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Modelling and Analysis of Collective Adaptive Systems
with CARMA and its Tools

Michele Loreti1 and Jane Hillston2

1 Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti", Università di Firenze
2 Laboratory for Foundations of Computer Science, University of Edinburgh

Abstract. Collective Adaptive Systems (CAS) are heterogeneous collections of
autonomous task-oriented systems that cooperate on common goals forming a
collective system. This class of systems is typically composed of a huge num-
ber of interacting agents that dynamically adjust and combine their behaviour to
achieve specific goals.
This chapter presents CARMA, a language recently defined to support specifi-
cation and analysis of collective adaptive systems, and its tools developed for
supporting system design and analysis. CARMA is equipped with linguistic con-
structs specifically developed for modelling and programming systems that can
operate in open-ended and unpredictable environments. The chapter also presents
the CARMA Eclipse plug-in that allows CARMA models to be specified by means
of an appropriate high-level language. Finally, we show how CARMA and its tools
can be used to support specification with a simple but illustrative example of a
socio-technical collective adaptive system.

1 Introduction

In the last forty years Process Algebras (see [3] and the references therein), or Process
Description Languages (PDL), have been successfully used to model and analyse the
behaviour of concurrent and distributed systems. A Process Algebra is a formal lan-
guage, equipped with a rigorous semantics, that provides models in terms of processes.
These are agents that perform actions and communicate (interact) with similar agents
and with their environment.

At the beginning, Process Algebras were only focussed on qualitative aspects of
computations. However, when complex and large-scale systems are considered, it may
not be sufficient to check if a property is satisfied or not. This is because random phe-
nomena are a crucial part of distributed systems and one is also interested in verifying
quantitative aspects of computations.

This motivated the definition of a new class of PDL where time and probabilities
are explicitly considered. This new family of formalisms have proven to be particu-
larly suitable for capturing important properties related to performance and quality of
service, and even for the modelling of biological systems. Among others we can refer
here to PEPA [19], MTIPP [18], EMPA [4], Stochastic π-Calculus [23], Bio-PEPA [9],
MODEST [5] and others [17, 8].

The ever increasing complexity of systems has further changed the perspective of
the system designer that now has to consider a new class of systems, named Collec-
tive adaptive systems (CAS), that consist of massive numbers of components, featuring



complex interactions among components and with humans and other systems. Each
component in the system may exhibit autonomic behaviour depending on its properties,
objectives and actions. Decision-making in such systems is complicated and interaction
between their components may introduce new and sometimes unexpected behaviours.

CAS operate in open and non-deterministic environments. Components may enter
or leave the collective at any time. Components can be highly heterogeneous (machines,
humans, networks, etc.) each operating at different temporal and spatial scales, and
having different (potentially conflicting) objectives.

CAS thus provide a significant research challenge in terms of both representation
and reasoning about their behaviour. The pervasive yet transparent nature of the applica-
tions developed in this paradigm makes it of paramount importance that their behaviour
can be thoroughly assessed during their design, prior to deployment, and throughout
their lifetime. Indeed their adaptive nature makes modelling essential and models play
a central role in driving their adaptation. Moreover, the analysis should encompass both
functional and non-functional aspects of behaviour. Thus it is vital that we have avail-
able robust modelling techniques which are able to describe such systems and to reason
about their behaviour in both qualitative and quantitative terms. To move towards this
goal, it is important to develop a theoretical foundation for CAS that will help in under-
standing their distinctive features. From the point of view of the language designers, the
challenge is to devise appropriate abstractions and linguistic primitives to deal with the
large dimension of systems, to guarantee adaptation to (possibly unpredicted) changes
of the working environment, to take into account evolving requirements, and to control
the emergent behaviours resulting from complex interactions.

To design this new language for CAS we first have identified the design principles
together with the primitives and interaction patterns that are needed in CAS design. Em-
phasis has been given placed on identifying the appropriate abstractions and linguistic
primitives for modelling and programming collective adaptation, locality representa-
tion, knowledge handling, and system interaction and aggregation.

To be effective, any language for CAS should provide:

– Separation of knowledge and behaviour;
– Control over abstraction levels;
– Bottom-up design;
– Mechanisms to take into account the environment;
– Support for both global and local views; and
– Automatic derivation of the underlying mathematical model.

These design principles have been the starting point for the design of a language,
developed specifically to support the specification and analysis of CAS, with the par-
ticular objective of supporting quantitative evaluation and verification. We named this
language CARMA, Collective Adaptive Resource-sharing Markovian Agents [7, 20].

CARMA combines the lessons which have been learned from the long tradition of
stochastic process algebras, with those more recently acquired from developing lan-
guages to model CAS, such as SCEL [12] and PALOMA [13], which feature attribute-
based communication and explicit representation of locations.

SCEL [12] (Software Component Ensemble Language), is a kernel language that
has been designed to support the programming of autonomic computing systems. This



language relies on the notions of autonomic components representing the collective
members, and autonomic-component ensembles representing collectives. Each compo-
nent is equipped with an interface, consisting of a collection of attributes, describing
different features of components. Attributes are used by components to dynamically
organise themselves into ensembles and as a means to select partners for interaction.
The stochastic variant of SCEL, called StocS [22], was a first step towards the inves-
tigation of the impact of different stochastic semantics for autonomic processes, that
relies on stochastic output semantics, probabilistic input semantics and on a probabilis-
tic notion of knowledge. Moreover, SCEL has inspired the development of the core
calculus AbC [2, 1] that focuses on a minimal set of primitives that defines attribute-
based communication, and investigates their impact. Communication among compo-
nents takes place in a broadcast fashion, with the characteristic that only components
satisfying predicates over specific attributes receive the sent messages, provided that
they are willing to do so.

PALOMA [13] is a process algebra that takes as its starting point a model based on
located Markovian agents each of which is parameterised by a location, which can be
regarded as an attribute of the agent. The ability of agents to communicate depends on
their location, through a perception function. This can be regarded as an example of a
more general class of attribute-based communication mechanisms. The communication
is based on a multicast, as only agents who enable the appropriate reception action
have the ability to receive the message. The scope of communication is thus adjusted
according to the perception function.

A distinctive contribution of the language CARMA is the rich set of communication
primitives that are offered. This new language supports both unicast and broadcast com-
munication, and locally synchronous, but globally asynchronous communication. This
richness is important to enable the spatially distributed nature of CAS, where agents
may have only local awareness of the system, yet the design objectives and adapta-
tion goals are often expressed in terms of global behaviour. Representing these rich
patterns of communication in classical process algebras or traditional stochastic pro-
cess algebras would be difficult, and would require the introduction of additional model
components to represent buffers, queues, and other communication structures. Another
feature of CARMA is the explicit representation of the environment in which processes
interact, allowing rapid testing of a system under different open world scenarios. The
environment in CARMA models can evolve at runtime, due to the feedback from the
system, and it further modulates the interaction between components, by shaping rates
and interaction probabilities.

The focus of this tutorial is the presentation of the language and its discrete se-
mantics, which are presented in the FUTS style [11]. The structure of the chapter is as
follows. Section 2 presents the syntax of the language and explains the organisation of a
model in terms of a collective of agents that are considered in the context of an environ-
ment. In Section 3 we give a detailed account of the semantics, particularly explaining
the role of the environment. The use of CARMA is illustrated in Section 4 where we
describe a model of a simple bike sharing system, and explain the support given to the
CARMA modeller in the current implementation. Section 5 considers the bike sharing



system in different scenarios, demonstrating the analytic power of the CARMA tools.
Some conclusions are drawn in Section 6.

2 CARMA: Collective adaptive resource-sharing Markovian agents

CARMA is a new stochastic process algebra for the representation of systems developed
according to the CAS paradigm [7, 20]. The language offers a rich set of communica-
tion primitives, and the exploitation of attributes, captured in a store associated with
each component, to enable attribute-based communication. For most CAS systems we
anticipate that one of the attributes could be the location of the agent [15]. Thus it is
straightforward to model those systems in which, for example, there is limited scope of
communication or, restriction to only interact with components that are co-located, or
where there is spatial heterogeneity in the behaviour of agents.

The rich set of communication primitives is one of the distinctive features of CARMA.
Specifically, CARMA supports both unicast and broadcast communication, and permits
locally synchronous, but globally asynchronous communication. This richness is im-
portant to take into account the spatially distributed nature of CAS, where agents may
have only local awareness of the system, yet the design objectives and adaptation goals
are often expressed in terms of global behaviour. Representing these patterns of com-
munication in classical process algebras or traditional stochastic process algebras would
be difficult, and would require the introduction of additional model components to rep-
resent buffers, queues and other communication structures.

