

# THE UNIVERSITY of EDINBURGH

# Edinburgh Research Explorer

# Derivation of the human embryonic stem cell line RCe014-A (RC-10)

# Citation for published version:

De Sousa, P, Tye, BJ, Bruce, K, Dand, P, Russell, G, Collins, DM, Greenshields, A, Bradburn, H, Downie, JM, Bateman, M & Courtney, A 2016, 'Derivation of the human embryonic stem cell line RCe014-A (RC-10)' Stem cell research, vol. 16, no. 2, pp. 537-540. DOI: 10.1016/j.scr.2016.02.034

# **Digital Object Identifier (DOI):**

10.1016/j.scr.2016.02.034

## Link:

Link to publication record in Edinburgh Research Explorer

**Document Version:** Publisher's PDF, also known as Version of record

Published In: Stem cell research

# Publisher Rights Statement:

Under a Creative Commons license

# **General rights**

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

#### Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.



Contents lists available at ScienceDirect

# Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

## Lab Resource: Stem Cell Line

# Derivation of the human embryonic stem cell line RCe014-A (RC-10)

P.A. De Sousa <sup>a,b,c,\*</sup>, B.J. Tye <sup>a</sup>, K. Bruce <sup>a</sup>, P. Dand <sup>a</sup>, G. Russell <sup>a</sup>, D.M. Collins <sup>a</sup>, A. Greenshields <sup>a</sup>, H. Bradburn <sup>a</sup>, J.M. Downie <sup>a</sup>, M. Bateman <sup>a</sup>, A. Courtney <sup>a</sup>

<sup>a</sup> Roslin Cells Limited, Nine Edinburgh Bio-Quarter, 9 Little France Road, Edinburgh, EH16 4UX, UK

<sup>b</sup> Centre for Clinical Brain Sciences, University of Edinburgh, UK

<sup>c</sup> MRC Centre for Regenerative Medicine, University of Edinburgh, UK

#### ARTICLE INFO

Article history: Received 16 February 2016 Accepted 19 February 2016 Available online 23 February 2016

#### ABSTRACT

The human embryonic stem cell line RCe014-A (RC-10) was derived from a fresh oocyte voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a mixed 46XY and 47XY + 12 male karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

CrossMark

#### **Resource table**

| Name of stem cell<br>construct                                          | RCe014-A                                                                                             |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Alternative name                                                        | RC-10, RC10                                                                                          |
| Institution                                                             | Roslin Cells Ltd.                                                                                    |
| Person who created                                                      | B.J. Tye, K. Bruce, P. Dand, G. Russell, D.M. Collins,                                               |
| resource                                                                | A. Greenshields, H. Bradburn                                                                         |
| Contact person and                                                      | Paul.desousa@roslincells.com; Paul.desousa@ed.ac.uk                                                  |
| email                                                                   | Janet.downie@roslincells.com                                                                         |
|                                                                         | Aidan.courtney@roslincells.com                                                                       |
|                                                                         | Malcolm.bateman@roslinfoundation.com                                                                 |
| Date archived/stock date                                                | 29 March 2010 (seed bank)                                                                            |
| Type of resource                                                        | Biological reagent: cell line                                                                        |
| Sub-type                                                                | hESC, research grade                                                                                 |
| Origin                                                                  | Zygote (oocyte/1PN)                                                                                  |
| Key transcription factors                                               | Oct4 (confirmed by flow cytometry)                                                                   |
| Authentication                                                          | See Quality Control test summary, Table 1                                                            |
| Link to related literature<br>(direct URL links and<br>full references) | N/A                                                                                                  |
| Information in public<br>databases                                      | http://hpscreg.eu/cell-line/RCe014-A                                                                 |
| Ethics                                                                  | Informed consent obtained. Scotland A Research                                                       |
|                                                                         | Ethics committee approval obtained (07/MRE00/56).<br>Conducted under the LIK Human Fertilisation and |
|                                                                         | conducted ander the ort manual refundation and                                                       |
|                                                                         | Embryology Authority licence no R0136 to centre 0202.                                                |

#### **Resource details**

\* Corresponding author at: Centres for Clinical Brain Sciences & Regenerative Medicine University of Edinburgh Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK.

*E-mail addresses*: paul.desousa@ed.ac.uk, paul.desousa@roslincells.com (P.A. De Sousa).

RCe014-A (RC-10) was received as a failed to fertilise oocyte/1PN (pro-nuclear) embryo that was surplus to requirement or unsuitable for clinical use. The embryo was grown to blastocyst stage and the cell line was derived by whole embryo outgrowth on mitotically inactivated human fibroblast (HDF) feeder cells using xeno-free medium (XF KODMEM) and expanded under xeno free and feeder free conditions.

