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Incremental generation of self-corrections using underspecifica-
tion

Markus Guhe, Frank Schilder

Department of Informatics, University of Hamburg

Abstract

The focus of the present paper is on the interface between the first two components of a lan-
guage production model, i.e. conceptualiser and formulator. We propose a method of how
the incremental input for the formulator can be represented within an underspecification for-
malism. The proposed method can be used in dynamically changing environments, e.g. an
airport supervision and information system, to produce descriptions of ongoing events. Be-
cause such a highly dynamic setting requires a real time production, an incremental concep-
tualiser that produces increments piece by piece is used in order to speed up the production
process. Moreover, changes in the environment have to be recognised and quickly reported
to the user. For this reason an underspecified representation for the increments is crucial.
Underspecification allows information to be added monotonically as soon as a change in
the environment has been noticed, e.g. ‘CK-314 is on time . . . uh . . . is delayed.’

1 Introduction

Interactive dialogue systems have to cope with numerous challenges. They can
only be considered to adequately simulate a human-human-like dialogue if they
meet a high standard regarding robustness and naturalness of natural language
understanding and production. We are concerned here with the production side
of this enterprise and propose a method of how already generated information
can be dynamically corrected. Current dialogue systems lack the following vital
requirements for building a robust and natural system: (1) the system needs to react
quickly and appropriately to changes in the environment, (2) the output should be
generated similarly to what a user would expect from a human communication
partner.

As part of fulfilling these requirements, we employ incrementality as a process-
ing principle for our model of language production and propose underspecification
as the underlying representation formalism. More specifically, we build on earlier
work on the incremental conceptualiser INC (Guhe and Habel 2001) and employ
the underspecification formalism CLLS (Constraint Language for Lambda Struc-
tures) (Egg, Koller and Niehren 2001) in order to produce self-corrections.

Incrementality is advantageous for systems in a real time processing envi-
ronment, because smaller pieces (increments) can already be processed by sub-
sequent components before the entire planning process is finished (Kempen and
Hoenkamp 1987, Levelt 1989, De Smedt 1990). An underspecification formalism
is well suited for incremental language generation, because an underspecified rep-
resentation can easily be extended without overwriting earlier made planning de-
cisions: subsequently added increments can be inserted where the underspecified
representation left room.
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From a dialogue management perspective, generating self-corrections is an ap-
propriate way to draw the user’s attention to detected mistakes or to changes in the
content the system plans to convey. Moreover, self-corrections enhance the natural-
ness of the output of a language production system. Not only does a self-correction
sound more natural, a system without this particular feature may produce contra-
dictory output, e.g. (1). This contradiction is absent in (2).

(1) I have two seats available. I have one seat available.

(2) I have two seats . . . uh no . . . one seat available.

The method for generating self-corrections we are proposing here is partially
implemented. However, note that our current goal is not the implementation of a
fully functioning dialogue system. Instead, we want to show how self-corrections
can be conceptualised and how the output of the conceptualisation process can
be represented in an underspecified format. More precisely, we present how INC
(Guhe and Habel 2001), incrementally generates so-called preverbal messages
(Levelt 1989) that can contain self-corrections. Preverbal messages are semantic
structures that are suited to be encoded linguistically by a subsequent incremental
formulator, e.g. (De Smedt 1990). Such formulators are capable of incrementally
producing a linguistic surface structure. However, the input – the preverbal mes-
sage – is added by hand. We want to close this gap and provide a method of how
to automatically produce a preverbal message in an incremental way.

INC is a cognitively motivated model of the conceptualiser. Systems that take
into account the cognitive foundations of human communications can help to im-
prove the naturalness of output (De Smedt, Horacek and Zock 1996, Reiter 1994).
Right now, the implementation of INC is capable of incrementally generating a
sequence of preverbal messages, in which a each preverbal message is represented
by a complex concept, cf. Guhe and Habel (2001). Based on this and on the consid-
erations of Guhe (under review) the topic of current and future work is to generate
the preverbal messages themselves in an incremental fashion, as well, so that it be-
comes possible to connect INC to a subsequent incremental formulator. – In other
words: up to now the preverbal messages are the increments, now we propose how
the increments a preverbal message consists of can be generated. –

In Guhe and Schilder (2002) we focus on the issue of how the internal con-
ceptual representations of INC can be combined with the underspecification for-
malism CLLS (Egg et al. 2001), and how it can be used to incrementally generate
VP-ellipses. This is the case in which a preverbal message is dynamically extended.
In the present paper we focus on the issue of how already generated information
can be dynamically corrected. Our approach provides a method to extend the pre-
verbal message monotonically in both cases. The generation of self-corrections is
a more complex task, because the preverbal message is not only monotonically
extended, but extended in a way that ensures that the resulting preverbal message
is valid, i.e. is equivalent to a structure that would have been generated without the
self-correction.