Another key feature of CARMA is its distinct treatment of the environment. It should
be stressed that although this is an entity explicitly introduced within our models, it is
intended to represent something more pervasive and diffusive of the real system, which
is abstracted within the modelling to be an entity which exercises influence and imposes
constraints on the different agents in the system. For example, in a model of a smart
transport system, the environment may have responsibility for determining the rate at
which entities (buses, bikes, taxis etc) move through the city. However this should be
recognised as an abstraction of the presence of other vehicles causing congestion which
may impede the progress of the focus entities to a greater or lesser extent at different
times of the day. The presence of an environment in the model does not imply the
existence of centralised control in the system. The role of the environment is also related
to the spatially distributed nature of CAS — we expect that the location where an agent
is will have an effect on what an agent can do.

This view of the environment coincides with the view taken by many researchers
within the situated multi-agent community e.g. [26]. Specifically, in [27] Weyns et al.
argue about the importance of having a distinct environment within every multi-agent
system. Whilst they are viewing such systems from the perspective of software engi-
neers, many of their arguments are as valid when it comes to modelling a multi-agent or
collective adaptive system. Thus our work can be viewed as broadly fitting within the
same framework, albeit with a higher level of abstraction. Just as in the construction of a
system, in the construction development of a model distinguishing clearly between the
responsibilities of the agents and of the environment provides separation of concerns
and assists in the management of complex systems.



In [27] the authors provide the following definition: “The environment is a first-class
abstraction that proves the surrounding conditions for agents to exist and that mediates
both the interaction among agents and the access to resources.” This is the role that
the environment plays within CARMA models through the evolution rules. However,
in contrast to the framework of Weyns et al., the environment in a CARMA model is
not an active entity in the same sense as the agents are active entities. In our case, the
environment is constrained to work through the agents, by influencing their dynamic
behaviour or by inducing changes in the number and types of agents making up the
system.

In [24], Saunier et al. advocate the use of an active environment to mediate the
interactions between agents; such an active environment is aware of the current context
for each agent. The environment in CARMA also supports this view, as the evolution
rules in the environment take into account the state of all the potentially participating
components to determine both the rate and the probability of communications being
successful, thus achieving a multicast communication not based on the address of the
receiving agents, as suggested by Saunier et al. This is what we term “attribute-based
communication” in CARMA. Moreover, when the application calls for a centralised
information portal, the global store in CARMA can represent it. The higher level of
abstraction offered by CARMA means that many implementation issues are ignored.

2.1 A running example

To describe basic features of CARMA a running example will be used. This is based
on a bike sharing system (BSS) [10]. These systems are a recent, and increasingly
popular, form of public transport in urban areas. As a resource-sharing system with
large numbers of independent users altering their behaviour due to pricing and other
incentives [14], they are a simple instance of a collective adaptive system, and hence a
suitable case study to exemplify the CARMA language.

The idea in a bike sharing system is that bikes are made available in a number of
stations that are placed in various areas of a city. Users that plan to use a bike for a
short trip can pick up a bike at a suitable origin station and return it to any other station
close to their planned destination. One of the major issues in bike sharing systems is the
availability and distribution of resources, both in terms of available bikes at the stations
and in terms of available empty parking places in the stations.

In our scenario we assume that the city is partitioned in homogeneous zones and
that all the stations in the same zone can be equivalently used by any user in that zone.
Below, we let {z0, . . . ,zn} be the n zones in the city, each of which contains k parking
stations.

2.2 A gentle introduction to CARMA

The bike sharing systems described in the previous section represent well typical sce-
narios that can be modelled with CARMA. Indeed, a CARMA system consists of a col-
lective (N) operating in an environment (E ). The collective is a multiset of components
that models the behavioural part of a system; it is used to describe a group of interact-
ing agents. The environment models all those aspects which are intrinsic to the context



where the agents under consideration are operating. The environment also mediates
agent interactions.

Example 1. Bike Sharing System (1/7) In our running example the collective N will be
used to model the behaviour of parking stations and users, while the environment will
be used to model the city context where these agents operate like, for instance, the user
arrival rate or the possible destinations of trips. ut

We let SYS be the set of CARMA systems S defined by the following syntax:

S ::= N in E

where is a collective and is an environment.

Collectives and Components. We let COL be the set of collectives N which are gen-
erated by the following grammar:

N ::= C
∣∣ N ‖ N

A collective N is either a component C or the parallel composition of collectives
N1 ‖ N2. The former identifies a multiset containing the single component C while the
latter represents the union of the multisets denoted by N1 and N2, respectively. In the rest
of this chapter we will sometimes use standard operations on multisets over a collective.
We use N(C) to indicate the multiplicity of C in N, C ∈ N to indicate that N(C)> 0 and
N−C to represent the collective obtained from N by removing component C.

The precise syntax of components is:

C ::= 0
∣∣ (P,γ)

where we let COMP be the set of components C generated by the previous grammar.
A component C can be either the inactive component, which is denoted by 0, or a

term of the form (P,γ), where P is a process and γ is a store. A term (P,γ) models an
agent operating in the system under consideration: the process P represents the agent’s
behaviour whereas the store γ models its knowledge. A store is a function which maps
attribute names to basic values. We let:

– ATTR be the set of attribute names a, a′, a1,. . . , b, b′, b1,. . . ;
– VAL be the set of basic values v, v′, v1,. . . ;
– Γ be the set of stores γ,γ1,γ

′, . . ., i.e. functions from ATTR to VAL.

Example 2. Bike Sharing System (2/7) To model our Bike Sharing System in CARMA
we need two kinds of components, one for each of the two groups of agents involved in
the system, i.e. parking stations and users. Both kinds of component use the local store
to publish the relevant data that will be used to represent the state of the agent. We can
notice that, following this approach, bikes are not explicitly modelled in the system.
This is because we are interested in modelling only the behaviour of the active compo-
nents in the system. Under this perspective, bikes are just the resources exchanged by
parking stations and users.

The local store of components associated with parking stations contains the follow-
ing attributes:



– loc: identifying the zone where the parking station is located;
– capacity: describing the maximal number of parking slots available in the station;
– available: indicating the current number of bikes currently available in the parking

station.

Similarly, the local store of components associated with users contains the following
attributes:

– loc: indicating current user location;
– dest: indicating user destination.

ut

Processes. The behaviour of a component is specified via a process P. We let PROC be
the set of CARMA processes P, Q,. . . defined by the following grammar:

P,Q ::= nil
| act.P
| P+Q
| P | Q
| [π]P
| kill

| A (A
4
= P)

act ::= α?[πs]〈−→e 〉σ
| α [πr]〈−→e 〉σ
| α?[πs](

−→x )σ

| α [πr](
−→x )σ

e ::= a | my.a | x | v | now | · · ·

πs,πr,π ::= > | ⊥ | e1 ./ e2 | ¬π | π ∧π | · · ·

Above, the following notation is used:

– α is an action type in the set ACTTYPE;
– π is a predicate;
– x is a variable in the set of variables VAR;
– e is an expression in the set of expressions EXP3;
– −→· indicates a sequence of elements;
– σ is an update, i.e. a function from Γ to Dist(Γ ) in the set of updates Σ ; where

Dist(Γ ) is the set of probability distributions over Γ .

CARMA processes are built by using standard operators of process algebras. Basic
processes can be either nil or kill. The former represents the inactive process while the
latter is used, when activated, to destroy a component. We assume that the term kill
always occurs under the scope of an action prefix.

Choice (·+ ·) and parallel composition (·|·) are the usual process algebra operators:
P1 +P2 indicates a process that can behave either like P1 or like P2; while the behaviour
of P1|P2 is the result of the interleaving between P1 and P2. In the next section, when
the stochastic operational semantics of CARMA will be presented, we will show how
possible alternative computations of a process P are probabilistically selected.

3 The precise syntax of expressions e has been deliberately omitted. We only assume that ex-
pressions are built using the appropriate combinations of values, attributes (sometime prefixed
with my), variables and the special term now. The latter is used to refer to current time unit.



Process behaviour can be influenced by the store γ of the hosting component. This is
the case of the guard operator [π]P where the process P is activated when the predicate
π , i.e. a boolean expression over attribute names, is satisfied (otherwise it is inactive).
This operator can be used to enable a given behaviour only when some conditions are
satisfied. In the case of our Bike Sharing System, if Pc is the behaviour modelling bike
retrieval, a prediate of the form available> 0 can be used to enable Pc only when there
are bikes available.