By flow cytometry, RCe014-A (RC-10) expressed the pluripotency makers Oct-4, Tra-1-60 and SSEA-4 (93.4%, 94.1% and 98.9%, respectively), whereas low expression of the differentiation marker SSEA-1 (3.5%) was observed (Fig. 1, Table 1). Differentiation to the three germ layers, endoderm, ectoderm and mesoderm, was demonstrated using embryoid body formation and expression of the germ layer markers  $\alpha$ -fetoprotein,  $\beta$ -tubulin and muscle actin (Fig. 2).

A microsatellite PCR profile has been obtained for the cell line, and HLA Class I and II typing is available (Table 2). Blood group genotyping gave the blood group  $AO_1$  (Table 2).

#### Verification and authentication

The cell line was analysed for genome stability by G-banding (Fig. 3) and showed a mixed 46XY and trisomy 12 (47XY + 12) male genotype in 12 and 3 cells analysed, respectively. The cell line is free from mycoplasma contamination as determined by RC-qPCR. Microsatellite PCR DNA profiling for cell identity is available (Table 2).

#### Materials and methods

Ethics

Derivation of hESC from surplus to requirement and failed to fertilise/develop oocytes and embryos was approved by The Scotland

#### http://dx.doi.org/10.1016/j.scr.2016.02.034

1873-5061/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



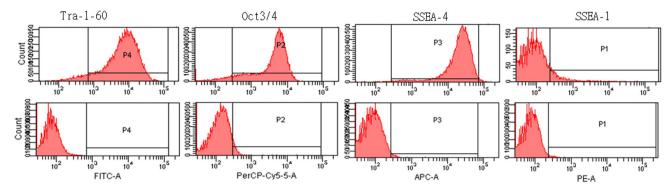



Fig. 1. RCe014-A (RC-10) was subjected to flow cytometry analysis for markers of pluripotency with specific antibody (top row) or isotype control (bottom row) as indicated above the histograms. Percentage staining is indicated in Table 1.

A Research Ethics Committee and local ethics board at participating fertility clinics and conducted under licence no R0136 from the UK HFEA with informed donor consent.

#### Cell culture

Failed to activate oocytes and embryos were cultured in Sydney cleavage medium (Cook Medical, Hertfordshire, UK) until day 3 and Sydney blastocyst medium (Cook Medical) after day 3 of development. Embryos were cultured at 36.5–37.5 °C, 5  $\pm$  0.5% CO<sub>2</sub>, 5  $\pm$  0.5% O<sub>2</sub> in drops under paraffin oil (Cook Medical) and transferred to fresh medium at least every 2–3 days.

By day 8 of development, embryos were placed in derivation conditions consisting of mitotically inactivated neonatal human dermal fibroblasts (HDFs) (Forticell Biosciences, NJ, USA) on tissue culture plastic in XF KODMEM medium (Knockout-DMEM, 15% KOSR-XF, 2 mM L-glutamine, 1% MEM Non-essential amino acids, 2% XF Growth Factor Cocktail, 0.1 mM  $\beta$ -mercaptoethanol, all ThermoFisher Scientific, Paisley, UK) supplemented with 80 ng/ml human bFGF (ThermoFisher Scientific).

HDF cells were cultured in DMEM (Lonza, Slough, UK), 10% Pharma grade FCS (GE Healthcare (PAA), Buckinghamshire, UK) and 2 mM L-glutamine (ThermoFisher Scientific). HDFs were mitotically inactivated using gamma irradiation at 50GY using a Gammacell Elite 1000 machine. For use as a feeder layer, irradiated HDFs were plated

at 50,000 cells/cm<sup>2</sup> in XF KODMEM medium supplemented with 80 ng/ml human bFGF (ThermoFisher Scientific). Cells were cultured at 36.5–37.5 °C, 5  $\pm$  0.5% CO<sub>2</sub>, 5  $\pm$  0.5% O<sub>2</sub> and 50% medium exchanged 6 days a week.

The established cell line was expanded and banked using CellStart matrix and Stempro hESC Serum Free Medium (ThermoFisher Scientific). Passaging was performed mechanically using an EZ passage tool (ThermoFisher Scientific). hESC lines were expanded to 25–30 wells of a 6-well plate and cryopreserved in 0.5–1 ml Cryostor CS10 (Biolife Solution, Washington, USA).

#### Mycoplasma

Mycoplasma detection was performed using Applied Biosystems PrepSEQ<sup>™</sup> Mycoplasma Nucleic Acid Extraction Kit and MicroSEQ<sup>™</sup> Mycoplasma Real-Time PCR Detection Kit (ThermoFisher Scientific (Applied Biosystems)) according to manufacturer's instruction.