We are interested in a special kind of self-correction, those that arise because
of a conceptual change. We understand conceptual changes as a change in the
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input data during the incremental generation of the preverbal message. In contrast
to conceptual changes we call errors that are caused by a malfunctioning of the
system performance errors.

One important point of our approach and of the dynamic domain chosen is that
there are certain effects that are due to the (partly) parallel processing of incre-
ments. That is, the sequence in which computations are performed and the point
in time when a computation takes place has effects on the generated output, cf.
also Guhe (under review). For example, different outputs are possible depending
on when the change was discovered by the conceptualiser:

(3) CK-314 . . . uh . . . is delayed.

(4) CK-314 is on time . . . uh . . . is delayed.

(5) CK-314 is on time . . . uh . . . CK-314 is delayed.

Example (3) is an covert correction, because the conceptualiser noticed the change
before the predicate is on time was verbalised, i.e. left the formulator. (4) presents
a correction that is produced if the formulator was occupied generating the utter-
ance while the correction arrived from the conceptualiser. (5) is generated when
the formulator has already finished producing the utterance and is waiting for the
increments for the next one. Thus, which utterance is generated depends on the
state the formulator is in when the the change in the environment is spotted and
the correction is generated. Since conceptualiser and formulator work in parallel
and independently from each other, a flexible format for the preverbal message
is needed. In this paper, we will show how an underspecified representation of
the preverbal message can fulfil all the conditions that are necessary so that the
formulator produces (3)–(5) depending on the point in time of the correction.

The structure of the paper is as follows. First we describe the semantic un-
derspecification formalism CLLS. After that we discuss different causes for self-
corrections and introduce conceptual changes. Then we present the model INC in
some detail and show how it generates self-corrections. After that we give a de-
tailed account of how self-corrections can be dynamically inserted into the ongoing
message generation process without the need for a restructuring of the preverbal
message generated up to that point, and how the underspecification of CLLS can
be exploited for this purpose. From the means provided by CLLS we use the par-
allelism constraint that has mainly been used for the description of VP ellipses.

2 Constraint Language for Lambda Structures (CLLS)

CLLS is a formal framework for the partial description of lambda structures.
Lambda structures are represented as ordinary trees amended by the two partial
functions lam for binding variables of the �-term and ante for modelling anaphoric
expressions. The lambda term ������������	��

, for instance, can be repre-
sented as the tree structure indicated by figure 1.1

1Note that NPs including PNs are type-raised. Hence, the term Mary in ������������	��

 is a func-
tion from sets of entities to truth values.
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� �

Mary � lam �

� �

sleep � var �

Figure 1: The CLLS representation for ������������	�


The tree possesses further labels and lines: the label @ indicates application, a
dashed line between two nodes labelled by lam and var ensure the correct binding
between variables and the �-abstractor. Additionally, variables denoting tree nodes
(e.g. �� � �� � � � �) are added to the lambda tree structure in order to allow for
underspecification, the specification of anaphoric references etc. Formally, a CLLS

formula is described as a conjunction of atomic literals. In order to satisfy such a
formula a lambda tree structure such as the one in figure 1 and variable assignments
have to be found such that every literal is satisfied.

Several different constraints are defined in CLLS. Crucial for the definition of
underspecification is the dominance relation holding between tree nodes: � �

��
is satisfied iff � denotes an ancestor of � in the lambda structure. The constraint
graph indicates this relation via the dotted lines, e.g. the relation between the nodes
labelled by � � and � � in figure 2. Note that the dominance relation is reflexive and
transitive. Hence, nodes connected via a dotted line can either be the same node,
or an infinite number of further tree structures can be inserted between these two
nodes. Another constraint ensures that the binding between variables and lambda
operators is given: ���
 � � is satisfied iff the denotation of � maps to the de-
notation of � . Within the constraint graph the mapping is indicated by the dashed
line pointing from the variable to the lambda operator (lam).

