imple-
mentation an offline interruption mechanism that uses the offline
values of the option policy. That is, the policy may switch between
the three options based on their maximal historical values, rather
than having to wait until normal termination.

• Composition-based hierarchy: the hierarchy in Figure 3 is imple-
mented using the same options as above and the following ro-
bustness function: the robustness values for the TG is acquired
using Q-learning with the reward +1 if an action leads the agent
to where the goal is reachable (seen), −1 only when it leaves the
reachability area, and 0 otherwise. For FE, a penalty of−1 is given
as long as the agent is within the range of sight of the opponent,
+1 once when it escapes it, and 0 otherwise. The composed sub-
task TG+FE learns using the sum of the two rewards. The robust-
ness threshold is chosen empirically to be 2 for all capabilities.

3.5.3 Results

We compare the performance of the four methods for 500 trials. The
results are shown in Figure 4.

As the results show, using the composition-based hierarchy is su-
perior to the other three methods. It exploits the composed capability
much more than the other methods, specifically in every state where
the subgoals are not in conflict, producing the score difference. No-
tice that the composition-based hierarchy is approximating the opti-
mal averaging policy, hence it cannot beat the averaging policy’s Q-
learning asymptotically if given enough time and experience. Still,



Figure 4. Performance in 500-trial Wargus resource gathering experiment. The curves show the average item count in the test phases of each trial. The curves
are means of 5 repetitions, and the error bars show the standard deviation. The composition-based hierarchy (solid - blue) outperforms the other

implementations in this task with a clear margin, and achieves the performance level of the averaging policy (green - dashed) in less than third the time. The
bars underneath the plot show the time needed by these two methods to achieve 90% to their maximum performance.

Figure 3. Composition-based hierarchy of the Wargus resource gathering
experiment. The bottom nodes represent the subtasks of seeking the resource
and escaping the adversary, respectively. The upper node is the composition
of the two, with the goal of achieving both objectives at once (here, the full

task). The arrows connecting the nodes suggest how control flows flexibly up
and down the hierarchy in response to changes in the environment.

the performance head-start is evident as well as the persistent differ-
ence in performance for the first half of the experiment. The averag-
ing policy approach needs around 15000 episodes to catch up. The
shaded regions in the figure show the time required by the two meth-
ods to achieve 90% of their final performance. While the averaging
policy needed more than 350 trials, the composition-based hierarchy
achieved that in around 100 trials.

Our method needed more time than the other methods in the first
few episodes to ascend performance. This can be justified by the need
to learn a robustness function in addition to learning the option poli-
cies as required by the other methods as well. Remember that these
policies and functions are to be readily learnt in the offline phase,
preparing the robot to perform immediately in the real world.

4 Related work

The problem of dealing with task variations is of fundamental interest
within autonomous robotics, and autonomous agent design in a more
general setting. This problem has been studied from many different

angles, with tools and techniques being developed to address aspects
of the full problem.

One such thread, of relevance to the discussion in this paper,
is transfer for reinforcement learning [20]. Techniques for transfer
learning attempt to use an existing policy in a source task, typically
as an exploration policy to bias learning in a novel target task, with
the hope of achieving learning speed-up. When transfer works well,
it is because of exploitation of structural properties of tasks which
allows for reuse. This is the high-level goal of our approach as well.
However, at the algorithmic level, in contrast to transfer as a bias
that speeds up learning over numerous trials, we seek a policy that
may be immediately applied in a novel instance (in some cases, as
a sophisticated initialisation to a final learning step which allows for
convergence to a true optimum, but we do not handle this in this
paper). Another difference is that we aim to repeatedly apply that
transferred policy in many different novel, unknown worlds, while
the usual assumption in transfer is that there is a single (and usually
known) target task. This is the motivation behind our definition of the
problem in terms of policy fragments that are sequenced in different
ways to achieve a novel policy.

