

Edinburgh Research Explorer

ADP an Agent Decomposition Planner CoDMAP 2015

Citation for published version:
Crosby, M 2015, ADP an Agent Decomposition Planner CoDMAP 2015. in ICAPS Proceedings of the
Competition of Distributed and Multi-Agent Planners (CoDMAP-15). pp. 4-7.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ICAPS Proceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP-15)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/adp-an-agent-decomposition-planner-codmap-2015(6efa3c2b-6307-450c-9568-eaf38b5196ef).html

ADP an Agent Decomposition Planner CoDMAP 2015

Matthew Crosby
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK

m.crosby@ed.ac.uk

Abstract

ADP (an Agent Decomposition-based Planner) is de-
signed to deduce agent decompositions from standard
PDDL-encoded planning problems and then to exploit
such found decompositions to generate a heuristic used
for efficient planning. The decomposition process parti-
tions the problem into an environment and a number of
agents which act on and influence the environment, but
can not (directly) effect each other. The heuristic calcu-
lation is an adaptation of the FF relaxation heuristic to
incorporate multiagent information. Relaxed planning
graphs are only ever generated for single-agent sub-
problems. However, when cooperation is necessary, an
agent’s starting state may include facts added by others.

Introduction
ADP is a complete, satisficing (non-optimal) centralised
planning algorithm that attempts to compute and utilise
agent decompositions for the sole purpose of improving
planning time. As such, it does not take into account com-
mon multiagent concerns such as privacy, trust or strategic
considerations. It has been shown (Crosby, Rovatsos, and
Petrick 2013; Crosby 2014) that useful decompositions can
be found and successfully utilised in around forty percent of
IPC domains (IPC 2011), a collection of domains which are
not explicitly designed to be multiagent, yet contain some
obviously multiagent settings.

The first section of this paper provides a brief high-level
overview of the ADP algorithm, while the following section
provides more detail including explicit discussion of the de-
composition process and heuristic calculation. The third sec-
tion presents a summary of the agent decomposition results
for the domains used in CoDMAP 2015 after which some
limitations and future plans for ADP are discussed. Techni-
cal details of the planner and other information relevant to
CoDMAP 2015 can be found in the final section.

ADP Overview
ADP is split into two components, a decomposition phase
and a heuristic calculation. The decomposition phase pro-
cesses the planning problem and attempts to find a useful

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

.

Environment (P)

Agent_1 Agent_2

Agent_3 Agent_4

Figure 1: A depiction of an agent decomposition of the vari-
ables in a domain. Agents can only change the state of them-
selves and/or the environment.

multiagent decomposition. As depicted in Figure 1, a de-
composed domain is made up of a number of agents, each
with an internal state, and an environment that the agents
are acting upon. Actions that can influence or depend upon
the internal state of an agent are assigned to only that agent.
Actions that only involve the environment are assigned to
all agents. The decomposition algorithm is guaranteed to re-
turn a decomposition in which no actions that influence (or
rely upon) multiple agents’ internal states exist. This means
that agents can only influence themselves or the environ-
ment (thought the actions available to an agent in a given
state may depend on how others have influenced the envi-
ronment).

When a decomposition is found, ADP calculates a heuris-
tic value (used to guide a greedy best first search) that at-
tempts to exploit the multiagent structure to find plans faster
than the alternative single-agent approach. If no suitable de-
composition can be found, then ADP defaults to the the
single-agent FF heuristic (Hoffmann and Nebel 2001).

The main idea behind the multiagent heuristic calculation
is to only ever generate planning graphs for a single agent
subproblem at a time. In ‘coordination points’ each agent
computes its heuristic value for each goal proposition by
generating its relaxed planning graph from the current state.
Cooperation is achieved (where necessary) by combining all
individually reachable states and using this as input for suc-
cessive rounds of individual relaxed planning graph genera-
tion. As a result of this process, a coordination point is as-

Algorithm 1: High-level Overview of ADP
Input : MPT 〈V, I,G,A〉
Output: Plan or ⊥

1 Calculate Agent Decomposition Φ
2 S ← I
3 CoordPoint(S) [initialises S.agent, S.goals and
S.macro]

4 Greedy BFS from S using h adp heuristic [When the
successor of S is generated it copies S.agent, S.goals
and S.macro from its predecessor]

Algorithm 2: Decomposition Algorithm
Input : MPT 〈V, I,G,A〉, Causal Graph CG, Φ = {}
Output: Agent Decomposition Φ = {φ1, . . . , φn}