Most important for the present paper, however, is the definition of the paral-
lelism constraint. The parallelism constraint defines a parallel structure between
tree segments. Segments in a lambda structure are defined as ��� where � de-
notes the root of the segment and � a hole such that � � �� . The segment covers
all nodes that are dominated by the root � with the exception of the node � and
all nodes dominated by � . In other words, a segment is a sub-tree starting with
the node � with the exception of a further subtree which has � as root node.
For instance, in figure 2 the segment � ���� has the root node � � including
all nodes dominated by it apart from node � � .The actual parallelism constraint
����� � � ��� � is satisfied iff the segment ����� of the lambda structure
is parallel to a segment � ��� � . The segments are described by brackets in the
constraint graphs (see figure 2). Formally, the parallelism between two segments
is captured via a correspondence function which is defined as a bijective mapping
between the two segments, see Erk (2000) for further details.
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The parallelism constraint has proven to be especially useful for the description
of VP ellipses, as in the following example sentence, cf. figure 2:

(6) Mary sleeps and John does, too.

The parallelism constraint � ���� � � ��� � is reflected in the graph via two
brackets denoting the two parallel segments (i.e. � ���� and � ��� � ). The
brackets precisely determine the part of the source sentence (‘Mary sleeps’) that
has to be copied into the target sentence (‘John does, too’) as well as the part that
has to be kept separate (���� and ����). A lambda tree structure that satisfies the
constraint graph in figure 2 is given in figure 3.

and ���

���

� �

�

����
�� 	�
 �

���

� �

sleep � var �

�� �

�

����
� �

Figure 2: The parallelism constraint for the elliptical sentence in (6)

and �

� �

Mary ��� 	�
 �

� �

sleep � var �

� �

John ��� 	�
 �

� �

sleep � var �

Figure 3: A lambda structure that satisfies the constraint graph in figure 2

A CLLS representation can not only be given as constraint graph but also as
a linear constraint that is a conjunction of constraint literals. A CLLS constraint
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� is defined as follows: � � �  	��� � � � � � ��
 � � �
�� � ���
 � � �

������
 � � � 
 � � � � � ��.

3 Generation of self-corrections

For the purpose of this paper, we distinguish two types of causes that can lead to
a self-correction: performance errors and conceptual changes. Performance errors
occur either within the formulator, e.g. a wrong lexical access such as in exam-
ple (7), or within the conceptualiser, e.g. misconceptions such as in (8).

(7) I went to the toast office . . . uh no . . . post office.

(8) Whales are fish . . . uh no . . . mammals.

The means to detect performance errors is self-monitoring, i.e. the generated
utterances are fed back into the system, analysed by the language comprehension
component, and compared to what the system had planned (Levelt 1989). If the
system generates ‘toast office’ instead of ‘post office’ this can be detected by com-
paring the generated ‘toast office’ to the planned ‘post office’, noting that it differs
and computing an appropriate correction that results in something like: ‘toast office
. . . uh no . . . post office’.

While performance errors can be attributed to errors in the functioning of the
system, e.g. to a faulty lexical access or a flawed inference rule, this is not pos-
sible in the case of conceptual changes. The reason is that the cause lies outside
the system: the internal representation of the external states of affairs may change
during utterance production. For example, (2) may be generated when one seat is
reserved by another ticket reservation system during utterance generation. There-
fore, it is impossible to solve the problem of conceptual changes for a system, be it
as perfect as it may. Put differently, conceptual changes are triggered by perceived
input data, not by self-monitoring.2

Obviously, systems that do not obtain any further information after utterance
planning commences do not get this problem. However, systems in fast changing
environments have to deal constantly with new input data, updates, and changes. In
order to keep the user up-to-date such systems must have the ability to immediately
react to changes, which includes the generation of self-corrections; otherwise a
system may even generate contradictory output as we saw in (1).

The causes for self-corrections are usually assumed in the relevant literature,
e.g. Levelt (1983), are the performance errors. However, since conceptual changes
make self-corrections necessary even in a perfect system, we concentrate on this
cause type. We have no doubt, though, that our proposal can offer a solution for
dealing with performance errors, as well.

In general, the following steps are necessary to perform a self-correction. At
first, a performance error or a conceptual change is detected (error detection).