CARMA processes located in different components interact while performing four
types of actions: broadcast output (α?[π]〈−→e 〉σ ), broadcast input (α?[π](−→x )σ ), output
(α [π]〈−→e 〉σ ), and input (α [π](−→x )σ ),

The admissible communication partners of each of these actions are identified by
the predicate π . Note that, in a component (P,γ) the store γ regulates the behaviour of P.
Primarily, γ is used to evaluate the predicate associated with an action in order to filter
the possible synchronisations involving process P. In addition, γ is also used as one of
the parameters for computing the actual rate of actions performed by P. The process P
can change γ immediately after the execution of an action. This change is brought about
by the update σ . The update is a function that when given a store γ returns a probability
distribution over Γ which expresses the possible evolutions of the store after the action
execution.

The broadcast output α?[π]〈−→e 〉σ models the execution of an action α that spreads
the values resulting from the evaluation of expressions −→e in the local store γ . This
message can be potentially received by any process located at components whose store
satisfies predicate π . This predicate may contain references to attribute names that have
to be evaluated under the local store. For instance, if loc is the attribute used to store the
position of a component, action

α
?[my.loc== loc]〈−→v 〉σ

potentially involves all the components located at the same location. The broadcast
output is non-blocking. The action is executed even if no process is able to receive
the values which are sent. Immediately after the execution of an action, the update σ is
used to compute the (possible) effects of the performed action on the store of the hosting
component where the output is performed.

To receive a broadcast message, a process executes a broadcast input of the form
α?[π](−→x )σ . This action is used to receive a tuple of values −→v sent with an action α

from a component whose store satisfies the predicate π[−→v /−→x ]. The transmitted values
can be part of the predicate π . For instance, α?[x > 5](x)σ can be used to receive a
value that is greater than 5.

The other two kinds of action, namely output and input, are similar. However, differ-
ently from broadcasts described above, these actions realise a point-to-point interaction.
The output operation is blocking, in contrast with the non-blocking broadcast output.

Example 3. Bike Sharing System (3/7) We are now ready to describe the behaviour of
parking stations and users components.

Each parking station is modelled in CARMA via a component of the form:

( G|R ,{loc= `,capacity = i,available= j})



where loc is the attribute that identifies the zone where the parking station is located;
capacity indicates the number of parking slots available in the station; available is the
number of available bikes.

Processes G and R, which model the procedure to get and return a bike in the park-
ing station, respectively, are defined as follows:

G
4
= [available> 0] get[my.loc== loc]〈•〉{available← available−1}.G

R
4
= [available< capacity] ret[my.loc== loc]〈•〉{available← available+1}.R

When the value of attribute available is greater than 0, process G executes the uni-
cast output with action type get that potentially involves components satisfying the
predicate my.loc == loc, i.e. the ones that are located in the same zone4. When the
output is executed the value of the attribute available is decreased by one to model the
fact that one bike has been retrieved from the parking station.

Process R is similar. It executes the unicast output with action type ret that po-
tentially involves components satisfying predicate my.loc == loc. This action can be
executed only when there is at least one parking slot available, i.e. when the value of
attribute available is less than the value of attribute capacity. When the output consid-
ered above is executed, the value of attribute available is increased by one to model the
fact that one bike has been returned in the parking station.

Users, who can be either bikers or pedestrians, are modelled via components of the
form:

(Q,{loc= `1,dest= `2})

where loc is the attribute indicating where the user is located, while dest indicates the
user destination. Process Q models the current state of the user and can be one of the
following processes:

P
4
= get[my.loc== loc](•).B

B
4
= move?[⊥]〈•〉{loc← dest}.W

W
4
= ret[my.loc== loc](•).kill

Process P represents a pedestrian, i.e. a user that is waiting for a bike. To get a bike
a pedestrian executes a unicast input over activity get while selecting only parking
stations that are located in his/her current location (my.loc == loc). When this action
is executed, a pedestrian becomes a biker B.

A biker can move from the current zone to the destination. This activity is modelled
with the execution of a broadcast output via action type move. Note that, the predicate
used to identify the target of the actions is ⊥, denoting the value false. This means
that this action actually does not synchronise with any component (since ⊥ is never
satisfied). This kind of pattern is used in CARMA to model spontaneous actions, i.e.
actions that render the execution of an activity and that do not require synchronisation.

4 Here we use • to denote the unit value.



After the broadcast move? the value of attribute loc is updated to dest and process W is
activated. We will see in the next section that the actual rate of this action is determined
by the environment and may also depend on the current time.

Process W represents a user who is waiting for a parking slot. This process executes
an input over ret. This models the fact that the user has found a parking station with an
available parking slot in their zone. After the execution of this input the user disappears
from the system since the process kill is activated.

To model the arrival of new users, the following component is used:

(A,{loc= `})

where attribute loc indicates the location where users arrive, while process A is:

A
4
= arrival?[⊥]〈•〉{}.A

This process only performs the spontaneous action arrival. The precise role of this pro-
cess will be clear in a few paragraphs when the environment will be described. ut

Environment. An environment consists of two elements: a global store γg, that models
the overall state of the system, and an evolution rule ρ .

Example 4. Bike Sharing System (4/7) The global store can be used to describe global
information that may affect the system behaviour. In our Bike Sharing System we use
the attribute user to record the number of active users.

The evolution rule ρ is a function which, depending on the current time, on the
global store and on the current state of the collective (i.e., on the configurations of each
component in the collective) returns a tuple of functions ε = 〈µp,µw,µr,µu〉 known as
the evaluation context where ACT = ACTTYPE∪{α?|α ∈ ACTTYPE} and:

– µp : Γ ×Γ ×ACT→ [0,1], µp(γs,γr,α) expresses the probability that a component
with store γr can receive a broadcast message from a component with store γs when
α is executed;

– µw : Γ ×Γ ×ACT→ [0,1], µw(γs,γr,α) yields the weight will be used to compute
the probability that a component with store γr can receive a unicast message from
a component with store γs when α is executed;

– µr : Γ ×ACT→ R≥0, µr(γs,α) computes the execution rate of action α executed
at a component with store γs;

– µu : Γ ×ACT→ Σ ×COL, µu(γs,α) determines the updates on the environment
(global store and collective) induced by the execution of action α at a component
with store γs.

For instance, the probability to receive a given message may depend on the number
or faction of components in a given state. Similarly, the actual rate of an action may be
a function of the number of components whose store satisfies a given property.

Functions µp and µw play a similar role. However, while the former computes the
probability that a component receives a broadcast message, the latter associates to each



unicast interaction with a weight, i.e. a non negative real number. This weight will be
used to compute the probability that a given component with store γr receives a unicast
message over activity α from a component with store γr. This probability is obtained
by dividing the weight µw(γs,γr,α) by the total weights of all possible receivers.

Example 5. Bike Sharing System (5/7) In our scenario, function µw can have the fol-
lowing form:

µw(γs,γr,α) =


1 α = get∧ γs(loc) = γr(loc)

1 α = ret∧ γs(loc) = γr(loc)

0 otherwise

where γs is the store of the sender, γr is the store of the receiver. The above function
imposes that all the users in the same zone have the same weight, that is 1 when a user
is located in the same zone of the parking station and 0 otherwise. This means that each
user in the same zone have the same probability to be selected for getting a bike or for
using a parking slot at a station. The weight associated to all the other interactions is
0. ut

Function µr computes the rate of a unicast/broadcast output. This function takes
as parameter the local store of the component performing the action and the action on
which the interaction is based. Note that the environment can disable the execution of a
given action. This happens when the function µr (resp. µp or µw) returns the value 0.

Example 6. Bike Sharing System (6/7) In our example µr can be defined as follows:

µr(γs,α) =



λg α = get

λr α = ret

mtime(now,γs(loc),γs(dest)) α =move?

atime(now,γs(loc),γg(users)) α = arrival?

0 otherwise

We say that actions get and ret are executed at a constant rate; the rate of movement
is a function (mtime) of actual time (now) and of starting location and final destination.
Rate of user arrivals (computed by function atime) depends on current time now on
location loc and on the number of users that are currently active in the system5. All the
other interactions occurs with rate 0. ut

Finally, the function µu is used to update the global store and to activate a new
collective in the system. The function µu takes as parameters the store of the component
performing the action together with the action type and returns a pair (σ ,N). Within this
pair, σ identifies the update on the global store whereas N is a new collective installed in
the system. This function is particularly useful for modelling the arrival of new agents
into a system.

5 Here we assume that functions mtime and atime are obtained after some observations on real
systems



Example 7. Bike Sharing System (7/7) In our scenario function update is used to model
the arrival of new users and it is defined as follows:

µu(γs,α)=



{users← γg(users)+1},

(W,{loc= γs(loc),dest= destLoc(now,γs(loc))}) α = arrival?

