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How complex natural sounds are represented by the main converging center of the

auditory midbrain, the central inferior colliculus, is an open question. We applied neural

discrimination to determine the variation of detailed encoding of individual vocalizations

across the best frequency gradient of the central inferior colliculus. The analysis was

based on collective responses from several neurons. These multi-unit spike trains

were recorded from guinea pigs exposed to a spectrotemporally rich set of eleven

species-specific vocalizations. Spike trains of disparate units from the same recording

were combined in order to investigate whether groups of multi-unit clusters represent

the whole set of vocalizations more reliably than only one unit, and whether temporal

response correlations between them facilitate an unambiguous neural representation of

the vocalizations. We found a spatial distribution of the capability to accurately encode

groups of vocalizations across the best frequency gradient. Different vocalizations are

optimally discriminated at different locations of the best frequency gradient. Furthermore,

groups of a few multi-unit clusters yield improved discrimination over only one multi-unit

cluster between all tested vocalizations. However, temporal response correlations

between units do not yield better discrimination. Our study is based on a large set of units

of simultaneously recorded responses from several guinea pigs and electrode insertion

positions. Our findings suggest a broadly distributed code for behaviorally relevant

vocalizations in the mammalian inferior colliculus. Responses from a few non-interacting

units are sufficient to faithfully represent the whole set of studied vocalizations with diverse

spectrotemporal properties.

Keywords: inferior colliculus, vocalizations, neural discrimination, neural correlations, multi-unit cluster, guinea

pig, efficient encoding

1. INTRODUCTION

Vocalizations are spectrotemporally varying sounds which display a wide spectrum of acoustic
properties, such as amplitude and frequency modulations, harmonics and temporal correlations.
These natural sounds are well suited for studying the auditory system, since it was suggested that
neurons are adapted to process them (Rieke et al., 1995). Thus, they might trigger responses which
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are not elicited by artificial or simple acoustic stimuli. Guinea
pigs are very communicative and display a rich repertoire of
behaviorally relevant vocalizations (Berryman, 1976).We address
the question how the inferior colliculus (IC) of these mammals
encodes species-specific vocalizations. The inferior colliculus is
the main processing station in the auditory midbrain (Irvine,
1992) and integrates projections from essentially all ascending
auditory brainstem nuclei (Aitkin and Phillips, 1984; Malmierca
et al., 2002). Apart from being a center of convergence, further
sound feature extraction is presumably performed in the IC
(Joris et al., 2004). The central nucleus of the inferior colliculus
(ICC) is essential for extracting time-varying spectrotemporal
information (Escabí and Schreiner, 2002) and therefore might
be important for processing complex sounds such as speech and
vocalizations.

Our study is based on multi-unit activity which is the
collective response mainly from neighboring neurons that span
one order of magnitude. Investigating the encoding of natural
sounds on the level of multi-unit clusters might have the
advantage that this response is an integrated activity which
could reflect local system processing of the ICC. Furthermore,
multi-unit clusters respond stronger to natural sound than
single neurons (Grace et al., 2003) and natural sound stimuli
can be more accurately discriminated based on these responses
than based on single neuron responses (Engineer et al., 2008).
We investigate the encoding of natural stimuli using neural
discrimination and address three questions.

(1) The average value of the neural discrimination across
a whole set of vocalizations has been tested previously
for grasshopper auditory periphery receptor single
cells (Machens et al., 2003), and between amplitude
modulation frequencies for receptor single cells, local and
ascending interneurons (Wohlgemuth and Ronacher, 2007).
Furthermore, it has been tested between songs for single
neuron responses of zebra finches, in the homologous
structure to the inferior colliculus in mammals (Schneider
and Woolley, 2010). Schneider and Woolley have shown
that single neuron responses could be used to discriminate
between 11 bird songs with up to perfect performances.
The total discrimination averaged across the whole set of
communication calls did not depend on the frequency
tuning, i.e., the best frequency of the neuron (Schneider
and Woolley, 2010). However, preferred encoding of
individual calls in specific frequency regions might exist,
but was not detectable in the averaged discrimination.
Thus, the encoding needs to be analyzed for individual
vocalizations. In the ICC, response heterogeneity has been
shown within (Schreiner and Langner, 1988; Holmstrom
et al., 2010; Baumann et al., 2011) and across (Rose
et al., 1963; Merzenich and Reid, 1974; Suta et al., 2003)
isofrequency laminae. An isofrequency lamina contains
neurons with similar best frequencies (Schreiner and
Langner, 1997; Malmierca et al., 2008). In this work, the
optimal encoding of individual vocalizations with their
specific spectrotemporal content is compared across the
best frequency gradient. A purely linear mapping of the

vocalizations’ spectral contents along the best frequency
gradient is unlikely due to nonlinear processing mechanisms
(McAlpine, 2004; Escabí et al., 2005; Calabrese et al., 2011).

Individual vocalizations in the guinea pig ICC have been shown
to be encoded based on their spectrotemporal patterns (Suta
et al., 2003). For four vocalizations and within four frequency
intervals, Suta et al. (2003) demonstrated a dependence of the
spike-rate on the neuron’s characteristic frequency. However, it
has also been shown that spike-timing information is crucial
for neural discrimination of vocalizations and intelligibility of
speech (Shannon et al., 1995; Schnupp et al., 2006). To compare
optimal encoding of individual vocalizations with the neuron’s
preferred frequency, we use spike train trials and a fine frequency
resolution of 36 intervals across the whole set of 11 vocalizations.

Holmstrom et al. (2010) discriminated single neuron
responses to natural vocalizations and their modified versions in
themouse ICC. They showed that neurons display heterogeneous
responses to each perturbation of acoustic features in these
stimuli, and different neurons responded differently to the
same vocalization. They also showed that heterogeneous neural
responses in the mouse inferior colliculus efficiently encode
vocalizations. However, the specific encoding remains an open
question, because either heterogeneously distributed neural
responses (Holmstrom et al., 2010) could lead to individual
vocalizations being encoded equally well across the ICC, or the
vocalizations might be encoded more topographically (Suta et al.,
2003), following the organization of spectrotemporal preferences
in the ICC (Rose et al., 1963;Merzenich and Reid, 1974; Schreiner
and Langner, 1988). We tested this alternative by comparing
encoding of individual vocalizations along the frequency gradient
of the ICC.

(2) The ability of single neurons to encode vocalizations in
the auditory midbrain has been shown to vary (Schneider
and Woolley, 2010). Previous studies have investigated the
encoding of combined responses (Engineer et al., 2008;
Schneider and Woolley, 2010). In the zebra finch, Schneider
and Woolley (2010) have found optimal separability of
responses for combining spike trains from 2 to 5 single
neurons with similar tuning, and suggested that pooling
reduces trial-to-trial variability and therefore increases
separability. Engineer et al. (2008) have shown that the
ability of a group of neurons to discriminate outperforms
the discrimination ability of a single neuron for the primary
auditory cortex of rats. The rats were presented with human
speech sounds, which could result in different degrees of
encoding accuracy than for species-specific vocalizations.

In general, single neurons do not provide enough discriminative
information to perfectly distinguish vocalizations. However, a
large population of neurons responding simultaneously in order
to encode vocalizations would not agree with the efficient
encoding hypothesis (Barlow, 1961). This leads us to ask how
distributed the encoded information is for the vocalizations in
the mammalian ICC. To address this question we investigate
whether discrimination accuracy changes when combining
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responses from an increasing number of multi-unit clusters, and
if the accuracy is effected by whether the multi-unit clusters
have similar or dissimilar frequency tuning. Additionally, we
investigate encoding for combining spectral, temporal or the
joint spectral and temporal information from different multi-
units clusters.

(3) Third, we examined whether temporal response correlations,
i.e., correlated trial-to-trial-variability, effect neural
discrimination. The neural activity of units involved in
the representation of the vocalization could be coupled,
yielding temporal response correlations which are also
referred to as noise correlations (Averbeck et al., 2006) or
neural correlations (Eggermont, 1994). These correlations
could lead to more efficient encoding. Whether this
correlated activity, which is due to interactions between the
neurons, increases or decreases encoding efficiency is not
clear (Averbeck et al., 2006). Both, response correlations
and neural correlations have been shown to be destructive
or invariant (Nirenberg et al., 2001), or favorable (Abbott
and Dayan, 1999; Pillow et al., 2008; Ecker et al., 2011;
Da Silveira and Berry II, 2013) to encoding of sensory
stimuli. The effect of neural correlations might depend on
the specific neural system and its correlational structure
(Averbeck et al., 2006). Neural representations also have
been proposed to decrease in redundancy from peripheral
to cortical structures (Barlow, 1972). It has been shown for
the primary auditory cortex of the zebra finch that temporal
response correlations for spike trains longer than 250 ms do
not change encoding (Wang et al., 2007). However, this has
not been investigated previously for short-time spike train
durations for vocalizations in the mammalian ICC (thus
behaviorally crucial durations), although one could expect
correlations across neurons on short-time scales in the ICC
(Chen et al., 2012a). We tested the hypothesis that temporal
correlations of simultaneously recorded neurons facilitate
neural discrimination.