2Conceptual errors may not only be detected by self-monitoring but also by further inferences the con-
ceptualiser performs while generating the utterance. We do not discuss this possibility here. However,
in this case the only difference to conceptual changes is how the need for a self-correction arises, not
the way it is treated afterwards.
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Figure 4: The incremental conceptualiser INC

The part of the utterance that has to be corrected is marked as the reparandum,
e.g. ‘fish’ is the reparandum in (8). As soon as an error is detected the current gen-
eration is immediately interrupted (interruption). Then, a correction term, e.g. ‘uh’
or ‘no’, is uttered (correction term generation). Finally, the content to be corrected,
i.e. the information difference, is given to the formulator (correction).

4 Self-corrections with INC

In the first part of this section we present INC, the incremental conceptualiser,
and describe those components that are involved in the generation of an incremen-
tal preverbal message. After that the generation of a self-correction caused by a
conceptual change is discussed in more detail.

4.1 The incremental conceptualiser INC

The input of INC (cf. figure 4) consists of perceived entities and of parsed speech.
Its output are preverbal messages, which is Levelt’s (1989) term for semantic rep-
resentations. One should be more precise at this point, however: they are not sim-
ply preverbal messages but incremental preverbal messages, because they are not
generated as a whole but in a piecemeal fashion, i.e. increment by increment, cf.
Guhe (under review).

Besides the main part in which the message generation proper takes place – this
is the right, bigger box of figure 4 – INC also contains a monitor. It performs func-
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tions laid out by Levelt (1989) in order to detect performance errors: it compares
the parsed speech it obtains from the language comprehension component with
the planned utterance(s). When it detects a (significant) deviation it temporarily
suspends operation of the message generation part, sends a signal to the rest of
the generation system (Hartsuiker and Kolk 2001), and initiates a self-correction.
Since the monitor is necessary only for the detection and correction of performance
errors it plays no role in the correction of conceptual changes. For this reason, we
will not use it in the following.

The message generation part consists of the four main processes construction,
selection, linearisation, and PVM-generation. These four processes operate on the
current conceptual representation (CCR), the internal representation of external
states of affairs. The CCR is a hierarchically structured network representation
of concepts. It is built up by the construction process with the help of the con-
cept matcher, which is the interface to the concept storage (CS). The CS contains
rules on how to construct complex concepts from simpler concepts. Initially these
simpler concepts are perceived entities; later on, the constructed (more complex)
concepts can be combined to even more complex ones. That is, the construction al-
gorithm works recursively until (1) no more complex concepts can be constructed,
or (2) a newly perceived entity arrives and must be handled by construction and
concept matcher.

The selection process chooses the concepts to be verbalised from the CCR,
linearisation brings these concepts into an appropriate order, 3 and PVM-generation
incrementally produces preverbal messages for them. The latter three processes
operate mainly on a sub-structure of the CCR, the traverse buffer 4. The traverse
buffer is an array of fixed length and selection appends the selected nodes to this
buffer. PVM-generation takes out the first element of the traverse buffer (called
head of traverse buffer) after a latency, decides upon how this concept is to be
verbalised, and hands it on to the formulator. During the latency linearisation can
reorder the concepts in the buffer and selection can replace concepts with other
concepts. The current preverbal message is finished when PVM-generation takes
the next head of traverse buffer so as to start a new preverbal message. Until a new
preverbal message is begun the current preverbal message can be extended.

The concepts in the traverse buffer are complex concepts, cf. Guhe (under re-
view). PVM-generation hands on the head of traverse buffer as first increment of a
new preverbal message to the formulator. However, not all information of the com-
plex concept is needed for the preverbal message. Therefore, PVM-generation has
to decide on an appropriate description of the concept. In example (4) there may
be more detailed information available about flight CK-314, but PVM-generation
decides on the appropriate information for the verbalisation with respect to the

3Note that this is a linearisation of utterances, not of phrases. Linearisation of phrases takes place in the
formulator, cf. De Smedt (1990).
4The name traverse buffer stems from the fact that we regard all nodes of the CCR that were verbalised
and all nodes that are selected for verbalisation but are not yet verbalised as a temporally ordered path
through the network. This path is called the traverse. The traverse buffer is that part of the traverse that
contains the nodes selected for verbalisation but that are not yet verbalised, i.e. the nodes that can still
be changed.
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current situation. In our example only the plane’s flight number is chosen, while
other information about the plane (plane type, number of seats, etc.) is omitted.