1 Φ← {{v} : v ∈ V ∧ v root node of CG\2-way cycles}
2 repeat
3 foreach φi ∈ Φ do
4 φi ← φi ∪ {v ∈ V : v only successor of ∪ φi}
5 Φ← Φ where agents sharing joint actions are

combined
6 until Φ can no longer be refined

signed an agent (the one with the most individually achiev-
able goals), a set of agent goals (all propositions the assigned
agent can achieve alone along with all propositions neces-
sary for other agents to achieve goals requiring cooperation)
and a macro heuristic value that estimates the coarse dis-
tance to the goal. At non-coordination points, the heuris-
tic value is only updated by the currently assigned agent’s
progress towards its currently assigned goals.

ADP Details
Algorithm 1 gives a high-level pseudo-code overview of
ADP. The algorithm takes a multi-valued planning task
(MPT) calculated by the Fast-Downward Planning System
(Helmert 2006) as input and consists of an initial prepro-
cessing decomposition phase, followed by greedy best-first
search using the ADP heursitic.

An MPT is represented by Π = 〈V, I,G,A〉, where:
• V is a finite set of state variables v, each with an associ-

ated finite domain Dv ,
• I is a state over V called the initial state,
• G is a partial variable assignment over V called the goal,

and
• A is a finite set of (MPT) actions over V .
In what follow we assume the standard definition of precon-
ditions pre(a) and effects eff(a).

Decomposition
The decomposition algorithm creates a partitioning of the
variable set V into variable subsets φi for each agent i,
which leaves a public variable set P that contains the vari-
ables that pertain to the environment. An overview of the
decomposition algorithm is shown in Algorithm 2.

Algorithm 3: h adp Calculation
Input : State S with S.agent, S.goals and S.macro
Output: h adp

1 S.micro←
hff (V |S.agent, S|S.agent, G|S.goals, A|S.agent)

2 if S.micro == 0 or deadend then
3 CoordPoint(S)
4 S.micro←

hff (V |S.agent, S|S.agent, G|S.goals, A|S.agent)
5 h adp = S.macro + S.micro

First, a list of potential agents is found from the causal
graph by taking every root node that exists in the graph once
all two-way cycles have been removed. These root nodes
must still have at least one successor node to be considered.

In the next step, the potential decomposition is refined by
first extending agent sets to be as large as possible and then
reducing the number of sets based on the existence of any
joint actions. Agent sets are extended by recursively adding
any node of the causal graph that is a successor of only vari-
ables already included in that agent set.

Actions in the domain can be categorised based on poten-
tial decompositions (partitions). An action is said to be inter-
nal to agent i for a given decomposition Φ = {φ1, . . . , φn}
iff: ∃v ∈ pre(a) : v ∈ φi, andv ∈ pre(a) → v ∈ φi ∪ P.
In other words, the preconditions of a must depend on an
internal state variable of i and can only change i’s internal
state variables or the domain’s public variables.

A public action is any action where: v ∈ pre(a) → v ∈
P , i.e., where the preconditions do not depend on the inter-
nal state of any of the agents. An agent’s action set is the set
of all internal actions of that agent, denoted by Acti.

An action is joint between agents i and j given decom-
position Φ = {phi1, . . . , φn} iff. ∃v ∈ pre(a) : v ∈
φi, and∃v ∈ pre(a) : v ∈ φj . An action can be joint be-
tween multiple agents. In the second stage of the algorithm
all agents involved in any joint actions are merged.

In a decomposition returned by ADP, the sets φi are guar-
anteed to have the agent property. In particular, a variable set
φi (as part of a full decomposition Φ) has the agent property
when for all a ∈ A and variables v ∈ V :

v ∈ φi ∧ v ∈ eff (a)→ a ∈ Acti.

In other words, any agent variable can only be modified by
an action of that agent. The proof of this can be found in
(Crosby 2014).

Heuristic Calculation
The h adp heuristic calculation is formed of two parts as
shown in Algorithm 3. There is a global coordination point
calculation that is performed infrequently and is used to pick
out a single agent and a set of goals for that agent to attempt
to achieve. There is also a micro single-agent heuristic cal-
culation that is identical to that used by FF (Hoffmann and
Nebel 2001) on the planning problem restricted to the cur-
rent chosen agent and its current set of goals and subgoals.