{users← γg(users)−1},0 α = ret

{},0 otherwise

When action arrival? is performed a component associated with a new user is created in
the same location as the sender (see Example 3). The destination of the new user will be
determined by function destLoc that takes the current system time and starting location
and returns a probability distribution over locations. Moreover, the global store records
that a new user entered in the system. The number of active users is decremented by 1
each time action ret is performed. All the other actions do not trigger any update on the
environment. ut

3 CARMA semantics

The operational semantics of CARMA specifications is defined in terms of three func-
tions that compute the possible next states of a component, a collective and a system:

1. the function C that describes the behaviour of a single component;
2. the function Nε builds on C to describe the behaviour of collectives;
3. the function St that shows how CARMA systems evolve.

Note that, classically behaviour of (stochastic) process algebras is represented via
transition relations. These relations, defined following a Plotkin-style, are used to infer
possible computations of a process. Note that, due to nondeterminism, starting from the
same process, different evolutions can be inferred. However, in CARMA, there is not
any form of nonterminism while the selection of possible next state is governed by a
probability distribution.

In this chapter we use an approach based on FUTS style [11]. Using this approach,
the behaviour of a term is described using a function that, given a term and a transi-
tion label, yields a function associating each component, collective, or system with a
non-negative number. The meaning of this value depends on the context. It can be the
rate of the exponential distribution characterising the time needed for the execution of
the action represented by `; the probability of receiving a given broadcast message or
the weight used to compute the probability that a given component is selected for the
synchronisation. In all the cases the zero value is associated with unreachable terms.

We use the FUTS style semantics because it makes explicit an underlying (time-
inhomogeneous) Action Labelled Markov Chain, which can be simulated with standard
algorithms [16] but is nevertheless more compact than Plotkin-style semantics, as the
functional form allows different possible outcomes to be treated within a single rule. A
complete description of FUTS and their use can be found in [11].



C[(nil,γ), `] = /0
Nil C[0, `] = /0

Zero

JπsKγ = π ′s J−→e Kγ =
−→v p = σ(γ)

C[(α?[πs]〈−→e 〉σ .P,γ),α?[π ′s]〈−→v 〉,γ] = (P,p)
B-Out

JπsKγ = π ′s J−→e Kγ =
−→v ` 6= α?[π ′s]〈−→v 〉,γ

C[(α?[πs]〈−→e 〉σ .P,γ), `] = /0
B-Out-F1

γr |= πs γs |= πr[
−→v /−→x ] p = σ [−→v /−→x ](γ2)

C[(α?[πr](
−→x )σ .P,γr),α

?[πs](
−→v ),γs] = (P[−→v /−→x ],p)

B-In

γr 6|= πs∨ γs 6|= πr[
−→v /−→x ]

C[(α?[πr](
−→x )σ .P,γr),α

?[πs](
−→v ),γs] = /0

B-In-F1

` 6= α?[πs](
−→v ),γs

C[(α?[πr](
−→x )σ .P,γr), `] = /0

B-In-F2

Table 1: Operational semantics of components (Part 1)

3.1 Operational semantics of components

The behaviour of a single component is defined by a function

C : COMP×LAB→ [COMP→ R≥0]

Function C takes a component and a transition label, and yields a function in [COMP→
R≥0]. LAB is the set of transition labels ` which are generated by the following gram-
mar, where πs is defined in Section 2.2:

` ::= α?[πs]〈−→v 〉,γ Broadcast Output

| α?[πs](
−→v ),γ Broadcast Input

| α [πs]〈−→v 〉,γ Unicast Output

| α [πs](
−→v ),γ Unicast Input

These labels are associated with the four CARMA input-output actions and contain a
reference to the action which is performed (α or α?), the predicate πs used to identify
the target of the actions, and the value which is transmitted or received.

Function C is formally defined in Table 1 and Table 2 and shows how a single
component evolves when a input/output action is executed. For any component C and
transition label `, C[C, `] indicates the possible next states of C after the transition `.
These states are weighted. If C[C, `] = C and C (C′) = p then C evolves to C′ with a
weight p when ` is executed.



The process nil denotes the process that cannot perform any action. The behaviour
associated to this process at the level of components can be derived via the rule Nil.
This rule states that the inactive process cannot perform any action. This is derived
from the fact that function C maps any label to function /0 (rule Nil), where /0 denotes
the 0 constant function.

The behaviour of a broadcast output (α?[πs]〈−→e 〉σ .P,γ) is described by rules B-Out
and B-Out-F1. Rule B-Out states that a broadcast output α?[πs]〈−→e 〉σ sends message
J−→e Kγ

6 to all components that satisfy JπsKγ = π ′s. The possible next local stores after
the execution of an action are determined by the update σ . This takes the store γ and
yields a probability distribution p = σ(γ) ∈ Dist(Γ ). In rule B-Out, and in the rest of
the chapter, the following notations are used:

– let P ∈ PROC and p ∈ Dist(Γ ), (P,p) is a probability distribution in Dist(COMP)
such that:

(P,p)(C) =

1 P≡ Q|kill ∧ C ≡ 0
p(γ) C ≡ (P,γ) ∧ P 6≡ Q|kill
0 otherwise

– let c ∈ Dist(COMP) and r ∈ R≥0, r · c denotes the function C : COMP→ R≥0 such
that: C (C) = r · c(C)

Note that, after the execution of an action a component can be destroyed. This hap-
pens when the continuation process after the action prefix contains the term kill. For
instance, by applying rule B-Out we have that:

C[(α?[πs]〈v〉σ .(kill|Q),γ),α?[πs]〈v〉,γ] = [0 7→ r]

Rule B-Out-F1 states that a broadcast output can be only involved in labels of the
form α?[πs]〈−→v 〉,γ .

Computations related to a broadcast input are labelled with α?[πs](
−→v ),γ1. There,

πs is the predicate used by the sender to identify the target components while −→v is the
sequence of transmitted values. Rule B-In states that a component (α?[πr](

−→x )σ .P,γr)
can evolve with this label when its store γr (the store of the receiver) satisfies the sender
predicate, i.e. γr |= πs, while the store of the sender, i.e. γs satisfies the predicate of the
receiver πr[

−→v /−→x ].
Rule B-In-F1 models the fact that if a component is not in the set of possible re-

ceivers (γr 6|= πs) or the received values do not satisfy the expected requirements then
the component cannot receive a broadcast message. Finally, the rule B-In-F2 models
the fact that (α?[πr](

−→x )σ .P,γr) can only perform a broadcast input on action α and
that it always refuses input on any other action type β 6= α .

The behaviour of unicast output and unicast input is defined by the first five rules of
Table 2. These rules are similar to the ones already presented for broadcast output and
broadcast input.

The other rules of Table 2 describe the behaviour of other process operators, namely
choice P+Q, parallel composition P|Q, guard and recursion. The term P+Q identifies

6 We let J·Kγ denote the evaluation function of an expression/predicate with respect to the store
γ .



JπsKγ = π ′s J−→e Kt
γ =
−→v p = σ(γ)

C[(α [πs]〈−→e 〉σ .P,γ),α [π ′s]〈−→v 〉,γ] = (P,p)
Out

JπsKγ = π ′s J−→e Kt
γ =
−→v ` 6= α [π ′s]〈−→v 〉,γ

C[(α [πs]〈−→e 〉σ .P,γ), `] = /0
Out-F

γr |= πs γs |= πr[
−→v /−→x ] p = σ [−→v /−→x ](γ2)

C[(α [πr](
−→x )σ .P,γr),α [πs](

−→v ),γs] = (P[−→v /−→x ],p)
In

γr 6|= πs∨ γs 6|= πr[
−→v /−→x ]

C[(α [πr](
−→x )σ .P,γr),α [πr](

−→v ),γr] = /0
In-F1

` 6= α [πs](
−→v ),γs

C[(α [πr](
−→x )σ .P,γr), `] = /0

In-F2

C[(P,γ), `] = C1 C[(Q,γ), `] = C2

C[(P+Q,γ), `] = C1⊕C2
Plus

γ |= π C[(P,γ), `] = C

C[([π]P,γ), `] = C
Guard

γ 6|= π

C[([π]P,γ), `] = /0
Guard-F

C[(P,γ), `] = C1 C[(Q,γ), `] = C2

C[(P|Q,γ), `] = C1|Q⊕P|C2
Par

A
4
= P C[(P,γ), `] = C

C[(A,γ), `] = C
Rec

Table 2: Operational semantics of components (Part 2)



a process that can behave either as P or as Q. The rule Plus states that the components
that are reachable by (P+Q,γ) are the ones that can be reached either by (P,γ) or by
(Q,γ). In this rule we use C1⊕C2 to denote the function that maps each term C to
C1(C)+C2(C), for any C1,C2 ∈ [COMP→ R≥0].