#### Endotoxin

Endotoxin levels were determined using the Kinetic-QCL assay (Lonza) and an incubating plate reader (BioTek ELx808) according to manufacturer's instructions. Briefly, an unknown sample was compared with a standard curve of known levels of control endotoxin. An assay was deemed valid if the coefficient of correlation,  $r \ge 0.980$  and the CV (%) for the standard curve was  $\le 10\%$ .

#### Table 1

Summary of quality control testing and results for RC-10 (RCe014-A).

| Classification                            | Test                                     | Purpose                                                                    | Result                                                                  |  |
|-------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Donor screening                           | HIV 1 + 2<br>Hepatitis B<br>Hepatitis C  | Donor screening for adventitious agents                                    | Negative                                                                |  |
| Identity                                  | Microsatellite PCR (mPCR)                | DNA profiling to give cell line its signature, gender/species              | Performed                                                               |  |
| Phenotype                                 | Flow cytometry                           | Assess antigen levels & cell surface markers commonly associated with hESC | Oct 3/4: 93.4%<br>Tra 1-60: 94.1%<br>SSEA-4: 98.9%<br>SSEA-1: 3.5%      |  |
| Genotype<br>(details provided in Table 2) | Blood group genotyping<br>(DNA analysis) | To establish blood group of the line                                       | AO1                                                                     |  |
|                                           | Karyology (G-banding)                    | Confirmation of normal ploidy by G-banding                                 | 46XY (12 cells)<br>47 XY + 12 (3 cells)                                 |  |
|                                           | HLA tissue typing                        | To establish full HLA type I and II genotype of the line                   | HLA typed class I and class II                                          |  |
| Microbiology and virology                 | Mycoplasma<br>Endotoxin                  | Mycoplasma testing by RT-qPCR<br>Screening for endotoxin levels            | Negative<br>1.2 EU/ml                                                   |  |
| Morphology                                | Photography                              | To capture a visual record of the line                                     | Normal                                                                  |  |
| Differentiation potential                 | Embryoid body formation                  | To show differentiation to three germ layers                               | Expression of muscle actin, $\beta$ -tubulin and $\alpha$ -feto protein |  |

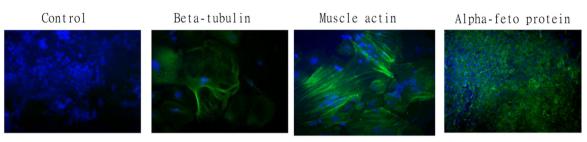



Fig. 2. In vitro differentiation of RCe014-A (RC-10) to ectoderm ( $\beta$ -tubulin III), mesoderm (muscle actin), and endoderm ( $\alpha$ -fetoprotein). Specific staining shown in green, cell nuclei are counterstained with DAPI (blue).

#### Table 2

| Microsatellite PCR, blood | l group and HLA tissue | typing results for | RCe014-A (RC-10). |
|---------------------------|------------------------|--------------------|-------------------|
|---------------------------|------------------------|--------------------|-------------------|

| Microsatellite PCR resul                                              | ts               |                                                                      |               |                        |                       |                      |           |
|-----------------------------------------------------------------------|------------------|----------------------------------------------------------------------|---------------|------------------------|-----------------------|----------------------|-----------|
| D3S1358 1                                                             | D3S1358 2        | vWA 1                                                                | vWA 2         | D16S539 1              | D16S539 2             | D2S1338 1            | D2S1338 2 |
| 16                                                                    | 18               | 16                                                                   | 18            | 9                      | 9                     | 19                   | 26        |
| Amelogenin 1                                                          | Amelogenin 2     | D8S1179 1                                                            | D8S11792      | D21S11 1               | D21S11 2              | D18S51 1             | D18S51 2  |
| X                                                                     | Y                | 15                                                                   | 15            | 27                     | 28                    | 13                   | 13        |
| D19S433 1                                                             | D19S433 2        | THO1 1                                                               | THO1 2        | FGA 1                  | FGA 2                 | CSF1PO 1             | CSF1PO 2  |
| 14                                                                    | 15               | 7                                                                    | 9.3           | 24                     | 25                    | 10                   | 10        |
| D5S818 1                                                              | D5S818 2         | D7S820 1                                                             | D7S820 2      | D13S317 1              | D13S317 2             | TPOX 1               | TPOX 2    |
| Blood group genotyping                                                | -<br>-           |                                                                      |               |                        |                       |                      |           |
| 11                                                                    | 11               | 8                                                                    | 12            | 10                     | 13                    | 10                   | 11        |
| RhD                                                                   | RhC              | Rhc                                                                  | RhE           | Rhe                    | Fy a                  | Fy b                 | Fy GATA   |
| pos                                                                   | pos              | pos                                                                  | neg           | pos                    | neg                   | pos                  | neg       |
| Jka                                                                   | Jkb              | К                                                                    | k             | M                      | N                     | S                    | S         |
| pos                                                                   | pos              | neg                                                                  | pos           | pos                    | neg                   | pos                  | pos       |
| Кр а                                                                  | Kp b             | Do a                                                                 | Do b          | ABO                    |                       |                      |           |
| ND                                                                    | ND               | pos                                                                  | pos           | AO1                    |                       |                      |           |
| ND = not determined                                                   |                  |                                                                      |               |                        |                       |                      |           |
| HLA tissue typing<br>HLA class I type<br>HLA class II type<br>Comment | HLA-DRB1*01, DRB | *40, B*57; Cw*03, Cw<br>1*04; DRB4*01; DQB<br>erologically as B60, C | 1*03, DQB1*05 | rologically as Cw10, D | QB1*03 is expressed : | serologically as DQ8 |           |