However, this is only the first increment, not a complete preverbal message.
Since the CCR and therefore also the head of traverse buffer are nodes in a network
representation, this concept is linked to other concepts. PVM-generation follows
these links (in some cases recursively) until a complete preverbal message is gen-
erated. As soon as another concept becomes available it is handed on to the for-
mulator. Since the way increments of a preverbal message are computed by INC
depends on the structure of the CCR, the details are left out here. They can be found
in Guhe (under review).

As soon as an increment is sent to the formulator it is inaccessible to the con-
ceptualiser. The only way to change information afterwards is to generate correc-
tions. In particular, selection and linearisation have no further access to the head
of traverse buffer after this, because it is no longer part of the traverse buffer. For
instance, if selection were now to decide to verbalise a different concept, a self-
correction is the only option to convey the information. Note that this would be a
correction of a whole preverbal message, not an ‘intra-preverbal message’ correc-
tion such as we are concerned with here.

Note that due to the incrementality of the whole system the preverbal message
is also generated incrementally, see Guhe (under review). We therefore adopt the
term incremental preverbal message.

4.2 Generating self-corrections for conceptual changes with INC

INC detects conceptual changes not with the help of the monitor, because they are
not performance errors. Note that this kind of correction can be generated com-
pletely without the help of the monitor, because (1) the error is not detected by
monitoring parsed speech and (2) all information about how far the generation of
the incremental preverbal message has proceeded is available in the conceptualiser.

A self-correction in the case of a conceptual change is generated as follows:

1. Each time new information arrives the construction process integrates it into
the CCR, i.e. it changes the CCR.

2. When PVM-generation notices a significant change in one of the concepts in
the current preverbal message, a self-correction is initiated.

3. An interruption signal is sent to the formulator. 5

4. The difference between planned and actual utterance content is computed
and a correction increment is generated, i.e. inserted into the incremental
preverbal message according to the parallelism constraint. The correction
increment contains information about:

5This signal is not part of the preverbal message, because it is contains no semantic content but sim-
ply tells the formulator that a correction will follow. The signal is sent, because it may withhold the
formulator from generating wrong output, e.g. in (4) the signal may have the effect that ‘time’ is not
generated. This depends on how far the formulator has progressed.
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(a) which concept to change

(b) what information is to be deleted by the formulator

(c) what information is to be added by the formulator

When a correction increment is generated, it is the duty of the formulator to com-
pute exactly how the correction is to be treated: this depends on how much of the
utterance the formulator has already generated. This division of labour is consis-
tent with models of the formulator, e.g. De Smedt (1990).

PVM-generation performs this four-step computation each time a concept be-
longing to the current preverbal message changes. However, when more than one
concept is changed at a time the computation and the correction to be performed
get more complicated, and INC may decide to break off the preverbal message and
start anew.

5 Underspecification for the incremental generation of self-corrections

In the following we focus on the representation of the incremental preverbal mes-
sage and present a formalisation of the generated increments in CLLS.

5.1 Incremental preverbal messages in CLLS

INC forges a stream of semantic increments out of concepts from the CCR. We
show now how an underspecified semantic representation in CLLS is incrementally
generated by INC. Consider as an example the case that INC decides to generate an
utterance about a plane’s departure time, e.g. ‘CK-314 is on time’. The preverbal
message for this utterance holds the proposition: � ������� -��� 
.

INC feeds the actual proposition � ������� -��� 
 to the formulator with
the following increments: �� �  �noun semantics�� ��  �verb semantics��. The first
increment of the preverbal message is the verb semantics, because a proposition
about the plane’s current status is to be uttered. In case something about CK-314
is to be uttered, the noun semantics would be the first increment. Obtaining the
first increment from INC, the formulator starts generating an utterance. The verb
semantics is encoded as a CLLS constraint:

���  ���� � �� 
� ��  	�
��� 
� ��  ���� � �� 
� ��  �� ��
�

��  ���� ���� 
 � �� � �� �
��� �

Here, the CLLS constraints are written as a list of constraint literals as defined
earlier. Adding further increments means that the lists are concatenated. Hence,
at any time we have a clause of constraint literals representing a concatenation of
literals. The subsequent noun semantics is represented as follows:

��� �
��	 � �	  �������

The graph representation is given in figure 5, where we reordered the incre-
ments so that they do not reflect the temporal order in which they were gener-
ated but instead follow the standard way of semantic representations. Note that the



Incremental generation of self-corrections using underspecification 11

CLLS constraint contains more underspecification than the semantic representation
produced by the corresponding analysis: the noun semantics contains an additional
dominance constraint. The current incremental preverbal message therefore con-
tains two places where further information can be added. If the planning process
stopped after these two increments, the sentence ‘CK-314 is on time.’ would be
generated.