In P|Q the two composed processes interleave for all the transition labels. In the
rule the following notations are used:

– for each component C and process Q we let:

C|Q =

{
0 C ≡ 0
(P|Q,γ) C ≡ (P,γ)

Q|C is symmetrically defined.
– for each C : COMP→ R≥0 and process Q, C |Q (resp. Q|C ) denotes the function

that maps each term of the form C|Q (resp. Q|C) to C (C), while the others are
mapped to 0;

Rule Rec is standard. The behaviour of ([π]P,γ) is regulated by rules Guard and
Guard-F. The first rule states that ([π]P,γ) behaves exactly like (P,γ) when γ satisfies
predicate π . However, in the first case the guard is removed when a transition is per-
formed. In contrast, no component is reachable when the guard is not satisfied (rule
Guard-F).

The following lemma guarantees that for any C and for any ` C[C, `] is either a
probability distribution or the 0 constant function /0.

3.2 Operational semantics of collectives

The operational semantics of a collective is defined via the function

Nε : COL×LABI → [COL→ R≥0]

that is formally defined in Table 3, where we use a straightforward adaptation of the
notations introduced in the previous section. This function shows how a collective reacts
when a broadcast/unicast message is received. Indeed, LABI denotes the subset of LAB
with only input labels:

` ::= α?[πs](
−→v ),γ Broadcast Input

| α [πs](
−→v ),γ Unicast Input

Given a collective N and an input label ` ∈ LABI , function Nε [N, `] returns a func-
tion N that associates each collective N′ reachable from N via ` with a value in R≥0.
If ` is a broadcast input (α?[πs](

−→v ),γ) this value represents the probability that the col-
lective is reachable after `. When ` is a unicast input α [πs](

−→v ),γ , N (N′) is the weight
that will be used, at the level of systems, to compute the probability that N′ is selected
after `. Note that this difference is due from the fact that while the probability to receive
a broadcast input can be computed locally (each component identifies its own prob-
ability), to compute the probability to receive a unicast input the complete collective



Nε [0, `] = /0
Zero

C[(P,γ),α?[πs](
−→v ),γ] = N N 6= /0 ε = 〈µp,µw,µr,µu〉

Nε [(P,γ),α?[πs](
−→v ),γ] =

µp(γ,α
?)

⊕N ·N +[(P,γ) 7→ (1−µp(γ,α
?)]

Comp-B-In

C[(P,γ),α?[πs](
−→v ),γ] = /0

Nε [(P,γ),α?[πs](
−→v ),γ] = [(P,γ) 7→ 1]

Comp-B-In-F

C[(P,γ2),α [πs](
−→v ),γ1] = N N 6= /0 ε = 〈µp,µw,µr,µu〉

Nε [(P,γ2),α [πs](
−→v ),γ1] = µw(γ1,γ2,α) · N

⊕N

Comp-In

C[(P,γ2),α [πs](
−→v ),γ1] = /0

Nε [(P,γ2),α [πs](
−→v ),γ1] = /0

Comp-In-F

Nε [N1,α
?[πs](

−→v ),γ] = N1 Nε [N2,α
?[πs](

−→v ),γ] = N2

Nε [N1 ‖ N2,α
?[πs](

−→v ),γ] = N1 ‖N2
B-In-Sync

Nε [N1,α [πs](
−→v ),γ] = N1 Nε [N2,α [πs](

−→v ),γ] = N2

Nε [N1 ‖ N2,α [πs](
−→v ),γ] = N1 ‖ N2⊕N1 ‖N2

In-Sync

Table 3: Operational semantics of collective



is needed. Function Nε is also parametrised with respect to the evaluation function ε ,
obtained from the environment where the collective operates, that is used to compute
the above mentioned weights.

The first four rules in Table 3 describe the behaviour of the single component at the
level of collective. Rule Zero is similar to rule Nil of Table 1 and states that inactive
component 0 cannot perform any action. Rule Comp-B-In states that if (P,γ) can re-
ceive a message sent via a broadcast with activity α (C[(P,γ),α?[πs](

−→v ),γ] = N 6= /0)
then the component receives the message with probability µp(γ,α

?) while the mes-
sage is not received with probability 1−µp(γ,α

?). In the first case, the resulting func-
tion is renormalised by ⊕N to indicate that each element in P receives the message
with the same probability. There we use ⊕N to denote ∑N∈COL N (N). On the con-
trary, rule Comp-B-In-F states that if (P,γ) is not able to receive a broadcast message,
(C[(P,γ),α?[πs](

−→v ),γ] = /0), with probability 1 the message is received while the com-
ponent remains unchanged.

Rule Comp-In is similar to Comp-B-In. It simply lifts the transition at the level
of component to the level of collective while the resulting function is multiplied by the
weight µp(γ1,γ2,α). The latter is the probability that this component is selected for the
synchronisation. As in Comp-B-In, function N is divided by⊕N to indicate that any
possible receiver in P is selected with the same probability. Rule Comp-In-F is applied
when a component is not involved in a synchronisation.

Rule B-In-Sync states that that two collectives N1 and N2 that operate in parallel
synchronise while performing a broadcast input. This models the fact that the input can
be potentially received by both of the collectives. In this rule we let N1 ‖N2 denote the
function associating the value N1(N1) ·N2(N2) with each term of the form N1 ‖ N2 and
0 with all the other terms. We can observe that if

Nε [N,α?[πs](
−→v ),γ] = N

then, as we have already observed for rule Comp-B-In, ⊕N = 1 and N is in fact a
probability distribution over COL.

Rule In-Sync controls the behaviour associated with unicast input and it states that
a collective of the form N1 ‖ N2 performs a unicast input if this is performed either in
N1 or in N2. This is rendered in the semantics as an interleaving rule, where for each
N : COL→R≥0, N ‖N2 denotes the function associating N (N1) with each collective
of the form N1 ‖ N2 and 0 with all other collectives.

3.3 Operational semantics of systems

The operational semantics of systems is defined via the function

St : SYS×LABS→ [SYS→ R≥0]

that is formally defined in Table 4. This function only considers synchronisation labels
LABS:

` ::= α?[πs]〈−→v 〉,γ Broadcast Output

| τ[α [πs]〈−→v 〉,γ] Unicast Synchronization



The behaviour of a CARMA system is defined in terms of a time-inhomogeneous
Action Labelled Markov Chain whose transition matrix is defined by function St . For
any system S and for any label ` ∈ LABS, if St [S, `] = S then S (S′) is the rate of the
transition from S to S′. When S (S′) = 0 then S′ is not reachable from S via `.

The first rule is Sys-B. This rule states that, when ε = 〈µp,µw,µr,µu〉= ρ(t,γg,N),
a system of the form N in (γg,ρ) at time t can perform a broadcast output when there is
a component C ∈ N that performs the output while the remaining part of the collective
(N −C) performs the complementary input. The outcome of this synchronisation is
computed by the function bSyncε defined below:

ε = 〈µp,µw,µr,µu〉 C[C,α?[πs]〈−→v 〉,γ] = C Nε [N,α?[πs](
−→v ),γ] = N

bSyncε(C,N,α?[πs]〈−→v 〉,γ) = µr(γ,α
?[πs]〈−→v 〉,γ) ·C ‖N

This function combines the outcome of the broadcast output performed by C, (C )
with the complementary input performed by N (N ), the result is then multiplied by
the rate of the action induced by the environment µr(γC,α

?[πs]〈−→v 〉,γ). Note that, since
both C and N are probability distributions, the same is true for C ‖N .

To compute the total rate of a synchronisation we have to sum the outcome above
for all the possible senders C ∈ N multiplied by the multiplicity of C component in N
(N(C)). After the synchronisation, the global store is updated and a new collective can
be created according to function µu. In rule Sys-B the following notations are used.
For each collective N2, N : COL → R≥0, S : SYS → R≥0 and p ∈ Dist(Γ ) we let
N in (p,ρ) denote the function mapping each system N in (γ,ρ) to N (N) ·p(γ).