Algorithm 4: Coordination Point Calculation
Input : State S
Output: S.agent, S.goals and S.macro

1 Iterated Relaxed Planning Graph Generation
2 if Max layer > 0 then
3 Calculate Subgoals
4 Assign Goals
S.agent← agent with most goals with min h add
S.goals← all goals achievable by S.agent
S.macro← N × |G \ S.goals|

Coordination Point Calculation An overview of the co-
ordination point calculation is shown in Algorithm 4. It as-
sociates a chosen agent, a goal set and a macro heuristic
value with the current state. This extra state information
is carried over whenever a successor state is generated and
(re)calculated whenever the current agent’s goal set is com-
pleted or becomes impossible.

Iterated Relaxed Planning Graph Generation. Given a
state, each agent generates their full relaxed planning graph
for their restricted problem from that state. That is, each
agent uses an iterative process to create a graph containing
all possible actions it can perform (ignoring delete effects)
and all possible propositions that can be reached by perform-
ing those actions.

It may happen that some propositions can only be reached
if agents cooperate. For example, one agent may need to un-
lock a door before another can pass through. Because the
agents create their own planning graphs (using only their
own subproblems) they will not include any parts of the
search space only reachable by cooperation. If not all goals
are reachable by at least one agent after the first round of re-
laxed planning graph generation, the collected final state of
all the agents is formed and used as input for a subsequent
layer of relaxed planning graphs. Each successive iteration
introduces a new layer with the first being layer 0. Repeat-
ing this process until no more states are added by any agent
is guaranteed to cover every reachable state in the full (not
decomposed) problem.

Calculate Subgoals: Any time a goal proposition appears
for the first time in a layer above 0 this means that it cannot
be reached by an agent on its own. In this case, subgoals are
calculated. Plan extraction is used to find out which proposi-
tions are necessary from a previous layer in order to achieve
each goal. These propositions are called subgoals. All sub-
goals from layer 0 are added as to the agent that achieved
them first. Using the door example, if the second agent needs
to pass through the door to achieve a goal, the subgoal of un-
locking the door will be assigned to the first agent.

Assign Goals: The next part of the coordination point cal-
culation chooses which agent is going to be performing the
local search. First, each goal is assigned to the agent that
can achieve it with the lowest estimated cost from the re-
laxed planning graphs. That is, it is assigned to the agent
that added it with the lowest h add value (Hoffmann and
Nebel 2001). An agents goal set is then formed of all goals

and subgoals assigned to it. The agent with the largest goal
set is chosen as S.agent along with all of its goals (and any
subgoals that it may have been assigned).

As a final part of the coordination point calculation the
value S.macro is calculated. This is used to provide a global
heuristic estimate of the distance through the overall search
space. This is calculated as N × |G \ S.goals| where N is
some large number chosen such that it dominates the single-
agent FF heuristic value of a state.

Decomposition of CODMAP Domains
This section discusses the decompositions that ADP finds
for the competitions domains used in CODMAP 2015. The
results are shown in Table 1. The second column of the ta-
ble ’Usable’ reports whether or not ADP managed to find a
usable decomposition for the domain. ADP found a suitable
decomposition for nine of the twelve domains in the com-
petition, failing to find one in blocksworld, driverlog and
sokoban. This does not mean that no sensible decomposition
exists for this domain, but that ADP could not find one that
respects the agent property and contains no joint actions.

In general, decompositions returned by ADP are consis-
tent across all problem instances for each particular domain.
The one exception is Woodworking for which there was at
least one problem instances in which ADP could not find a
decomposition (represented by an asterisk in the table).

The third column of the table ’Joint’ shows whether or not
ADP found a decomposition that includes joint actions. The
only domain for which this differs is Driverlog for which a
decomposition was found (drivers+trucks) but was not used.
There is no theoretical reason why the APD heuristic can-
not be applied when joint actions exist, however in such
domains, the algorithm tends to perform very poorly and
much worse than if no decomposition is returned. Note that
for some domains a decomposition including joint actions
was found part-way through the decomposition algorithm,
but the final decomposition did not include any after agents
were merged.

The final three columns of the table compare the prede-
fined decompositions for the problems to the decomposition
that ADP finds. ADP found the same decomposition in ex-
actly half of the ten remaining domains. In Driverlog and
Taxis, ADP found a very similar decomposition including
the trucks as well as the drivers in Driverlog and only includ-
ing the taxis and not the passengers in Taxis. In Depot, ADP
finds a completely different decomposition which treats the
trucks as agents and also contains a separate agent that in-
cludes every single crate in the domain. The two remaining
domains Woodworking and Wireless return fairly odd look-
ing decompositions and it is expected that ADP will perform
poorly on these domains.