In this study we investigated encoding accuracy of individual
vocalizations across the tonotopy, whether groups of multi-unit
clusters encode vocalizations better than one multi-unit cluster,
and whether temporal correlations facilitate encoding.

2. MATERIALS AND METHODS

2.1. Electrophysiology
Neural recordings from the central nucleus of the inferior
colliculus (ICC) of 11 adult male and female Dunkin Hartley
guinea pigs were taken while acoustically presenting conspecific
vocalizations to the left ear. The experimental setup, including
sound calibration, is described in detail elsewhere (Rode et al.,
2013). For the recording, double-shank arrays (shank distance
was 500 µm with 16 contacts linearly spaced at 100 µm, on
each shank) and 4-double-tetrode arrays (shank distance of 500
µm, channel distance within tetrode of 25/82 µm) were used
(impedances: 0.5–1 M� at 1 kHz; NeuroNexus Technologies,
Ann Arbor, MI). With these arrays the neural activity from the

contralateral ICC was recorded simultaneously from 32 different
sites (channels). The multi-site electrode array was introduced
under an angle of 45◦ dorsolateral along the gradient of best
frequencies, the tonotopic gradient. Frequency response areas
were computed in response to pure tone stimulation. The tone-
evoked best frequency (BF), the stimulus frequency eliciting
the highest spike-rate at each given intensity, ranged from 0.5
to 45 kHz. The same frequency range was covered by linear-
double shank and double-tetrode recordings. The guinea pigs
were anesthetized with Ketamine and stereotactically fixed with
ear tubes through which the sound was presented directly
to the eardrum. A total of 11 different vocalizations were
played with intensities of 30–70 dB SPL in steps of 10 dB SPL.
Unless stated otherwise, the recordings analyzed are the ones
at 70 dB SPL stimulus intensity, as they show the strongest
response. For each vocalization 20 trials were recorded at
a given intensity. Recordings of 1 s and 1.6 s duration were
taken with a TDT Tucker Davis System with a sampling rate
of 24.414 kHz. For each animal (Nanimals=11), the multi-site
electrode array was inserted into 3 or 4 different positions for
recording.

2.2. Stimuli
Vocalizations were recorded, with a sampling rate of 97.656 kHz,
frommale and female Dunkin Hartley guinea pigs (details can be
found in Rode et al., 2013).
The 11 vocalizations studied here constitute a representative set
of guinea pig communication calls and give information about
the animal’s behavioral state (Berryman, 1976). The waveform,
spectrogram and power spectrum of the vocalizations used in this
study are shown in Figure 1. These spectrotemporally varying
complex sounds display a large variety of frequency modulations,
frequency ranges, and envelope types. The spectrograms of some
of the vocalizations display harmonics (Figures 1A–C,G,H). The
waveform has a simple periodic shape for some vocalizations
(“tooth chatter,” “purr,” “drr,”Figures 1D–F) and is quite complex
for others (e.g., “squeal,” “low whistle,” Figures 1H,G). Some
vocalizations have a frequency range of up to 30 kHz. The
impulse-response function of the system (loudspeaker-tube-
mold of ear canal) was measured. Then, the vocalizations were
filtered with the estimated inverse transfer function in order to
compensate for the effects of playing the stimuli through the
loudspeaker-tube-ear-mold system and presented to the guinea
pigs at a sampling rate of 195.31 kHz (Rode et al., 2013). The
vocalizations were played 20 ms after recording onset and vary
in duration between 300 and 1300ms.

For the analysis, the main spectral content of the vocalization
was obtained by computing the power spectrum and
integrating the power for frequency bands, fN , which are
centered around the recorded multi-units’ best frequencies,
fN = {0− 0.25} , {0.25− 0.55} , . . . , {38− 45.5} kHz. The
power for each vocalization was normalized and its logarithm
displayed. Pure tone stimulation was used to identify frequency
response areas. A total of 40 stimulus frequencies, ranging
between 0.5 and 45 kHz, with a ramp rise and fall time of
5 ms each and a duration of 50 ms, were presented 20 ms after
recording onset.
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FIGURE 1 | Guinea pig vocalizations. Waveforms, spectrograms, and power spectrums for each of the 11 studied vocalizations (A–K). Vocalization durations vary

from 0.3 to 1.3 s (H,E). The “tooth chatter,” “purr,” and “drr” (D–F) have envelope periodicities of 10.3, 15.4, and 14Hz, respectively. The latter ones have only low

frequency contents below 3 kHz. Both “screams” and the “whistle” (A–C) show very distinct harmonics and broad frequency distributions. The vocalizations display

quite different spectrotemporal properties.
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FIGURE 2 | Classification procedure for neural discrimination between responses elicited by different vocalization stimuli. In this schematic, the case for

discrimination between 2 vocalizations out of 11 is displayed. (A) Recordings from one multi-unit cluster (MU 1) to stimuli S1 and S2 are preprocessed, to yield either

spiking activity or local field potentials. Features (F1 and F2) are extracted for ntrial response trials (ntrial= 20) to stimulus S1 or S2. The features are passed to a

classifier which yields the percentage of correctly assigned responses for stimuli 1 and 2, the percentage correct classification (CC). This classification procedure is

performed independently for each multi-unit cluster with its specific frequency tuning. (B) Responses from several multi-unit clusters are pooled and discriminated. In

the schematic, responses from three multi-unit clusters (MU1, MU2, MU3) which are along the tonotopic gradient and have different best frequencies (BF), are pooled,

either by adding up trials from different multi-unit clusters or by concatenating them. From these combined response trials to stimuli S1 and S2, features (F1 and F2)

are extracted and classified to obtain percentage correct assignment of the pooled responses.

FIGURE 3 | Comparison of classification performances for different (data type, feature, classifier)-combinations. Comparison of classification

performances for nine (data type, feature, classifier)-combinations, for a classification between all 11 vocalizations on 300ms of recording. Data types are EPSP-spike

trains (Spk), and local field potentials (LFP). Features are correlation values (Corr), the whole segment of spike trains or LFPs, the average (firing) rate of 300ms (R300)

or six average (firing) rates of each 50ms (R50), or the five most important response frequencies (Spec). Classification was performed by choosing the maximum value

(Max), a naive Bayes classifier (Bay), linear discriminant analysis (LDA) or nearest neighbor classification using Euclidean distance (NN). Top: Correct classification

averaged across 10 multi-unit clusters from one recording are displayed for each of the parameter combinations. Correlation of spike trains outperforms the other

classification procedures. Bottom: Classification performance for the individual 10 multi-unit clusters with different best frequencies, spanning a frequency range of

0.5–18 kHz. Classification does not vary systematically with the multi-unit cluster’s best frequency.
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2.3. Preprocessing of Recordings
The impedance of the electrodes allows us to capture the
compound response of several neighboring single neurons
recorded from one site, which is referred to as a multi-unit or
multi-unit cluster. We used the offline spike-sorting program
WaveClus (Quian Quiroga et al., 2004) to sort and separate spikes
according to spike waveform. This spike-sorting program carries
out a wavelet-analysis on the recordings, and based on the wavelet
coefficients, action potentials are clustered.

We performed spike-sorting on a subset of the recorded
multi-unit cluster responses which covers the analyzed best
frequency range. All 20 trials were concatenated, filtered between
300–3000Hz and spikes were assigned where voltages exceeded
a threshold of three standard deviations of the ongoing activity.
From each multi-unit within the analyzed set, 3–5 clusters
of sorted responses with sizes ranging from 100 to 20,000
spikes were obtained. In some cases, a group of spikes of
the same magnitude could not be attributed to any of these
sorted clusters. Within the found sorted clusters, 50–5000 spikes
displayed inter-spike-intervals of less than 3 ms, which indicates
that separation into single units was not possible. Thus, the
responses investigated and interpreted in this paper are from
neural groups comprising at least 3–5 single neurons and smaller
contributions from neurons that are farther away from the
recording electrode and are not distinguishable. Note that it is
possible that different sub-groups of multi-unit clusters respond
to different vocalizations.