#### Flow cytometry

Pluripotency was determined using the Human and Mouse Pluripotent Stem Cell Analysis kit (BD, Oxford, UK). Oct 3/4 and SSEA-4 were included as pluripotency markers, and SSEA-1 as a differentiation marker. FITC conjugated Tra-1-60 (BD) was used as an additional pluripotency marker. Fixed and permeabilised cells were analysed using a FACS Aria flow cytometer (BD). Percentage expression of each marker was compared to isotype control or unstained cells.

#### Immunocytochemistry

hESC was fixed in methanol (ThermoFisher Scientific), blocked using 10% goat serum (Sigma-Aldrich, Dorset, UK) in PBS (Lonza) containing

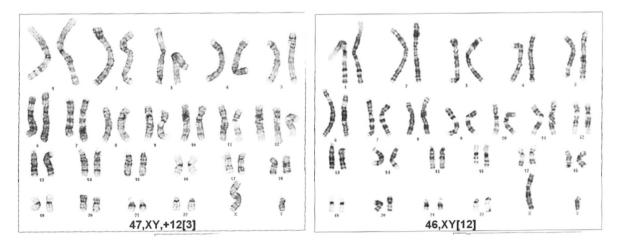



Fig. 3. RCe014-A (RC-10) was analysed by Giesma staining and showed a mixed 46XY (12 cells) and 47XY + 12 (3 cells) male karyotype.

0.01% Tween-20 (Sigma) and stained with AFP (1:500; Sigma),  $\beta$ -tubulin III (1:1000; Sigma), muscle-specific actin (1:50; DAKO, Glostrup, Denmark), and secondary antibody anti-goat IgG-AlexaFluor 488 (1:200; ThermoFisher Scientific). Images were acquired using a Zeiss S100 Axiovert fluorescence microscope or Nikon eC1 confocal microscope.

#### In vitro differentiation

Confluent hESC cells lifted using a cell scraper (Corning) and embryoid bodies EBs generated in ultra low attachment plates (Corning) in EB medium (20% FBS (GE Healthcare (PAA)), 80% KO-DMEM 1 mM L-glutamine, 0.1 mM  $\beta$ -mercaptoethanol, 1% nonessential amino acids (all ThermoFisher Scientific)). After 9 days in suspension culture, EBs were being transferred onto glass slide tissue culture chambers (Nunc, ThermoFisher Scientific) coated with 0.1% gelatin (Sigma) at 0.1 ml/cm<sup>2</sup> and cultured for 14 days.

#### Genomic analysis

All outsourced assays were carried out under a Quality and Technical Agreement. DNA was extracted using the QIAamp DNA Mini kit (Qiagen, Manchester, UK) according to manufacturer's recommendations and provided in recommended quantities to the service providers. Microsatellite PCR, or Short Tandem Repeat analysis, was used to determine cell line identity and was carried out by Public Health England. A profile was obtained for the following core alleles: vWA, D16S539, Amelogenin, THO1, CSF1PO, D5S818, D75820, D135317 and TPOX.

Human Leukocyte Antigen (HLA) tissue typing was carried out by the Scottish National Blood Transfusion Service.

Blood group genotyping was carried out by the Molecular Diagnostics laboratory at NHSBT.

Karyotype analysis was carried out by The Doctors Laboratory (London, UK) or the Western General Cytogenetics Laboratory (Edinburgh, UK). Live cells at 60–70% confluency were shipped overnight in warm containers, fixed and analysed by standard G-banding analysis. For research grade lines, 20 spreads were analysed.

#### Acknowledgements

Research culminating in the derivation of this line was funded by a grant from Scottish Enterprise Economic Development Agency (PM07321) to PDS, MB and AC.

Images of embroid body staining were kindly provided by S. Greenhough and J. Gardner, Roslin Cellab Ltd.