However, it is still possible that the conceptualiser decides to add further in-
formation about the plane or its departure status. For example, INC could add the
information that the plane will depart from gate C-21. The following two incre-
ments express this: ��  ��� �

��
 � �
  ������ � ��� 
� �� �
��� � ��� �

���� �� ��  ����  ����� � ��� 
� ���  ����� ���� ���  ���� ���� 
 �
��� �. (The predicate depart C21 is clearly a simplification.) These two increments
can be found in figure 6.

�
������������������������

��  ���

CK-314 ��	 ,

��  � ���

��� lam ���

���

� ���

on time ��� var ���

�
������������������������

Figure 5: The increments for ‘CK-314 is on time.’

5.2 Incremental generation of a self-correction

Levelt (1983) observes that utterances containing a self-correction obey a well-
formedness rule. This rule states that a repair � � � � is well-formed if and only
if there is a string � such that the string � � � and� � � is well-formed. The
string � is a completion of the constituent directly dominating the last element of
�.6The well-formedness rule ensures that the repair utterance can be described as
a coordination. The following example sentences exemplify this rule.

(9) CK-314
�CK-314

departs
departs

from
from

gate
gate

C-21
C-21��

. . . uh
or

. . . from
�from

gate
gate

C-22.
C-22�� .

6The connective and� is omitted if �’s first element is also a sentence connective.
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�
������������

��  � ����

depart C21 ���� var ���� ����� 
 � ��� ,

�� and ��


���

���

���� ,

����

� � �

�
������������

Figure 6: Two increments for ‘. . . and departs from gate C-21’

(10) CK-314
�CK-314

departs
departs

from
from��

. . .
�gate C-21��

uh
or

. . . from
�from

gate
gate

C-22.
C-22�� .

(11) * Flight CK-314 departs 20 minutes later than scheduled from gate C-21
. . . uh . . . later than scheduled from gate C-22.

This rule is mainly syntactic, even if the choice for the connector may be guided
by semantic considerations. The connector and, for instance, would sound odd
in (9) or (10). Note also that a string � may be added in order to achieve a correctly
formed coordination.

Since we deal with the generation of self-corrections, the well-formedness rule
has to be transformed into a rule appropriate for this purpose. A rule for generating
self-corrections has to contain restrictions on how a correction can be built into an
already generated incremental preverbal message, i.e. a sequence of CLLS incre-
ments. The parallelism constraint in particular will play an important role for the
generation of self-corrections.

After INC recognises the need for a self-correction the change is cast into a
correction construction in CLLS. Note that the lambda structure for a correction is
structurally the same as for a coordination, only that instead of a logical connector
such as and or or a function correction is used. After INC has generated the correc-
tion, this information, which is simply another increment, is added to the current
incremental preverbal message. In a further step the alternation is added as another
increment.

These two increments contain the main information needed for the generation
of a self-correction. Let � � � be the correction increment. It specifies the paral-
lelism between the reparandum and the alternation. Node � � dominates �� (the
reparandum) and node � �� dominates ��� (the correction), cf. figure 7. In ad-
dition, INC also delivers the parallelism constraint for the correction. The correc-
tion is explicitly marked by � ���� � ������� . Node �� is labelled on time,
whereas node ��� is labelled delayed. Taking all this together, example (4) can
be generated with the following increments (� indicates the root node of the tree):

� ��
�  ���� ��� � ��  ���� � �� 
� ��  	�
��� 
� ��  ���� � �� 
�
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��

� ���

���

CK-314 ��	

lam ���

���

� ���

on time ��� var ���

correction ��


���
���� ,

� ����

delayed ���� var ����

� ����� � �������

Figure 7: The underspecified preverbal message of the self-correction in (7)