Spiking multi-unit activity was obtained from the recorded
voltage traces by applying a Butterworth filter with a passband
of 300–3000Hz and thresholding 3 (z =3) standard deviations
above the ongoing activity. From the spontaneous activity, the
mean (µ) and standard deviation (σ ) are computed. Activity
exceeding the threshold 2, which is a linear function of the
standard deviation (2 = µ + zσ ), is counted as a spike.
No refraction time between spikes was assumed, as these
likely originate from different single units. This spontaneous
or ongoing activity was acquired from the first 20 ms of each
recording, during which no stimulus was presented, in order to
account for different spontaneous rates of the multi-unit clusters
and adaptation effects over time. Multi-unit spike trains were
binned at 1 ms and convolved with a filter function, f (t)=t ·
exp(α · t), with time t, to mimic the time course of excitatory
postsynaptic potentials (EPSP) (van Rossum, 2001), as used by
Machens et al. (2003). The full width at half maximum α, of the
EPSP-like function was chosen to be 3 ms. This is the smallest
time scale, thus the highest temporal resolution of the window
found byMachens et al. (2003) to yield maximum discrimination
performances between spike trains in response to vocalizations in
the grasshopper auditory system. To obtain local field potentials,
the voltage traces were Butterworth filtered in a range between
0.5 and 500Hz (Pettersen et al., 2012).

2.4. Neural Discrimination
Neural discrimination is the ability to distinguish different
stimuli based on the neural responses they elicit. These responses
are classified according to a chosen distance metric. In the
following, when referring to “classification” it is meant to imply

“neural discrimination.” The percentage of correctly classified
responses is used to quantify how accurately the neural data
allows one to discriminate between the different vocalizations.
The procedure to test for separability between responses to
different stimuli from one multi-unit cluster is schematized in
Figure 2A for two vocalization stimuli, and consists of data
preprocessing, feature extraction and classification. Separability
of responses was tested independently for each multi-unit cluster
from linear double-shank recordings and from double-tetrode
recordings. Whereas multi-unit responses from the former are
recorded along the best frequency gradient, and cover a broad
range of best frequencies, the responses from the latter are
from a few neighboring isofrequency laminae, and several multi-
unit clusters have similar frequency tuning. This allowed us to
investigate whether the ability to discriminate between individual
vocalizations (or between groups of vocalizations) varies with
multi-unit frequency tuning.

To separate responses to different stimuli, features obtained
from the time courses were employed. The tested features were:
mean response rates (for LFP) and firing rate (for spiking activity)
across 300 ms, a 6-dimensional feature vector, containing
respective mean rates over six consecutive periods of 50 ms,
yielding a finer resolution of the response rate over the previous
mean rate, and, finally, the five most prominent frequencies
of LFP-recordings obtained from the power spectrum. The
first two metrics have been applied previously for successful
discrimination of responses to vocalizations (Machens et al.,
2003; Portfors et al., 2009). Features were obtained for each of
the ntrial= 20 trials, which were divided into test and training
sets and entered to a classifier. A 10-fold cross-validation with
10% test data was performed for each classification, and yielded
an estimate of the error. Tested classifiers included linear
discriminant analysis (LDA, which fits a normal density to each
class and estimates the combined covariance matrix), a naive
Bayesian classifier (which estimates a diagonal covariancematrix)
and a nearest neighbor classifier, using Euclidean distance (Duda
et al., 2000). As a further approach we used the correlation of
spiking responses to be classified (test trials) with the labeled
spiking responses (training trials). Correlation values serve as
features and the test trial was assigned to the class which yielded
the highest correlation value. A correlation-based similarity
measure of spike trains (Schreiber et al., 2003) has been employed
earlier for neural discrimination of single neurons and groups of
neurons (Wang et al., 2007).

Temporal information has been shown to be crucial for
the comprehension of speech (Shannon et al., 1995) which is
spectrotemporally varying complex sound as are vocalizations.
Here, we computed the degree of correlation between two spike
trains from one multi-unit cluster as an index of the responses’
temporal information. Correlation values were computed as the
coefficient of correlation of two EPSP-spike trains x(t), y(t), of
length n.

Corr =

∑n
t=1(x(t)− 〈x〉) · (y(t)−

〈

y
〉

)
√

∑n
t=1(x(t)− 〈x〉)2

∑n
t=1(y(t)−

〈

y
〉

)2
. (1)
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The correlation values were computed at zero lag, because even
though response latencies do vary across multi-unit clusters with
different spectrotemporal preferences (Langner et al., 1987), here,
responses from the same multi-unit cluster were compared. The
correlation approach allows us to compare temporal responses at
a resolution of 3ms.

Classification was tested for several data types, features
and classifiers, and classification performances for these three
parameters are compared, see Figure 3. The approach using
the correlation of spike trains was then employed for all
subsequent analyses (Figures 4–11). The classification yields the
percentage of correctly assigned responses to each stimulus
(Correct Classification,CC [%]). A confusionmatrix (Conf ) gives
the correct and false classifications, rows representing assigned
stimulus classes, columns representing the actual presented
stimulus classes. Perfect classification would only yield entries on
the diagonal. The entries of the confusion matrix on the diagonal
represent the correct assignments for each individual vocalization
k = 1, . . . ,Nvoc, averaged across all cross-validation iterations
Nxval.

CC(k) =
1

Nxval

Nxval
∑

x=1

Confx(k, k) (2)

The mean across the diagonal, averaged over all cross-validation
iterations, yields the correct classification between the Nxval = 11
vocalizations.

CC =
1

Nvoc

Nvoc
∑

k=1

CC(k) (3)

The classification error is the standard deviation obtained from
all cross-validation steps. To obtain the best discriminative length
and location of the spike trains within the whole recording,
classification for different segments was compared. Classification
between all 11 vocalizations was computed for consecutive
non-overlapping 10 ms segments of the spike train, starting
at the onset of the recording. This is aimed to compare
the discriminative information contained within short spike

FIGURE 4 | Onset of discrimination. Percentage correct classification

between all 11 vocalizations of consecutive spike trains of 10 ms. Low correct

classification values are due to the relatively short spike train length. Before

stimulus onset, classification was at chance level (9.1%, pink dashed line).

After stimulus onset, classification performance gradually increased to

maximum 25% correct classification. Discriminative information is present only

after stimulus onset.

train windows before and after stimulus onset. Classification
of spike trains of length l (l=5, 10 . . . 50, 100 . . . 900 ms), was
computed in order to test which length is sufficient for high
discrimination values. The starting point was chosen to be
over 70ms after recording onset, since all vocalizations have
clearly begun after this time, see Figure 1. The vocalizations
display amplitude modulations and frequency content changes
over time. Do some segments of the vocalizations yield better
discrimination between all 11 vocalizations than others? To test
this, we compared classification accuracy for consecutive non-
overlapping spike train segments, starting from 70 ms after
recording onset. The segments were chosen to be 100 ms long,
the temporal window which was used subsequently for the
pooling analysis.

The vocalization-specific classification compares how well
a spike train response to a specific vocalization can be
discriminated against responses to all other 10 vocalizations,
of which some are quite similar (e.g., “short scream” and
“long scream”). It allows one to make inferences about how
detailed this vocalization is encoded with respect to other
vocalizations. The approach not only comprises a representation
of the temporal spiking response across differently frequency-
tuned neurons to a given vocalization (corresponding to a
neurogram), but furthermore compares the spike trains of
differently tuned neurons, and compares these representations
across vocalizations.

2.5. Pooling Spiking Responses from
Different Multi-Unit Clusters
To assess whether combining responses from several multi-
unit clusters improves discrimination between stimuli,
simultaneously recorded responses from different multi-
units to the same stimulus were pooled. Note that the use
of multi-unit clusters for the study could limit the ability to
assess the degree to which pooled correlated firing may encode
temporal features in the vocalizations.

Figure 2B illustrates the procedure for pooling responses
from three multi-unit clusters with different best frequencies. In
this example, two vocalization stimuli are displayed, therefore
two responses combined from three multi-unit clusters to
each vocalization (stimulus 1 or 2) are classified. Pooling
methods have been applied before, and are discussed in
more detail in Schneider and Woolley (2010). Schneider and
Woolley added single neuron spike trains in zebra finches
exposed to songs. In our work, spike trains obtained from
simultaneous recordings of different multi-unit clusters were
either added or alternatively concatenated. Concatenation
preserves the frequency information because the order in
which responses from multi-unit clusters are concatenated
is the same for all combined responses that are compared.
Thus, during classification, spike trains from the same multi-
unit clusters with their specific frequency tuning, but in
response to different vocalizations, are compared. Concatenation
preserves the temporal spiking response separately for each
multi-unit cluster. For recordings from one shank with a
double-tetrode array, several multi-unit clusters have similar
frequency tuning. They have similar best frequencies, but might
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have different preferences for amplitude modulations (AM)
depending on their spatial distance within the ICC (Schreiner
and Langner, 1988; Baumann et al., 2011). Therefore, in this case,
concatenation additionally preserves information of amplitude
modulation preferences. Addition of spike trains maintains
temporal information.