ADP also found some extended agent sets not reported in
the table. For example, in satellites the decomposition found
by ADP includes the variables representing the state of the
instruments’ of each satellite with each individual satellite.
In the Zenotravel domain the agent sets include the fuel lev-
els for each plane.

Domain Usable Joint Predefined Decomp ADP Decomp Match
blocksworld 7 7 agents na –
depot 3 3 drivers + dists + depots trucks + crates* 7
driverlog 7 3 drivers drivers + trucks 7
elevators 3 3 lifts(fast/slow) lifts(fast/slow) 3
logistics 3 3 trucks + airplanes trucks + airplanes 3
rovers 3 3 rovers rovers 3
satellites 3 3 satellites satellites 3
sokoban 7 7 players na –
taxi 3 3 taxis + passengers taxis 7
wireless 3 3 nodes + bases messages by node + messages by base 7
woodworking 3(*) 3 different tools boards(available) + saw 7
zenotravel 3 3 planes planes 3

Table 1: The decompositions found by ADP on the CODMAP problem domains.

Limitations and Future Work
This section briefly states some of the current limitations of
ADP and current plans for improvement and extension of the
planner in the future. The decomposition algorithm is known
to return a decomposition with the agent property but it is
currently unknown if it will always find such a decomposi-
tion if one exists. Further theoretical work and experimen-
tation with different possible decomposition definitions is
planned along with the release of a a standalone decomposer
that can be used to find decompositions of PDDL-encoded
planning problems.

The ADP heuristic calculation is based on the FF heuris-
tic. However, there are a large number of other successful
planning heuristics that have since been developed and it is
likely that the overall multiagent approach can be applied to
some of these techniques. It will also be interesting to ex-
tend ADP to include reasoning about action costs, numeric
fluents and other extensions of PDDL or to include more
multiagent aspects of the planning problems.

Finally, ADP is currently implemented as a single-
threaded process. As each agent is always acting only work-
ing on their own internal problem, there is clearly scope for
a multi-threaded version in which agents explore the search
space independently.

ADP Details Summary
This final section presents a summary of the details of ADP
relevant to CoDMAP 2015. ADP is a complete, satisfic-
ing (non-optimal) centralised single-threaded planning al-
gorithm. ADP was implemented as a heuristic plug-in for
the Fast-Downward planning system (Helmert 2006). The
preprocessing of the planning problem into an MPT and
the search algorithm are left unchanged. ADP simply calcu-
lates a decomposition and provides a heuristic value for each
state that is queried during search and also stores a macro-
heuristic value, agent, and goalset for each state. ADP is
called with the option cost type=2 and using the lazy greedy
search algorithm. Source code for ADP can be found online
at the authors homepage.

ADP ignores the agent factorization presented in the MA-

PDDL files, instead determining the agents present (if any)
itself. The private/public separation is therefore also ig-
nored. ADP does have an internal representation for private
and public facts and actions used for decomposition calcu-
lation but does not use this directly for search.

Sometimes ADP will not be able to find an agent decom-
position (defaulting to single-agent planning behaviour) or
find a different decomposition as to that specified in the
CoDMAP files. The details of these cases are explained in
an earlier section of this paper.

Two versions of ADP were submitted to the CodMAP
planning competition. Planner1 is the ADP implementation
described in this paper. Planner2 is a legacy version of the
code that is functionally identical except that instead of stor-
ing the macro-heuristic value and agent assignment, it (in-
correctly) assumes that this can be carried over from the pre-
viously searched state. This legacy version was entered out
of curiosity and the fact that it has produced some interest-
ing results with some recent work in the planning commu-
nity showing the possible value of including some element
of randomness (essentially what the legacy version does) in
the search process.

References
Crosby, M.; Rovatsos, M.; and Petrick, R. P. A. 2013. Au-
tomated Agent Decomposition for Classical Planning. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 46–54.
Crosby, M. 2014. Multiagent Classical Planning. Ph.D.
Dissertation, University of Edinburgh.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14:253–302.
IPC. 2011. http://www.plg.inf.uc3m.es/ipc2011-
deterministic/. Web Site.