��  �� ��
� ��  ���� ���� 
 � �� � �� �
��� �

(� ���� ������
)

� ��
�  ��� �

��	 � �	  CK-314� (� CK-314)

� ��
�  �� �

��
 � �
  ������������ � ��� 
� �� �
��� � ��� �

���� �� ����� � ������� (� ���������� � 
)

� ��
�  ����  ����� � ��� 
� ���  �	���� ���  ���� (� ���������
)

Two observations regarding these increments can be made. First, increment
��

� contains no binding constraint as it is the case for � � (i.e. ���� 
 � ��� ).
Instead, a parallelism constraint � ���� � ������� is added. The parallelism
constraint is based on the computation that INC carried out when triggering the
correction and specifying the concepts to be changed. It also ensures that a binding
constraint is introduced later because of the bijective mapping of the two segments
����� and ������� .

Second, the correction node � 
 is subordinated under the root node �. A co-
ordination such as in ‘CK-314 is on time or delayed’ would have a more restrictive
constraint for �� (i.e. �� �

��
 ). Why does the correction increment contain a
different constraint? Remember that the generation proceeds incrementally in dif-
ferent components at the same time. At the time the correction is produced by INC
the increments representing the previously generated concepts have already been
fed to the formulator. INC does not have any information about the current state of
the formulator. Therefore, it is equally possible that the entire sentence has already
been uttered or that no syllable has been generated at all. Hence, the placement of
the correction node in the preverbal message has to be underspecified.

Figure 7 shows the entire constraint graph for the four increments � �
� to ��

�.
This graph indicates that the current incremental preverbal message is underspeci-
fied with respect to the lambda structure that can satisfy the given constraints. Two
lambda structures are conceivable:



14 Markus Guhe, Frank Schilder

1. ��-������������������ ������
� ���������




2. ������������-�������� ������

���-����������������




The two lambda structures are equivalent, because both can be beta-reduced
to the same term: ����������� �������� ���
� ����������� ���

. How-
ever, each lambda structure possesses a different linguistic surface structure:

(12) CK-314 is on time . . . uh . . . is delayed.

(13) CK-314 is on time . . . uh . . . CK-314 is delayed.

The two lambda structures reflect two self-corrections that are conceivable for
the given example according to Levelt’s well-formedness rule. Since INC does not
have access to the processing state of the formulator, an underspecified CLLS con-
straint has to be generated. Depending on how much progress has already been
made by the formulator the self-correction in (12) or (13) is generated. If both
corrections are still possible, because only ‘CK-314’ has been produced, the for-
mulator prefers low attachment of the correction node. Low attachment results in
generating (12).

Two further linguistic surface structures are conceivable:

(14) CK-314 . . . uh . . . is delayed.

(15) CK-314 is on time . . . uh . . . delayed.

In (14) the conceptual change is noticed before a statement about CK-314 is
uttered. Such a covert correction is also possible with the underspecified semantic
representation. Here, the formulator is supplied with the correction node before the
VP ‘is on time’ is generated. Consequently, this part of the semantic representation
is not generated, and only a hesitation (‘uh’) is produced. The variation (15) from
(12) can be generated when the conceptual change has been noticed right after the
copula ‘is’ was uttered. The formulator then decides whether the copula has to be
repeated or not.

6 Conclusions

We presented an account of how underspecified representations can be employed
in an incrementally working system for the generation of self-corrections. We
used the incremental conceptualiser INC to generate underspecified incremental
preverbal messages. Their increments are represented as underspecified lambda
structures. The underspecified incremental preverbal messages can be extended by
further increments at precisely defined locations in the structure. This modification
of the preverbal messages is in particular useful for the generation of corrections.

Our model and the underlying formalisation is an improvement over current
approaches to language generation. First of all, an incremental system can speed
up the production of utterances. Second, the underspecified representation of in-
crements is flexible and can be monotonically extended. Third, the generation of
self-corrections is an important feature to improve the acceptability of dialogue
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systems, because changes in the environment can be conveyed to the user quickly
and appropriately, even avoiding cases in which contradictory output would other-
wise be generated. This also increases the naturalness of the output.

While the current work focuses on the conceptualisation process carried out
by INC, future work will include the question of how an incremental formulator
can produce natural language utterances from an underspecified representation, as
defined by the present paper.
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