However, as responses from differently tuned multi-unit
clusters are added and are not distinguishable anymore, the
spectral information is lost. Multi-unit clusters were combined
in a third manner to preserve only spectral information. For
this purpose, mean firing rates for each multi-unit cluster and
trial were computed from spike trains of 100 ms duration. These
firing rates were then concatenated in the same way as the spike
trains had been concatenated, as mentioned above. By doing
this, spectral information is preserved but temporal information
is lost. These feature vectors were assigned to the class which
yielded the minimum squared difference in firing rate of test and
training trial.

Neural discrimination was computed for a successively
increasing number of pooled multi-unit clusters. The additional
multi-unit cluster to be pooled was either the nearest neighbor, or
alternatively was chosen at random. In the first case, information
from similarly tunedmulti-unit clusters is successively combined,
whereas in the second case, information from units with very
different tuning is combined. Performance values are averaged
over two iterations for gradual pooling and over three iterations
for random pooling.

2.6. Canceling Temporal Correlations when
Pooling Responses
Multi-unit clusters may interact with one another in order to
more efficiently encode complex sounds. This neural interaction
can lead to temporal correlations of their responses. These
temporal correlations of the multi-unit responses are only
present in recordings which were acquired simultaneously.
To test if the temporal correlations have an effect on the
encoding, we compared the neural discrimination when they
were present and when they were absent. Hence, in order to
cancel the temporal correlations, simultaneously recorded trials

of different multi-unit clusters were randomly shuffled (Abeles,
1982) before combining and comparing them. Correlations
of the responses and classification when explicitly including
these correlations were compared for simultaneous and non-
simultaneous responses. Correlations between responses for
combining ncomb multi-unit clusters, CorrRes(τ ), were computed
in the following manner: pairwise, spiking responses from two
multi-units x(t), y(t) of length n, were cross-correlated and the
highest value within a maximum possible delay of τ between the
responses was selected

CorrRes(τ ) = max





∑n−τ
t=1 (x(t + τ )− 〈x〉) · (y(t)− 〈y〉)

√

∑n
t=1(x(t)− 〈x〉)2

∑n
t=1(y(t)− 〈y〉)2





(4)

for τ = [−10 ms, 10 ms] (see Figure 10). This delay is within
the range of maximum response latencies in the ICC (Langner
et al., 1987). The average correlation value between all combined
multi-unit responses, for ntrial trials, was then compared for
simultaneous and non-simultaneous recordings, see Figure 11A.
The average correlation value for each multi-unit cluster with
all other multi-unit clusters within the combined set, ncomb

correlation values, were included in the classification procedure
(Figure 11B). Test trials were assigned to the class for which the
training and test trials had, on average, maximum correlation
of the time courses, Corr, as described in Section 2.4, and
minimum average squared differences of response correlations,
CorrRes. Significance was assessed using the Student’s t-test for
normal distributions, and the Wilcoxon-Mann-Whitney test for
comparison of non-normal distributions.

2.7. Averaging Across Multi-Unit Clusters
One goal of this work was to study neural discrimination
of individual vocalizations with their specific spectrotemporal
properties across multi-unit clusters with different frequency-
tunings. However, average neural discrimination between all
behaviorally relevant vocalizations—a representative set was
used for this work—is of interest, since this is the task
that the auditory system of the guinea pigs solves perfectly,

FIGURE 5 | Classification between 11 vocalizations varies across animals. (A) Average correct classification values of all recordings from one experiment

(animal). Classification performances vary significantly, but are similar for some experiments (Experiment 1 and 2). (B) Average correct classification value of each

experiment for each best frequency. Higher classification values do not correlate with best frequencies but vary for different animals (* denotes significant, ns denotes

non-significant results; mean, Wilcoxon-Mann-Whitney test p=0.05).
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FIGURE 6 | Tradeoff of best neural discrimination with best frequency. Classification between responses to low (“drr,” “low chutter”) and middle to high

(“whistle,” “scream long”) frequency containing vocalizations for multi-unit clusters from one shank (A) from a double-tetrode array recording with several units of

similar frequency tuning, BF = 5.7–9 kHz; and (B) from a recording along the best frequency gradient with a broad range of best frequencies, BF = 0.6–11.3 kHz. The

“drr” and “low chutter” are nearly perfectly encoded for BFs up to 0.7 kHz, whereas the “whistle” and “scream long” are very poorly discriminated in this range. For

BFs above 4.5 kHz, the “whistle” and “scream long” are perfectly discriminated but “drr” and “low chutter” are frequently confused. A clear transition from nearly

perfect discrimination of low to middle-high frequency vocalizations is present between 0.7 and 4.5 kHz.

allowing the guinea pigs to react to these communication calls
(Berryman, 1976). We are aware that we might be averaging out
preferences for specific vocalizations. Recordings were acquired
from 11 guinea pigs in 3–4 electrode insertion positions (taken
altogether 36 positions), with activity recorded simultaneously
from 32 recording sites, the multi-unit clusters. This yielded
72 sets of simultaneously recorded activity from 16 multi-unit
clusters from one shank.

In this work, in order to avoid smearing out differences in
discrimination (see Section 3.3), rather than averaging across
all 1152 multi-unit clusters, the recordings from one shank (16
multi-units clusters) have been classified for one analysis, and the
analysis has been repeated for all 72 shanks. It was verified that
the observed trend is consistent across all shanks. Discrimination
is compared for individual or pooled multi-unit clusters of one
shank of one recording in Figures 6, 8, 11. Findings were verified
to be generally true for all such sets. But averages across these sets
are also given (Figures 7, 9).

We tested classification accuracy across different animals
(Figure 5). When averaging across multi-unit clusters, electrode
positions or animals, the classification error was computed
via error propagation. The range of best frequencies from the
recorded multi-unit clusters varied for each animal. Therefore,
the number of multi-unit clusters, for which averages were
taken for one best frequency (Figures 5B, 7A,B), varied across
animals. Differences in neural discrimination based on different
amplitude modulation preferences would be averaged out when
taking the mean across multi-unit clusters with the same best
frequency.

In the first part of the analysis a sufficient classification
procedure and optimal response length and location within the

recording are selected (Figures 3, 4). For this purpose one shank-
recording set with overall high classification performance and
which covers a wide range of best frequencies was used.

3. RESULTS

We analyzed neural discrimination between a spectrotemporally
rich set of 11 species-specific vocalizations for 1152 multi-unit
clusters across the central inferior colliculus of 11 guinea pigs.
Using neural discrimination we tested variation of encoding
accuracy of individual vocalizations across the best frequency
gradient of the ICC. We then combined spike train responses
from several multi-units to investigate whether groups of
multi-unit clusters result in a better neural discrimination
than one multi-unit cluster, and whether temporal response
correlations between the multi-unit clusters contribute to
an even better separability. In a preliminary analysis we
selected a classification procedure and response length which
yielded the best classification performance for these multi-unit
responses. Additionally, we compared the averaged classification
performances across animals and best frequencies.