The second rule is Sys that regulates unicast synchronisations, which is similar to
Sys-B. However, there function uSyncε is used. This function is defined below:

ε = 〈µp,µw,µr,µu〉 C[C,α?[πs]〈−→v 〉,γ] = C Nε [N,α?[πs](
−→v ),γ] = N 6= /0

uSyncε(C,N,α?[πs]〈−→v 〉,γ) = µr(γC,α
?[πs]〈−→v 〉,γ) ·C ‖ N

⊕N

Nε [N,α?[πs](
−→v ),γ] = /0

uSyncε(C,N,α?[πs]〈−→v 〉,γ) = /0

Similarly to bSyncε , this function combines the outcome of a unicast output per-
formed by C, (C ) with the complementary input performed by N (N ). The result is then
multiplied by the rate of the action induced by the environment µr(γC,α

?[πs]〈−→v 〉,γ).
However, in uSyncε we have to renormalise N by the value⊕N . This guarantees that
the total synchronisation rate does not exceeds the capacity of the sender. Note that, N
is not a probability distribution while N

⊕N is.

4 CARMA implementation

To support simulation of CARMA models, a prototype simulator has been developed.
This simulator, which has been implemented in Java, can be used to perform stochastic
simulation and will be the basis for the implementation of other analysis techniques. An



ρ(t,γg,N) = ε = 〈µp,µw,µr,µu〉 µu(γg,α
?) = (σ ,N′)

∑C∈N N(C) ·bSync(C,N−C,α?[πs]〈−→v 〉,γ) = N

St [N in (γg,ρ),α
?[πs]〈−→v 〉,γ] = N ‖ N′ in (σ(γg),ρ)

Sys-B

ρ(t,γg,N) = ε = 〈µp,µw,µr,µu〉 µu(γg,α
?) = (σ ,N′)

∑C∈N N(C) ·uSync(C,N−C,τ[α [πs]〈−→v 〉,γ]) = N

St [N in (γg,ρ),τ[α [πs]〈−→v 〉,γ]] = N ‖ N′ in (σ(γg),ρ)
Sys

Table 4: Operational Semantics of Systems.

Eclipse plug-in for supporting specification and analysis of CAS in CARMA has also
been developed. In this plug-in, CARMA systems are specified by using an appropriate
high-level language for designers of CAS, named the CARMA Specification Language.
This is mapped to the process algebra, and hence will enable qualitative and quantitive
analysis of CAS during system development by enabling a design workflow and analy-
sis pathway. The intention of this high-level language is not to add to the expressiveness
of CARMA, which we believe to be well-suited to capturing the behaviour of CAS, but
rather to ease the task of modelling for users who are unfamiliar with process algebra
and similar formal notations. Both the simulator and the Eclipse plug-in are available at
https://quanticol.sourceforge.net/.

In the rest of this section, we first describe the CARMA Specification Language then
an overview of the CARMA Eclipse Plug-in is provided. In Section 5 we will show
how the Bike Sharing System considered in Section 2 can be modelled, simulated and
analysed with the CARMA tools.

4.1 CARMA specification l anguage

In this section we present the language that supports the design of CAS in CARMA.
To describe the main features of this language, following the same approach used in
Section 2, we will use the Bike Sharing System.

Each CARMA specification, also called a CARMA model, provides definitions for:

– structured data types and the relative functions;
– prototypes of components;
– systems composed of collective and environment;
– measures, that identify the relevant data to measure during simulation runs.

Data types. Three basic types are natively supported in our specification language.
These are: bool, for booleans, int, for integers, and real, for real values. However, to
model complex structures, it is often useful to introduce custom types. In a CARMA
specification two kind of custom types can be declared: enumerations and records.

Like in many other programming languages, an enumeration is a data type con-
sisting of a set of named values. The enumerator names are identifiers that behave as



constants in the language. An attribute (or variable) that has been declared as having an
enumerated type can be assigned any of the enumerators as its value. In other words, an
enumerated type has values that are different from each other, and that can be compared
and assigned, but which are not specified by the programmer as having any particular
concrete representation. The syntax to declare a new enumeration is:

enum name = elem1 , . . . ,elemn ;

where name is the name of the declared enumeration while elemi are its value names.
Enumeration names start with a capitalised letter while the enumeration values are com-
posed by only capitalised letters.

Example 8. Enumerations can be used to define predefined set of values that can be
used in the specification. For instance one can introduce an enumeration to identify the
possible four directions of movement:

enum D i r e c t i o n = NORTH, SOUTH, EAST , WEST;

To declare aggregated data structures, a CAS designer can use records. A record
consists of a sequence of a set of typed fields:

record name = [ type1 f ield1 , . . . , typen f ieldn ] ;

Each field has a type typei and a name f ieldi: typei can be either a built-in type or one
of the new declared types in the specification; f ieldi can be any valid identifier.

Example 9. Record can be used to model structured elements. For instance, a position
over a grid can be rendered as follows:

record P o s i t i o n = [ i n t x , i n t y ] ;

A record can be created by assigning a value to each field, within square brackets:

[ f ield1 :=expression1 , . . . , f ieldn :=expressionn ]

Example 10. The instantiation of a location referring to the point located at (0,0) has
the following form:

[ x :=0 , y :=0 ]

Given a variable (or attribute) having a record type, each field can be accessed using the
dot notation:

variable . f ieldi



Constants and Functions. A CARMA specification can also contain constants and func-
tions declarations having the following syntax:

c o n s t name = expression ;

fun type name ( type1 arg1 , . . . , typek argk ) {
· · ·

}

where the body of an expression consists of standard statements in a high-level pro-
gramming language. The type of a constant is not declared but inferred directly from
the assigned expression.

Example 11. A constant can be used to represent the number of zones in the Bike Shar-
ing System:

c o n s t ZONES = 5 ;

Moreover, functions can be used to perform complex computations that cannot be
done in a single expression:

fun r e a l R e c e i v i n g P r o b ( i n t s i z e ) {
i f ( s i z e != 0) {

re turn 1 . 0 / r e a l ( s i z e ) ;
} e l s e {

re turn 0 . 0 ;
}

}

Components prototype. A component prototype provides the general structure of a com-
ponent that can be later instantiated in a CARMA system. Each prototype is parame-
terised with a set of typed parameters and defines: the store; the component’s behaviour
and the initial configuration. The syntax of a component prototype is:

component name ( type1 arg1 , . . . , typen argn ) {
s t o r e { · · ·

attr_kind anamei := expressioni ; · · ·
}
behaviour { · · ·

proci = pde fi ; · · ·
}
i n i t { P1 | · · · | Pw }

}

Each component prototype has a possibly empty list of arguments. Each argument
argi has a type typei that can be one of the built-in types (bool, int and real), a custom
type (an enumeration or record), or the type process that indicates a component be-
haviour. These arguments can be used in the body of the component. The latter consists
of three (optional) blocks: store, behaviour and init.

The block store defines the list of attributes (and their initial values) exposed by
a component. Each attribute definition consists of an attribute kind attr_kind (that can



be either attrib or const), a name and an expression identifying the initial attribute
value. When an attribute is declared as const, it cannot be changed. The actual type of
an attribute is not declared but inferred from the expression providing its initialisation
value.

The block behaviour is used to define the processes that are specific to the consid-
ered components and consists of a sequence of definitions of the form

proci = pdef i ;

where proci is the process name while pde fi is its definition having the following syn-
tax7:

pdef ::= pdef+pdef∣∣ [ expr ] pdef∣∣ act.proc

act ::= act_name[ expr ]<expr1,. . ., exprn>{aname1:= expr′1,. . .,anamek:=expr′k}∣∣ act_name*[ expr ]<expr1,. . ., exprn>{aname1:=expr′1,. . .,anamek:=expr′k}∣∣ act_name[ expr ](var1,. . ., varn){aname1:=expr′1,. . .,anamek:=expr′k}∣∣ act_name*[ expr ](var1,. . ., varn){aname1:=expr′1,. . .,anamek:=expr′k}

Finally, block init is used to specify the initial behaviour of a component. It con-
sists of a sequence of terms Pi separated by the symbol |. Each Pi can be a process
defined in the block behaviour, kill or nil.