Multi-task reinforcement learning (MTRL) [20] is a specific
branch of the general problem of reinforcement learning transfer,
in that it explicitly targets the problem of variation within a fam-
ily of tasks. Typically, in the MTRL setting, tasks share the same
state-action space, and the aim is to learn a policy from sampled task
instances that appropriately utilises this experience of multiple con-
texts, for example, yielding an Average Value Function [13] which
is similar to our averaging policy. Some MTRL methods (e.g. [12])
assume the observability of the type of the task, while our assump-
tion that the agent is oblivious to that is more practically plausible.
Others allow the agent many trials in the new world (e.g. [6]), while
we require the agent to act promptly without time to learn afresh.
Bayesian methods (e.g. [23]) assume explicit knowledge of the dis-



tribution describing the MDP family, whereas we do not.
In this paper, we assumed that the capability goals are cho-

sen by the designer. However, learning these could have also been
considered (cf. learning structure and subgoal discovery in HRL,
e.g. [11, 17, 9, 8]).

Learning termination conditions for pre-acquired options is dis-
cussed in [4]. They use gradient descent procedure on a special func-
tional encoding of the termination condition to learn the optimal
switching points under certain requirements, not necessarily max-
imising accumulated reward. We aim for a more general and less
constrained approach for interruption, using offline values and ro-
bustness functions.

Finally, Concurrency and composition in HRL is a problem with
some history within the literature, e.g., concurrent ALisp [10] and
concurrent options [15]. In [16], an explicit approach to composing
policies is given. We alternatively opted for allowing the agent to
learn the composed subtasks in the offline training phase, as it learns
the other options. We believe this to be the better approach to capture
the intricacies of different domains and subtask models in order to be
able to deal with the problem of offline learning for improved online
performance.

5 Conclusion

The main motivation for this paper is the problem of designing an
autonomous robot or agent that is capable of quickly and efficiently
solving a variety of different problems, drawn from some family
defining the domain. This family of problems represents many real
world effects, including incompleteness of knowledge arising from
the arbitrary richness of the environment (e.g., factors outside the
model that do have additional dynamics), or continual change (such
as due to other agents in the environment). This way of phrasing the
problems differs from the more traditional question of obtaining an
optimal policy for a stochastic environment, although the issue is in-
creasingly being considered in many different communities such as
under the heading of transfer and multi-task learning.

We have presented a novel approach to policy design and learn-
ing, wherein we learn subtasks that make sense across the entire
domain (for multiple task/environment settings) and associate with
them models such as for interruption. This allows us to define novel
policies in terms of compositions of policy fragments that are learnt
offline. Our approach builds on existing methodologies such as hi-
erarchical RL with options, but modifies them to address the more
general problem identified above. With this, we demonstrate that we
are able to achieve superior performance in an online setting, bene-
fiting from problem structuring.

ACKNOWLEDGEMENTS

This work has taken place in the Robust Autonomy and Decisions
group within the School of Informatics. Research of the RAD Group
is supported by the UK Engineering and Physical Sciences Research
Council (grant number EP/H012338/1) and the European Commis-
sion (TOMSY Grant Agreement 270436, under FP7-ICT-2009.2.1
Call 6).

REFERENCES
[1] A.G. Barto and S. Mahadevan, ‘Recent advances in hierarchical rein-

forcement learning’, Discrete Event Dynamic Systems, 13(4), 341–379,
(2003).

[2] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G.J. Pap-
pas, ‘Symbolic planning and control of robot motion [grand challenges
of robotics]’, Robotics & Automation Magazine, IEEE, 14(1), 61–70,
(2007).

[3] R.R. Burridge, A.A. Rizzi, and D.E. Koditschek, ‘Sequential composi-
tion of dynamically dexterous robot behaviors’, The International Jour-
nal of Robotics Research, 18(6), 534–555, (1999).

[4] G. Comanici and D. Precup, ‘Optimal policy switching algorithms
for reinforcement learning’, in Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems: volume
1-Volume 1, pp. 709–714. International Foundation for Autonomous
Agents and Multiagent Systems, (2010).