3.1. Correlation of EPSP-Spike Trains
Yields Best Classification Performance
To determine which data type (EPSP-spiking response or local
field potential), feature of the response and classifier yield
the maximum correct classification for neural discrimination
between the 11 vocalizations, we compared the performance
for different combinations of data type, feature, and classifier
on responses to 300ms segments of the vocalizations. The
focus of our study was the separability between multi-unit
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FIGURE 7 | Correct classification for individual vocalizations depends on the multi-unit cluster’s best frequency. (A) The correct classification (Class •) of

individual vocalizations for discrimination between all 11 vocalizations (averaged across 1152 multi-unit clusters) is displayed for the “whistle,” “scream long,” “drr,” and

“low chutter.” The black line denotes 100% correct classification for each vocalization. Correct classification is high for the “whistle” and “scream long” for multi-unit

clusters with middle to high BFs (5–15 kHz, 2–20 kHz) and correct classification is high for the “drr” and “low chutter” for multi-unit clusters with low BFs (<4 kHz). The

high correct classification values are distributed across the best frequency range. The relative frequency content for each vocalization is shown (Spectral •). The

match between relative frequency content and correct classification is perfect at some frequencies. (B) Correct classification values as in (A) are displayed for the

remaining vocalizations. A distribution of high correct classification values across best frequencies also exists. The “long chutter” is correctly discriminated by low

BF-units and the “low whistle,” “squeal” and “short scream” are correctly discriminated by responses from multi-unit clusters with middle to high BFs. In some cases,

correct classification is higher than would be expected from the relative spectral content (“purr,” “chutter short,” “tooth chatter”). The error was computed via error

propagation and is the standard error of the mean. (C) Relative frequency content for the 100ms segment of each vocalization which elicited the responses used for

the classification. The main frequency contents of the vocalizations are spread across the entire analyzed BF frequency range.

responses from the central inferior colliculus, the output, thus
the spiking activity and not the synaptic input, which is
captured by the local field potential (Pettersen et al., 2012).
Hence, we used spiking activity for the analyses. Nevertheless,
classification performances for local field potential responses are
also compared. Performances have been tested for sets of multi-
unit cluster. Figure 3 displays an example of the classification
performance for recordings from one shank. The performances
were averaged across 10 multi-unit clusters from one recording
(Figure 3, top), and are also shown for the individual multi-unit
clusters with different best frequencies (Figure 3, bottom). The
best frequencies span a range between 0.5 and 18 kHz. Using
correlation to classify 300ms long EPSP-spike trains yielded
the highest correct classification (85%). But differences to some
of the other combinations were minor. The naive Bayesian
classifier and linear discriminant analysis on the 6-dimensional
feature vector with firing rates across 50 ms also yielded high
correct classification values (75%). However, a specific focus of
this study was to compare the finer temporal structure of the
multi-unit responses (below 10ms) which has been shown to be
crucial for neural discrimination (Schnupp et al., 2006). This is
achieved by the correlation approach which takes into account

a 3 ms-resolved temporal structure. Classification performances
for discrimination between 11 vocalizations varied for multi-
unit clusters with different best frequencies. However, maximum
correct classification values did not systematically correlate with
the best frequency of the multi-unit cluster (Figure 5B).

Using the correlation-based approach for discrimination of
spike trains provides the advantage of comparing the temporal
structure of responses and it achieves the highest degree
of accuracy for classification performance as defined in the
Materials and Methods, Section 2.4. Therefore, the method using
the correlation of spike trains was employed for the subsequent
analyses.

3.2. Separability of Spike Trains does not
Vary with Starting Point
In order to test from which starting point within the 1
s recordings and which length of spike trains should be
employed for the analyses, we compared the correct classification
between all 11 vocalizations for: (1) consecutive spike trains
of 10ms before and after stimulus onset, (2) spike trains
of (5, 10–50, 100–900) ms duration, and for (3) 100 ms long
consecutive spike trains covering the whole recording time of 1 s.
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FIGURE 8 | Pooling responses from several multi-unit clusters. Correct classification of spiking responses to 11 different vocalizations for an increasing number

of pooled multi-unit clusters. Spiking responses are concatenated or added to preserve (A,D) spectral and temporal; (B,E) only temporal; (C,F) only spectral response

information. Pooling of responses significantly increases correct classification. Multi-unit responses were pooled either from a recording across the best frequency

gradient (A–C, with BF=0.5–23 kHz) or from a tetrode-recording yielding similar frequency tuning of the recorded multi-unit clusters (D,E, BF = 6.3–8 kHz), and were

taken, respectively, from simultaneous recordings of one shank. Perfect classification was achieved when using temporal and spectral information across laminae (A)

and nearly perfect classification was achieved when using temporal and spectral information and also when using only temporal information (D,E). Multi-unit clusters

to be successively pooled were selected either gradually in tuning preferences (•) or chosen randomly(• ). Averages over 2–3 iterations are shown. Gradually and

randomly pooled responses yield very similar values of correct classification. The dashed pink line denotes chance level, the top black dashed line is drawn at 100%

correct classification.

FIGURE 9 | Average correct classification across all recordings. Correct

classification for pooling temporal information of spiking responses. Correct

classification is higher for pooling multi-unit clusters from with similar frequency

tuning (tetrode-recording), than along the best frequency gradient

(linear-Double-shank recording). Gradual (•,•) and random (•,•) pooling

yield similar correct classification values, for similarly frequency-tuned unit and

across the frequency gradient. The dashed pink line denotes chance level.

The starting point for analysis (2) was chosen to be at least 40 ms
after the vocalizations had started (Zheng and Escabí, 2008), as
we are not investigating onset responses in this study, and was
also chosen not to fall into a segment of the vocalization which
provided no characteristic information (e.g., segment 0.7–0.9 s
for the “low chutter,” Figure 1). Due to the vocalizations being
diverse, these starting points varied across vocalizations, but were

kept constant, respectively. The starting points were, respectively,
0.54, 0.53, 0.54, 0.11, 0.52, 0.53, 0.06, 0.09, 0.53, 0.53, and
0.21ms in the order of the vocalizations displayed in Figure 1.
The analysis was performed on multi-unit clusters from one
recording covering a BF-range of 0.63–20.1 kHz, and the average
value of all 16 multi-unit clusters was used for display (Figure 4).

(1) Figure 4 displays the percentage correct classification of
10ms-long spike trains. Before stimulus onset, classification
performance is at chance level (1/11 ≈ 9.1%) and increases
gradually after stimulus onset reaching 25± 5% at about 50 ms
after stimulus onset (which is 70 ms recording time).
The increase after stimulus onset is gradual and not sharp
because the actual starting times of the individual vocalizations
differ (e.g., Figures 1A,B). After about 70 ms recording
time, classification does not increase further, hence no
additional discriminative information is present in the
responses; vocalizations have begun at this time (Figures 1A,B).
Performance values are relatively low due to the short spike train
length of only 10 ms.

(2) Classification accuracy gradually increased for
increasing spike train length. Performances were, respectively,
19± 2%, 55± 4%, 83± 4%, and 94± 3%, for lengths of
5, 100, 300, and 900ms. This increase of correct classification
with spike train length was shown for recordings in zebra
finches and grasshoppers (Wohlgemuth and Ronacher, 2007;
Schneider and Woolley, 2010). Machens et al. (2003) found
spike train lengths above 400 ms to yield near to perfect neural
discrimination.

(3) Classification performance for consecutive 100ms long
spike trains across the recording of 1000ms did not vary
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significantly, ranging from 53± 3% to 58± 3%. The exact
starting point of these spike trains within the 1 s recording was
irrelevant. For the rest of the study, the starting points of analysis
(2) were employed consistently.

To analyze classification performance across animals and
positions, 300ms long spike trains were used, since these include
the responses to all ongoing 11 vocalizations (Figure 5). In order
to increase difficulty of neural discrimination and more clearly
see differences in performance, for the analysis of individual
vocalizations in relation to the best frequency of the the multi-
unit cluster, and when pooling responses of several multi-unit
clusters, 100ms spike trains were used (Figures 6– 8, 10, 11).

3.3. Discrimination Varies Across Animals
and Electrode Insertion Locations, and
Increases with Stimulus Intensity
In order to test the validity of averaging classification values
across all recordings, we compared correct classification between
11 vocalizations of 300 ms long spike trains, across average
classification values from each of the 11 animals. We also
compared classification values for different insertion locations
in one animal (average across 32 multi-unit clusters), and
investigated how values vary with the intensity at which the
vocalizations were presented, from 30 to 70 dB SPL in steps of
10 dB SPL.

Correct classification varies significantly across animals
(see Figure 5A), the best discrimination being 85% for animal 1
(Experiment 1). Performances of some animals are very similar
(e.g., Experiment 1 and 2). Classification values vary across
different electrode insertion locations P (e.g., P1 = 81.1 ±

1.5%,P2 = 71.6 ± 1.4%, P3 = 70.0 ± 1.2%,P4 = 67.2 ± 1.2%
at 70 dB SPL). The overall classification performance increases
with stimulus intensity (P30dB = 22.2 ± 1.2%,P40dB = 40.3 ±

1.4%,P50dB = 60.1 ± 17%,P60dB = 73.9 ± 1.8%,P70dB =

81.1± 1.5% for P1), as firing rates increase for higher intensities.
Figure 5A displays the average correct classification for each
animal and each best frequency. Responses from some animals
are overall better discriminated than others (e.g.,# 2), however,
correct classification does not depend on the multi-unit’s best
frequency and varies across animals.