Example 12. The prototypes for Station, Users and Arrival components, already de-
scribed in Example 2, can be defined as follows:

component S t a t i o n ( i n t l o c , i n t c a p a c i t y , i n t a v a i l a b l e )
{

s t o r e {
a t t r i b l o c := l o c ;
a t t r i b a v a i l a b l e := a v a i l a b l e ;
a t t r i b c a p a c i t y := c a p a c i t y ;

}
behaviour {

G = [my . a v a i l a b l e >0]
ge t <>{ my . a v a i l a b l e := my . a v a i l a b l e −1 } .G;

R = [my . a v a i l a b l e <my . c a p a c i t y ]
r e t <>{ my . a v a i l a b l e := my . a v a i l a b l e +1 } .R ;

}
i n i t {

G | R
}

}

7 All the operators are right associative and presented in the order of priority.



component User ( i n t l o c , i n t d e s t ) {
s t o r e {

a t t r i b l o c := l o c ;
a t t r i b d e s t := d e s t ;

}
behaviour {

P = g e t [ my . l o c == l o c ] ( ) . B ;
B = move∗ [ f a l s e ] < >{ my . l o c := my . d e s t } .W;
W = r e t [ my . l o c == l o c ] ( ) . k i l l ;

}
i n i t {

P
}

}

component A r r i v a l ( i n t l o c ) {
s t o r e {

a t t r i b l o c := l o c ;
}
behaviour {

A = a r r i v a l ∗ [ f a l s e ] < >.A;
}
i n i t {

A
}

}

System definitions. A system definition consists of two blocks, namely collective and
environment, that are used to declare the collective in the system and its environment,
respectively:

system name {
c o l l e c t i v e {

inist_stmt
}
environment { · · ·
}

}

Above, inist_stmt indicates a sequence of commands that are used to instantiate
components. The basic command to create a new component is:

new name ( expr1 , . . . ,exprn )

where name is the name of a component prototype. However, in a system a large number
of collectives can occur. For this reason, our specification language provides specific
constructs for the instantiation of multiple copies of a component. A first construct is
the range operator. This operator is of the form:

[ expr1 : expr2 : expr3 ]



and can be used as an argument of type integer. It is equivalent to a sequence of integer
values starting from expr1, ending at expr2. The element expr3 (that is optional) indi-
cates the step between two elements in the sequence. When expr3 is omitted, value 1 is
assumed. The range operator can be used where an integer parameter is expected. This
is equivalent to having multiple copies of the same instantiation command where each
element in the sequence replaces the command.

For instance, assuming ZONES to be the constant identifying the number of zones in
the city, while CAPACITY and INITIAL_AVAILABILITY refer to the station capacity and to
the initial availability, respectively, the instantiation of the stations can be modelled as:

new S t a t i o n ( [ 0 : ZONES−1] , CAPACITY , INITIAL_AVAILABILITY ) ;

The command above is equivalent to:

new S t a t i o n ( 0 , CAPACITY , INITIAL_AVAILABILITY ) ;
...

new S t a t i o n ( ZONES−1 , CAPACITY , INITIAL_AVAILABILITY ) ;

Two other commands are used to control instantiation of components. These are:

f o r ( var_name = expr1 ; expr2 ; expr3 ) {
inist_stmt

}

i f ( expr ) {
inist_stmt

} e l s e {
inist_stmt

}

The former is used to iterate an instantiation block for a given number of times while
the latter can be used to differentiate the instantiation depending on a given condition.

Example 13. The following block can be used to instantiate SITES copies of component
Station at each zone. The same block instantiates a component Arrival at each zone:

c o l l e c t i v e {
f o r ( i ; i <ZONES ; 1 ) {

f o r ( j ; j <SITES ; 1 ) {
new S t a t i o n ( i , CAPACITY , INITIAL_AVAILABILITY ) ;

}
new A r r i v a l ( i ) ;

}
}

The syntax of a block environment is the following:

environment {
s t o r e { · · · }
prob { · · · }



weight { · · · }
r a t e { · · · }
update { · · · }

}

The block store defines the global store and has the same syntax as the similar
block already considered in the component prototypes.

Example 14. In the Bike Sharing System we use a global attribute to count the amount
of active users in the system:

s t o r e {
a t t r i b u s e r s := 0 ;

}

Blocks prob and weight are used to compute the probability to receive a message.
Syntax of prob is the following:

prob { · · ·
[ guardi ] acti : expri ; · · ·
d e f a u l t : expr ;

}

weight { · · ·
[ guardi ] acti : expri ; · · ·
d e f a u l t : expr ;

}

In the above, each guardi is a boolean expression over the global store and the stores
of the two interacting components, i.e. the sender and the receiver, while acti denotes the
action used to interact. In guardi attributes of sender and receiver are referred to using
sender.a and receiver.a, while the values published in the global store are referenced
by using global.a. This probability value may depend on the number of components
in a given state. To compute this value, expressions of the following form can be used:

#{ Π | expr }

This expression denotes the number of components in the system satisfying boolean
expression expr where a process of the form Π is executed. In turn, Π is a pattern of
the following form:

Π ::= *
∣∣ *[ proc ]

∣∣ comp[ * ]
∣∣ comp[ proc ]

Example 15. In our example the block weight can be instantiated as follows:

weight {
[ r e c e i v e r . l o c == sender . l o c ] g e t : 1 ;
[ r e c e i v e r . l o c == sender . l o c ] r e t : 1 ;
d e f a u l t : 0 ;

}



Above, we say that each user in a zone receives a bike/parking slot with the same
probability. All the other interactions are disabled having the associated weight equal
to 0.

Block rate is similar and it is used to compute the rate of an unicast/broadcast
output. This represents a function taking as parameter the local store of the component
performing the action and the action type used. Note that the environment can disable
the execution of a given action. This happens when evaluation of block rate (resp.
prob) is 0. Syntax of rate is the following:

r a t e { · · ·
[ guardi ] acti : expri ; · · ·
d e f a u l t : expr ;

}

Differently from prob, in rate guards guardi are evaluated by considering only the
attributes defined in the store of the component performing the action, referenced as
sender.a, or in the global store, accessed via global.a.

Example 16. In our example rate can be defined as follow:

r a t e {
[ t rue ] g e t : g e t _ r a t e ;
[ t rue ] r e t : r e t _ r a t e ;
[ t rue ] move ∗ : move_ra te ;
[ t rue ] a r r i v a l ∗ :

( g l o b a l . u s e r s <TOTAL_USERS? a r r i v a l _ r a t e : 0 . 0 ) ;
[ t rue ] d e f a u l t : 1 ;

}

Above we say that actions move*, get and ret are executed at a constant rate. Rate
of user arrivals depends on the number of active users. Action arrival* is executed
with rate arrival_rate when the total number of users active in the system is less than
TOTAL_USERS. Otherwise, the same action is disabled (i.e. executed with rate 0.0).

Finally, the block update is used to update the global store and to install a new
collective in the system. Syntax of update is:

update { · · ·
[ guardi ] acti : attr_updti ; inst_cmdi ; · · ·

}

As for rate, guards in the update block are evaluated on the store of the component
performing the action and on the global store. However, the result is a sequence of
attribute assignments followed by an instantiation command (above considered in the
collective instatiation). If none of the guards are satisfied, or the performed action is
not listed, the global store is not changed and no new collective is instantiated. In both
cases, the collective generating the transition remains in operation. This function is
particularly useful for modelling the arrival of new agents into a system.

Example 17. In our scenario block update is used to model the arrival of new users and
the exit of existing ones. It is defined as follows:



update {
[ t rue ] a r r i v a l ∗ : u s e r s := g l o b a l . u s e r s +1 , new User (

sender . l o c , U [ 0 : ZONES−1] ) ;
[ t rue ] r e t : u s e r s := g l o b a l . u s e r s −1;

}

When action arrival* is performed a component associated with a new user is created
in the same location as the sender (see Example 3). The destination of the new user is
probabilistically selected. Indeed, above we use U[0:ZONES-1] to indicate the uniform
probability over the integer values between 0 and ZONES-1 (included). When a bike
is returned, the user exits from the system (process kill is enabled) and the global
attribute users is updated accordingly.

Measure definitions. To extract observations from a model, a CARMA specification also
contains a set of measures. Each measure is defined as:

measure m_name [ var1=range1 , . . . , varn=rangen ] = expr ;

Expression expr can be used to count, by using expressions of the form #{ Π | expr }
already described above, or to compute statistics about attribute values of components
operating in the system: min{ expr | guard }, max{ expr | guard } and avg{ expr |
guard }. These expressions are used to compute the minimum/maximum/average value
of expression expr evaluated in the store of all the components satisfying boolean ex-
pression guard, respectively.

Example 18. In our scenario, we are interested in measuring the number of available
bikes in a zone. For this reason, the following measures are used:

measure AverageBikes [ l : = 0 : 4 ] =
avg { my . a v a i l a b l e | my . l o c == l } ;

measure MinBikes [ l : = 0 : 4 ] =
min{ my . a v a i l a b l e | my . l o c == l } ;

measure MaxBikes [ l : = 0 : 4 ] =
max{ my . a v a i l a b l e | my . l o c == l } ;

4.2 CARMA Eclipse Plug-in

The CARMA specification language is implemented as an Eclipse plug-in using the
Xtext framework. It can be downloaded using the standard procedure in Eclipse by
pointing to the update site at http://quanticol.sourceforge.net/updates/8. After the instal-
lation, the CARMA editor will open any file in the workspace with the carma extension.