[5] T.G. Dietterich, ‘Hierarchical reinforcement learning with the maxq
value function decomposition’, Journal of Artificial Intelligence Re-
search, 13(1), (1999).

[6] F. Fernández and M. Veloso, ‘Probabilistic policy reuse in a reinforce-
ment learning agent’, in Proceedings of the fifth international joint con-
ference on Autonomous agents and multiagent systems, pp. 720–727.
ACM, (2006).

[7] L.P. Kaelbling, ‘Hierarchical learning in stochastic domains: Prelimi-
nary results’, in Proceedings of the Tenth International Conference on
Machine Learning, volume 951, pp. 167–173. Citeseer, (1993).

[8] S. Kazemitabar and H. Beigy, ‘Automatic discovery of subgoals in re-
inforcement learning using strongly connected components’, Advances
in Neuro-Information Processing, 829–834, (2009).

[9] S. Mannor, I. Menache, A. Hoze, and U. Klein, ‘Dynamic abstrac-
tion in reinforcement learning via clustering’, in Proceedings of the
twenty-first international conference on Machine learning, p. 71. ACM,
(2004).

[10] B. Marthi, S. Russell, D. Latham, and C. Guestrin, ‘Concurrent hierar-
chical reinforcement learning’, in Proceedings of the national confer-
ence on artificial intelligence, volume 20, p. 1652. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, (2005).

[11] A. McGovern and A.G. Barto, ‘Automatic discovery of subgoals in re-
inforcement learning using diverse density’, Computer Science Depart-
ment Faculty Publication Series, 8, (2001).

[12] N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern, ‘Transfer in variable-
reward hierarchical reinforcement learning’, Machine Learning, 73(3),
289–312, (2008).

[13] T.J. Perkins and D. Precup, ‘Using options for knowledge transfer in
reinforcement learning’, University of Massachusetts, Amherst, MA,
USA, Tech. Rep, (1999).

[14] M. Ponsen, M. Taylor, and K. Tuyls, ‘Abstraction and generalization
in reinforcement learning: A summary and framework’, Adaptive and
Learning Agents, 1–32, (2010).

[15] K. Rohanimanesh and S. Mahadevan, ‘Decision-theoretic planning
with concurrent temporally extended actions’, in Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence, pp.
472–479. Morgan Kaufmann Publishers Inc., (2001).

[16] K. Rohanimanesh and S. Mahadevan, ‘Coarticulation: An approach for
generating concurrent plans in markov decision processes’, in Proceed-
ings of the 22nd international conference on Machine learning, pp.
720–727. ACM, (2005).

[17] Ö. Şimşek and A.G. Barto, ‘Using relative novelty to identify useful
temporal abstractions in reinforcement learning’, in Proceedings of the
twenty-first international conference on Machine learning, p. 95. ACM,
(2004).

[18] R.S. Sutton and A.G. Barto, Reinforcement learning: An introduction,
volume 1, Cambridge Univ Press, 1998.

[19] R.S. Sutton, D. Precup, and S. Singh, ‘Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning’, Arti-
ficial intelligence, 112(1), 181–211, (1999).

[20] M.E. Taylor and P. Stone, ‘Transfer learning for reinforcement learning
domains: A survey’, The Journal of Machine Learning Research, 10,
1633–1685, (2009).

[21] R.L. Tedrake et al., ‘Lqr-trees: Feedback motion planning on sparse
randomized trees’, (2009).

[22] S. Thrun and T.M. Mitchell, ‘Lifelong robot learning’, Robotics and
autonomous systems, 15(1-2), 25–46, (1995).

[23] A. Wilson, A. Fern, S. Ray, and P. Tadepalli, ‘Multi-task reinforcement
learning: a hierarchical bayesian approach’, in Proceedings of the 24th
international conference on Machine learning, pp. 1015–1022. ACM,
(2007).