Thus, in order to avoid smearing out differences in
discrimination, in the subsequent analyses, classification values
were not averaged across animals and electrode positions but
taken from the recordings of one shank of one animal. This was
repeated for respectively all 72 shanks, and results for example
recordings of one shank are given. Recordings for stimulus
intensities at 70 dB SPL were employed for our analyses, as they
yield the highest classification performance.

3.4. Discrimination of Individual
Vocalizations Depends on Best Frequency
The total neural discrimination between responses to all
vocalizations does not vary systematically with the multi-unit
cluster’s best frequency (BF), as shown above. However, neural
discrimination of individual vocalizations might differ with best
frequency, depending on their spectral content. To address this

question we compared discrimination of 100 ms-long spike train
responses to four vocalizations for several multi-unit clusters
with different best frequencies.

A relatively short spike train length of 100 ms was chosen
in order to raise the separability threshold and enable the
detection of subtle differences in discrimination. The four
vocalizations were divided into two groups; vocalizations of
the same group have similar spectral content. Figure 6 shows
correct classification between responses to the “drr,” “low
chutter,” “whistle” and “long scream.” These have main spectral
energy below 1.5 kHz (“drr,” “low chutter,”Figures 1C,D), thus
low frequency content, or main frequency contents above
1.5–2 kHz (“whistle,” “long scream,” Figures 1G,I), a broad
spectrum of frequencies.

Responses were recorded with a tetrode-array (Figure 6A)
and a linear double-shank array (Figure 6B), from multi-unit
clusters with various best frequencies. Responses of middle-
BF multi-unit clusters to the two vocalizations which contain
a broad spectrum of frequencies are perfectly discriminated,
whereas the vocalizations with low frequency content are
poorly discriminated (Figure 6A). Using low-BF multi-unit
responses, the vocalizations with low frequency content are
nearly perfectly discriminated (Figure 6B). A clear transition
toward a perfect discrimination of vocalizations containing
middle and high frequencies is visible as the multi-units’ BFs
increase. This clear preference for discriminating certain groups
of vocalizations over others was also observed for different
combinations, e.g., “drr,” “low chutter,” “squeal,” and “low
whistle.” The performances of these four individual vocalizations
for classification between all 11 vocalizations, averaged across all
1152 multi-units are displayed in Figure 7A, for BFs between
0.5 and 25.4 kHz. Classification values from multi-unit clusters
with the same best frequency showed a similar frequency
dependence and were averaged to give only one value per best
frequency. A trend of higher correct classification of vocalizations
containing low frequencies from responses of low-BF multi-unit
clusters, and of vocalizations with broad spectral distributions
from responses of middle-and high-BF multi-unit clusters is
apparent. Figure 7B shows the performances for the remaining
seven vocalizations for classification between all 11 vocalizations,
averaged across all 1152 multi-unit clusters. Also displayed are
relative frequency contents for these four vocalizations which
are plotted separately for all 11 vocalizations in Figure 7C.
These show a similar trend to the classification performances,
and for some frequencies are very similar to the classification
performances (e.g., “scream long”). Deviations exist (e.g., “purr”)
and could be attributed to preferred encoding of fast amplitude
modulations by low BF neurons (Rodriguez et al., 2010), and
hence a better discrimination of vocalizations containing fast
amplitude modulations than would be predicted solely by their
frequency content.

The match between the averaged correct classification and
relative frequency content for 10 vocalizations varied between
74–80%, using Euclidean distance. The “tooth chatter” displayed
only a match of 53%. Trends of preferred encoding for the
individual vocalizations along the BF gradient exist. The “tooth
chatter,” and “chutter short” do not show pronounced preferred
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encoding by certain best frequency multi-unit clusters. The
“purr” displays bimodally distributed preferred encoding. Thus,
with the exception of two vocalizations, optimal discrimination
of individual vocalizations is spatially distributed across the
ICC. Figure 7C illustrates the relative frequency content for the
100 ms segment of each vocalization which elicited the responses
that were used for the classification. Figure 1 displays spectral
contents for the entirety of each vocalization. Whereas the “purr,”
“drr,” and “low chutter” have main spectral contents at low
frequencies, the “whistle,” “long scream,” and “short scream” have
almost no energy at these frequency ranges, but have important
relative power at frequencies above 2 kHz. Main spectral contents
of the 100 ms vocalization segments are distributed across the
whole BF-range.

Accurate encoding of a vocalization in the spiking response
allows good discrimination against other vocalizations. Perfect
discrimination between responses to very similar vocalizations
indicates that these vocalizations are encoded in detail and hence
can be separated based on minor spectrotemporal differences. If,
on the other hand, vocalizations are coarsely encoded, responses
to similar vocalizations are frequently confused. The “tooth
chatter” and “long chutter” display important frequency content
across the whole range of best frequencies (see Figure 1), thus
they are not preferentially encoded by a certain subset of best
frequency multi-unit clusters.

Vocalizations with low frequency contents are preferentially
encoded by low-BF multi-unit clusters and vocalizations with
middle-high frequency contents are preferentially encoded
by middle-high BF multi-unit clusters. Optimal encoding
of individual vocalizations is broadly distributed across the
tonotopy. Main spectral contents of the vocalizations also display
a spread arrangement across the BF-range.

3.5. Pooling Multi-Unit Cluster Responses
To test whether the combined response of several multi-unit
clusters yields better neural discrimination of all 11 vocalizations,
we pooled 100ms-long spike trains from a successively increasing
number of multi-unit clusters by either concatenating or
adding the spike trains. Concatenation preserved the spectral
and temporal information whereas addition only preserved
the temporal information. Additionally, we performed neural
discrimination of the average firing rates of the pooled multi-
unit cluster. Concatenating the units’ firing rates preserved only
spectral information. To test if pooling spectral and temporal
information effects neural discrimination in a similar way, we
compared the three cases: pooling only spectral, only temporal,
or spectral and temporal information.

We pooled multi-unit cluster from a range of differently
frequency-tuned multi-unit clusters from along the BF-gradient
(linear-double-shank recording) and we also pooled multi-
unit cluster with similar frequency tuning (double-tetrode
recording). Do differently tuned multi-unit cluster (in frequency
or amplitude modulation) yield more information than
similarly tuned ones when being combined? To answer this
question, responses were pooled in two different sequences.
The additional multi-unit to be pooled was either the nearest
spatial neighbor or was chosen randomly. Whereas in the first

case, one successively combines information from similarly
tuned units, gradually increasing difference in tuning, the
second case allows us to combine information from units with
very different frequency tuning (or amplitude modulation
preferences).

Combining responses from several multi-unit clusters
significantly increases discrimination. Figure 8 depicts correct
classification for pooling information from successively 1–16
multi-unit clusters along the BF-gradient (example data from
a double-shank recording from one shank, Figures 8A–C)
and responses from multi-unit clusters of similar frequency
tuning (example data from a double-tetrode recording from
one shank,Figures 8D–F). Figure 8A demonstrates that
correct classification continuously increased significantly when
combining temporal and spectral information of up to five
multi-unit clusters. Combining five multi-unit clusters led to
perfect discrimination, and was not degraded by combining
further multi-units. Although the individual courses of correct
classification varied across experiments, classification accuracy
always increased for up to 3–6multi-unit clusters before reaching
saturation. These combined responses contain about 9–30 single
neurons and additional background noise. Pooling yielded
near to perfect (on average 90%) correct classification for all
recordings, and several cases had perfect accuracy. Thus, pooling
short-time responses of 3–6 multi-unit clusters is sufficient to
uniquely represent 11 different vocalizations.

The increase in correct classification when combining an
additional multi-unit cluster was higher when using both,
temporal and spectral information (10.2± 1.5% per unit)
than when using only temporal information (5.2± 1.6% per
unit), Figures 8A,B. For the latter case, correct classification
did not increase significantly when pooling more than five
multi-units, but stayed constant at around a value of 80%.
Correct classification of firing rates was very low for one
multi-unit cluster (20%), increased for pooling up to five
multi-unit cluster (8% per unit), then continued to increase
at a lower rate (2% per unit) up to a performance level
of 80% and stayed constant for pooling more than 10
multi-unit cluster (Figure 8C). Using only temporal spiking
information, although saturating at a low number of pooled
multi-unit cluster, will not recover the entire information
about the encoded signal. Using only spectral information
will also not recover the entire encoded information, and a
much larger number of units needs to be pooled to achieve
comparable correct classification. Thus, for near to perfect
discrimination, spectral and temporal spiking information are
necessary.