Given a CARMA specification, the CARMA Eclipse Plug-in automatically generates
the Java classes providing the machinery to simulate the model. This generation pro-
cedure can be specialised to enable the use of different kind of simulators. Currently,
a simple ad-hoc simulator, is used. The simulator provides generic classes for repre-
senting simulated systems (named here models). To perform the simulation each model

8 Detailed installation instructions can be found at http://quanticol.sourceforge.net



Fig. 1: A screenshot of the CARMA Eclipse plug-in.



provides a collection of activities each of which has its own execution rate. The simu-
lation environment applies a standard kinetic Monte-Carlo algorithm to select the next
activity to be executed and to compute the execution time. The execution of an activity
triggers an update in the simulation model and the simulation process continues until a
given simulation time is reached. In the classes generated from a CARMA specification,
these activities correspond to the actions that can be executed by processes located in
the system components. Each of these activities in fact mimics the execution of a tran-
sition of the CARMA operational semantics. Specific measure functions can be passed
to the simulation environment to collect simulation data at given intervals. To perform
statistical analysis of collected data the Statistics package of Apache Commons Math
Library is used9.

To access the simulation features, a user can select the menu Carma→Simulation.
When this menu is selected, a dialogue box pops up to choose the simulation parame-
ters (see Figure 2). This dialogue box is automatically populated with appropriate val-
ues from the model. When the selection of the simulation parameters is completed, the
simulation is started. The results are reported within the Experiment Results View (see
Figure 3). Two possible representation are available. The former, on the left side of Fig-
ure 3, provides a graphical representation of collected data; the latter, on the right side
of Figure 3, shows average and standard deviation of the collected values, which cor-
respond to the measures selected during the simulation set-up, are reported in a tabular
form. These values can then be exported in CSV format and used to build suitable plots
in the preferred application.

5 CARMA tools in action

In this section we present the Bike Sharing System in its entirety and demonstrate the
quantitative analysis which can be undertaken on a CARMA model. One of the main
advantages of the fact that we structure a CARMA system specification in two parts – a
collective and an environment – is that we can evaluate the same collective in different
enclosing environments.

We now consider a scenario with 5 zones and instantiate the environment of the
Bike Sharing Systems with respect to two different specifications for the environment:

Scenario 1: Users always arrive in the system at the same rate;
Scenario 2: User arrival rate is higher at the beginning (modelling the fact that bikes

are mainly used in the morning) and then decreases.

The first scenario is the one presented in Section 4 and reported below for complete-
ness:

system S c e n a r i o 1 {
c o l l e c t i v e {

f o r ( i ; i <ZONES ; 1 ) {
f o r ( j ; j <SITES ; 1 ) {

new S t a t i o n ( i , CAPACITY , INITIAL_AVAILABILITY ) ;

9 http://commons.apache.org



Fig. 2: CARMA Eclipse Plug-In: Simulation Wizard.



Fig. 3: CARMA Eclipse Plug-In: Experiment Results View.



}
new A r r i v a l ( i ) ;

}
}
environment {

s t o r e {
a t t r i b u s e r s := 0 ;

}
prob {

d e f a u l t : 1 ;
}
weight {

[ r e c e i v e r . l o c == sender . l o c ] g e t : 1 ;
[ r e c e i v e r . l o c == sender . l o c ] r e t : 1 ;
d e f a u l t : 0 ;

}
r a t e {

g e t : g e t _ r a t e ;
r e t : r e t _ r a t e ;
move ∗ : move_ra te ;
a r r i v a l ∗ : ( g l o b a l . u s e r s <TOTAL_USERS? a r r i v a l _ r a t e : 0 . 0 ) ;
d e f a u l t : 1 ;

}
update {

a r r i v a l ∗ :
u s e r s := g l o b a l . u s e r s +1 ,
new User ( sender . l oc ,U [ 0 : ZONES−1]) ;

r e t :
u s e r s := g l o b a l . u s e r s −1;

}
}

}

The second scenario can be simply obtained by changing the rate block as follows:

r a t e {
g e t : g e t _ r a t e ;
r e t : r e t _ r a t e ;
move ∗ : move_ra te ;
a r r i v a l ∗ :

( g l o b a l . u s e r s <TOTAL_USERS?
( now<360?4∗ a r r i v a l _ r a t e : a r r i v a l _ r a t e / 2 ) : 0 . 0 ) ;

d e f a u l t : 1 ;
}

The results of the simulation of the two CARMA models are reported in Figure 4
where we report max/average/min number of bikes available at zone 0. Due to the sym-
metry of the considered model, any other location in the border presents similar results.

We can notice that, in both the scenarios the use of stations is not well balanced.
Indeed, when the system is not overloaded, there are stations that are almost empty
while others are full. This is due to the fact that stations do not collaborate and concur



Scenario 1

Scenario 2

Fig. 4: Bike Sharing System: Simulation Results — 10 simulation runs

to attract users. To overcome this problem we change the behaviour of stations to let
them exchange information about their availability. The new prototype is the following:

component C o l l a b o r a t i v e S t a t i o n ( i n t l o c , i n t c a p a c i t y , i n t
a v a i l a b l e ) {

s t o r e {
a t t r i b l o c := l o c ;
a t t r i b a v a i l a b l e := a v a i l a b l e ;
a t t r i b c a p a c i t y := c a p a c i t y ;
a t t r i b g e t _ e n a b l e d := t rue ;
a t t r i b r e t _ e n a b l e d := t rue ;

}

behaviour {
G = [my . a v a i l a b l e >0 && my . g e t _ e n a b l e d ]

ge t <>{ my . a v a i l a b l e := my . a v a i l a b l e −1 } .G;
R = [my . a v a i l a b l e <my . c a p a c i t y && my . r e t _ e n a b l e d ]

r e t <>{ my . a v a i l a b l e := my . a v a i l a b l e +1 } .R ;
C =

[my . g e t _ e n a b l e d | | my . r e t _ e n a b l e d ] s p r e a d ∗< my .
a v a i l a b l e >.C

+
s p r e a d ∗ [ t rue ] ( x )

{ my . g e t _ e n a b l e d := my . a v a i l a b l e >= x , my .
r e t _ e n a b l e d := my . a v a i l a b l e <= x } .C ;

}



Scenario 1

Scenario 2

Fig. 5: Bike Sharing System (Collaborative Stations): Simulation Results — 10 simula-
tion runs

i n i t {
G | R | C

}

}

CollaborativeStations use action spread* to communicate to components in the same
zone the number of bikes locally available. Actions get and ret, used by users to get
and return a bike, are enabled only when no other components with an higher number of
bikes/parking slots is present in the zone. The simulation of these collectives in the two
scenarios is reported in Figure 5. We can notice that in both the scenarios the average
number of available bikes is the same as in Figure 4. However, differently from in
Figure 4, the use of bikes in the stations is more balanced.

6 Concluding remarks

In this paper we have presented CARMA, a novel modelling language which aims to rep-
resent collectives of agents working in a specified environment and support the analysis
of quantitative aspects of their behaviour such as performance, availability and depend-
ability. CARMA is a stochastic process algebra-based language combining several inno-
vative features such as the separation of behaviour and knowledge, locally synchronous
and globally asynchronous communication, attribute-defined interaction and a distinct
environment which can be changed independently of the agents. We have demonstrated
the use of CARMA on a simple example, showing the ease with which the same system
can be studied under different contexts or environments.

Together with the modelling language presented as a stochastic process algebra, we
have also described a high level language (named the CARMA Specification Language)
that can be used as a front-end to support the design of CARMA models and to support



quantitative analyses that, currently, are performed via simulation. To support simula-
tion of CARMA models a prototype simulator has been also developed. This simulator,
which has been implemented in Java, can be used to perform stochastic simulation and
can be used as the basis for implementing other analysis techniques. These tools are
available in an Eclipse plug-in that has been used to specify and verify a simple sce-
nario.

One of the main issues related with CAS is scalability. For this reason is strongly
desirable to develop alternative semantics that, abstract on the precise identities of com-
ponents in a system and when appropriate offer mean-field approximation [6]. We envis-
age providing CARMA with a fluid semantics and in general the exploitation of scalable
specification and analysis techniques [25] to provide a key focus for on-going work.
In this direction we refer also here to [21] where the process language ODELINDA
has been proposed which provides an asynchronous, tuple-based, interaction paradigm
for CAS. The language is equipped both with an individual-based Markovian seman-
tics and with a population-based Markovian semantics. The latter forms the basis for a
continuous, fluid-flow, semantics definition, in a way similar to [13].
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