The overall increase in correct classification did not
significantly differ when pooling multi-unit cluster, either
gradually or randomly. Note that the nearest neighbor in the
case of linear double-shank recordings is 100 µm away, mostly
in the direction along the best frequency gradient (see Materials
and Methods, Section 2.1). (The higher correct classification
for gradual pooling than for random pooling of 3–4 multi-unit
clusters in Figure 8D is present in this recording set but not
systematically across sets, because the pooled multi-unit cluster
sets from different shanks display different classification courses).
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This suggests that pooled responses from very differently tuned
(in frequency) as well as from more similarly tuned multi-
unit clusters yield a better discrimination performance than the
response from one multi-unit cluster. Not only large differences
in tuning and in responses but also relatively small differences
provide new information to uniquely represent vocalizations in
the ICC.

The above stated results are generally valid when pooling
responses of multi-unit clusters from a tetrode recording
(Figures 8D–F). However, there are the following exceptions: the
courses of classification for using both, temporal and spectral
information, are similar to using only temporal spiking response
information, and both cases reach a maximum performance
of 90%. Still, more units are needed to reach this maximum
value when using only temporal spiking response information.
Pooling spectral information yields a maximum performance
of only 50%. In this case, responses from similarly frequency-
tuned multi-unit clusters do not contain enough information
to perfectly discriminate between all vocalizations. Using only
temporal information is sufficient to nearly perfectly represent
vocalizations. Thus, mostly temporal information is encoded by
multi-unit cluster sets of similar frequency tuning.

The average of all 72 pooling procedures confirms the above
stated result (Figure 9). Temporal information is encoded in
more detail by combined responses frommulti-unit clusters with
similar frequency tuning than from multi-unit clusters across
a broader range of the best frequency gradient and thus leads
to a higher correct classification. Correct classification is almost
identical for gradually and randomly pooled responses.

3.6. Temporal Response Correlations do
not Enhance Neural Discrimination
Simultaneously responding multi-unit clusters can interact in
order to more efficiently encode vocalizations. This interaction
can lead to temporal correlations of their responses. The
correlations between the multi-unit responses could improve

separability in several ways. One possibility might be that
the interaction strength between the multi-unit clusters and,
consequently, their temporal correlations varies for responses to
different vocalizations and thus aids discrimination between the
vocalizations. Another possibility would be that the multi-unit
clusters’ simultaneous responses are more similar to each other
than non-simultaneous ones, hence their temporal correlations
are stronger and by means of redundancy, vocalizations are more
faithfully represented. We tested these possibilities by comparing
the averaged correlation values between all multi-unit responses
of one pooling, to each vocalization, for simultaneously and
non-simultaneously recorded responses.

We combined multi-unit clusters and their averaged
correlation values by concatenation, since this approach
preserves temporal and spectral information and yielded higher
correct classification values than addition of responses, as
stated above. Pooling of non-simultaneously recorded responses
was performed by randomly shuffling the 20 trials of each
multi-unit response before combining the responses. Figure 10
shows the pairwise correlation of spiking responses for all
16 multi-unit clusters of one recording, for one vocalization.
Correlations of simultaneously recorded responses are higher
than or as high as correlations of non-simultaneous responses.
The correlations vary for different pairs of multi-units clusters.
In Figure 11A, the averaged correlations for simultaneously
and non-simultaneously recorded responses between multi-
unit clusters are displayed for each vocalization. For each
vocalization, correlation values of simultaneously recorded
responses are significantly higher than those from non-
simultaneously recorded ones (mean, p = 0.05, Student’s t-test).
Correlations do not vary significantly across vocalizations, for
neither simultaneous nor non-simultaneous responses. The
only exceptions are responses to the “tooth chatter,” which
yield significantly higher correlations than responses to other
vocalizations. Responses to the “tooth chatter” are phase-locked
to the envelope for multi-unit clusters across all studied best

FIGURE 10 | Temporal response correlations of multi-units clusters. Half-matrices of coefficients of correlation (within a maximum possible delay of 10ms)

between responses recorded simultaneously (A) and non-simultaneously (B), in response to the “squeal” presented at 70 dB SPL, from 16 multi-units of one shank

spanning a best frequency range of 0.7–22.6 kHz. For simultaneous responses, correlation values differ across multi-unit pairs. Some multi-unit pairs display higher

correlation for simultaneous responses than for non-simultaneous ones. Other multi-unit pairs show similar values for simultaneous and non-simultaneous responses.

The correlation matrices are symmetric and their diagonal is unity, hence only their lower halves are displayed.
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FIGURE 11 | Temporal response correlations of combined multi-unit

clusters and their effect on neural discrimination. (A) Average

correlations of all (ncomb =5) pooled multi-unit clusters for each vocalization

are compared for simultaneously and non-simultaneously recorded responses,

for a stimulus intensity of 70 dB SPL. Simultaneous and non-simultaneous

response correlations differ significantly for each vocalization (example

displayed for “purr”). Correlation values across vocalizations do not vary

significantly, except for responses to the “tooth chatter” which are significantly

higher than response correlations elicited by all other vocalizations. (B)

Comparison of correct classification between all 11 vocalizations for pooling

1–5 responses recorded simultaneously and non-simultaneously, for explicitly

including response correlations (Sim+Corr, NonSim+Corr) and when not

including them (Sim, NonSim), at 70 dB SPL. Pooling increases neural

discrimination as shown previously. Simultaneity of recordings does not

produce a detectable difference in correct classification (* denotes significant

results, ns non-significant; mean, p =0.05, Student’s t-test).

frequencies. This leads to higher correlation values of those
responses. However, these significantly higher correlation values
do not yield significantly higher classification values for the
“tooth chatter,” but are comparable to other vocalizations such as
the “long scream.” Thus, should temporal correlations facilitate
a more unique neural representation of vocalizations, then this
might be achieved via redundancy.

If temporal correlations promote a unique representation of
the vocalizations and hence a better neural discrimination, then
their cancelation will lead to a decrease in neural discrimination.
We tested the hypothesis that temporal correlations improve
separability of responses by comparing neural discrimination
when pooling simultaneously or non-simultaneously recorded
100 ms long spike trains. We explicitly included response
correlation values between the multi-unit clusters of one
pooled set in the feature vector. However, we also compared
classification values of pooled responses for which response
correlations were not explicitly included.

In Figure 11B, correct classification between all 11
vocalizations is compared for pooled simultaneously and

non-simultaneously recorded responses. Correct classification
does not vary significantly for pooling simultaneous or non-
simultaneous responses neither for the case of including the
multi-unit clusters’ temporal response correlations nor for the
case of not including them. Correct classification increased when
pooling additional multi-unit clusters, as described above, and
did not increase further when pooling more than five multi-unit
clusters. To increase the complexity of neural discrimination,
i.e., to raise the threshold, we compared correct classification
for pooled simultaneous and non-simultaneous responses for
stimulus intensity levels of 30–70 dB SPL, in steps of 10 dB
SPL. Overall, correct classification values were lower, however,
classification did not differ significantly between simultaneous
and non-simultaneous pooled responses. Response correlations
were computed, allowing for a delay between the responses
from different multi-unit clusters. If no delay is assumed, the
computed non-simultaneous response correlations are much
lower than simultaneous ones, and classification performance
is significantly higher for non-simultaneous recordings than
for simultaneous ones. Thus, in this case, temporal correlations
are found to be detrimental for neural discrimination (mean,
p= 0.05, Student’s t-test).

We conclude that temporal response correlations from
different multi-unit clusters do not promote a unique
representation of the vocalizations. Hence, combining responses
from several multi-unit clusters improves classification, but this
is not because temporal correlations between simultaneously
responding units contribute to the improvement.

4. DISCUSSION

We found that vocalizations in the mammalian inferior colliculus
are encoded spatially across the best frequency gradient of the
inferior colliculus. A small number of independent multi-unit
clusters are often sufficient to reliably encode the representative
set of behaviorally relevant vocalizations.

In the mammalian ICC, discrimination of vocalizations has
previously been studied based on spike-rate (Portfors et al.,
2009). Spike-timing information is crucial, though, for neural
discrimination of vocalizations and intelligibility of speech
(Shannon et al., 1995; Schnupp et al., 2006). Here, we used spike
trains, preserving their timing information, to perform neural
discrimination across 11 vocalizations, and investigate encoding
of individual vocalizations for differently frequency-tuned multi-
unit clusters. Our findings are based on a large set of multi-
unit clusters (N = 1152), of which the best frequencies span a
range between 0.5 and 45 kHz. The studied vocalizations are a
representative set of behaviorally relevant stimuli (Berryman,
1976) and it has been suggested that neurons are adapted to
encode them (Rieke et al., 1995). Thus, these natural stimuli
are well suited for studying the neural encoding of sounds
in the midbrain. The encoding of vocalizations by combined
simultaneous responses and the impact of temporal correlations
between those responses has not been investigated previously in
the mammalian ICC. Since anesthesia has non-negligible effects
on the neural activity (Astl et al., 1996), neural discrimination,
especially for units that did not yield perfect classification for
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pooling, is likely to improve in awake animals. Still, the neural
discrimination values obtained in our study were very high, in
several cases even perfect.

4.1. Optimal Encoding of Individual
Vocalizations
Encoding averaged across several vocalizations does not vary
systematically with best frequency (Schneider and Woolley,
2010). However, we showed that optimal encoding of individual
vocalizations depends on the best frequency of the neurons.
Deviations from a linear spectral mapping exist, and are
interesting for future studies. One central observation is that,
in general, frequency ranges with high discriminative power are
rather broad. Thus, in spite of the finding that main spectral
contents of the studied vocalization segments display a wide
distribution across frequencies (Figure 7C), discriminability
remains very good and this should be beneficial in a behavioral
context.

Preferred encoding along the BF-gradient follows, in
most cases, a similar trend to the relative spectral content
of the vocalization, such that vocalizations which contain
mainly middle and high frequencies are in many cases
preferentially encoded by neurons with higher best frequencies
(Figures 6, 7A). The vocalization “tooth chatter” contains
important spectral energy across the entire range of best
frequencies studied and is encoded uniformly well across
best frequencies. For some vocalizations and frequencies, the
match of preferred encoding and spectral content is perfect
(“scream long,” Figure 7A). However, deviations exist for several
frequencies and vocalizations.

Discrimination performances were averaged for all multi-
unit clusters within a best frequency (1/3 octave) interval. Thus,
preferences of individual multi-unit clusters might be averaged
out. The found deviations could be due to different amplitude
and frequency modulation preferences (Schreiner and Langner,
1988), or due to low BF neurons having higher temporal but
poorer spectral resolution (vice versa for high BF neurons)
(Rodriguez et al., 2010). Nonlinear processing mechanisms in
the ICC (McAlpine, 2004; Escabí et al., 2005; Calabrese et al.,
2011) are likely to contribute to the deviations from a linear
spectral mapping. Deviations could also be explained by spatial
heterogeneity of receptive fields in the ICC (Portfors et al., 2011)
or by further nonlinear processing properties, such as a selectivity
for specific vocalizations proposed by Portfors et al. (2009). The
selectivity might be shaped by inhibition (Klug et al., 2002; Xie
et al., 2005).

In future studies, the deviations which point to nonlinear
processing need to be analyzed in more detail. In our analysis,
the multi-unit responses were successfully used to discriminate
between vocalizations. To further address our questions, it would
be interesting to investigate single neuron behavior within the
multi-unit clusters. Single-neuron resolution within the multi-
unit cluster would allow one to answer the question whether a
multi-unit cluster responds differently to different vocalizations
because it either recruits different groups of neurons for each
vocalization, or because the spike times of the multi-unit, and
thus of the single neurons, are different for each vocalization.

Single neuron recordings for which the best frequency (not a
compound BF, as is the case for multi-unit clusters) and best
amplitude modulation frequency are known, would allow one to
compare optimal encoding to the spectral and temporal content
of the vocalizations. Finally, single neuron responses would allow
one to test for a possible call-selectivity to individual vocalizations
(Portfors et al., 2009).

Future studies could also address neural discrimination for
different exemplars of the same vocalization. Then one could
test the hypothesis that neurons with a best frequency matching
the vocalization’s main spectral content are acoustically more
discriminative than other neurons. An alternative hypothesis
would be that the spectral changes between the different trials are
important enough and that each trial is optimally discriminated
according to its individual main spectral content. This might
give insights into how the variability of the vocalization’s variants
manifests in the neural representation, thus how small differences
are represented.

We found that trends of preferred encoding for individual
vocalizations and spectral content are similar in several cases.
Portfors et al. (2011) have shown spatial heterogeneity of
receptive fields in the mouse inferior colliculus. However, this
does not preclude that vocalizations are encoded spatially
along the BF-gradient. Spatial preference for encoding certain
vocalizations, though linked to their spectrotemporal properties
in the ICC, is reminiscent of vocalization encoding in spatially
segregated columns in the auditory cortex of guinea pigs
(Grimsley et al., 2012). Our results are consistent with earlier
work showing that neurons in the ICC encode spectrotemporal
acoustic patterns of vocalizations (Suta et al., 2003). Neural
tuning to spectrotemporal modulations is optimized to efficiently
encode vocalizations (Woolley et al., 2005). Furthermore, our
work supports an efficient encoding strategy, suggesting that
higher level neural representations match the statistical and
behavioral qualities of the stimuli.

4.2. A Small Number of Units Encode
Vocalizations
We found that, in general, responses from one multi-unit
cluster do not contain enough information to faithfully encode
vocalizations. Combining responses of up to 3–6 multi-unit
clusters significantly increases discrimination between the 11
vocalizations used, and this is supported by previous findings
(Engineer et al., 2008). These neural groups comprise about 9–30
single neurons and additional background noise. Improvement
of discrimination between songs has also been demonstrated
when combining single neuron responses of the IC-analog in
zebra-finches (Schneider and Woolley, 2010). Improvement was
highest when combining single neurons with similar frequency
tuning and this has been suggested to be due to reduction of
trial-to-trial variability. However, we found that it did not alter
discrimination significantly whenmulti-unit clusters with similar
frequency tuning (or possibly amplitude modulation tuning) or
with very different tuning were combined. Improvement of
neural discrimination due to reduction of trial-to-trial variability
might be less predominant for multi-unit clusters than for
single neurons. This could be due to an already reduced
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response variability of some multi-unit clusters, since their
responses are averages of adjacent single neurons and adjacent
neurons have, in general, a higher probability of displaying
similar spectrotemporal preferences than if they were dispersed
(Chen et al., 2012b). Different tuning will add independent
information to the discrimination, but adjacent units will often
have similar tuning, and it seems puzzling that the small
existing differences in the units’ responses are important enough
to contribute new information to the discrimination. This
result, however, is supported by the work of Holmstrom and
colleagues who found that neural responses in the mammalian
ICC are heterogeneous, and that this heterogeneity appears
to be enough for an efficient encoding of vocalizations
(Holmstrom et al., 2010).

Combining only temporal information of the spiking
responses yields higher discrimination for multi-unit clusters
with similar frequency tuning than along the best frequency
gradient. This indicates that mainly temporal information is
encoded within sets of similarly frequency-tuned neurons, as
suggested by earlier work (Schreiner and Langner, 1988).

Combined spectral and temporal information of responses
from 3 to 6 multi-unit clusters along the best frequency gradient
allowed, on average, for near perfect discrimination in all 72
studied recordings, and was even perfect for some of them.
Thus, a few multi-unit clusters are able to reliably discriminate
a representative set of behaviorally relevant vocalizations.
While future studies need to be done, our findings might
suggest an estimate for the order of magnitude at the level
of multi-unit clusters when electrically stimulating neuronal
tissue, as groups of neurons, and not single neurons, are
stimulated. A future study could also investigate whether
combining further multi-unit clusters might allow one to
discriminate between finer differences in the vocalizations,
e.g., discriminate between the same vocalization from different
guinea pigs.

4.3. Temporal Response Correlations in the
ICC do not Facilitate Encoding
Correlations of simultaneously recorded neurons have been
found to be beneficial to encoding (Da Silveira and Berry II,
2013), but were also found to be destructive to encoding (Gawne
and Richmond, 1993). We showed that in the mammalian
ICC, temporal correlations of simultaneously responding multi-
unit clusters do not contribute to better neural discrimination
between vocalizations. Response correlations are stronger for
simultaneous than for non-simultaneous responses and show
large variability across multi-unit clusters. These findings are
independent of the stimulus frequency, and hence, the response
strength. That temporal correlations do not facilitate encoding is
further supported by our finding that discrimination improved
regardless of whether neighboring or distant neurons were
combined, with neighboring neurons having a higher probability
of interacting and displaying temporal correlations.

Hence temporal correlations, which might be due to
interactions between the multi-unit clusters, are not beneficial
to encoding. The contribution from each multi-unit cluster
is diverse enough to add new information. At the level of
multi-unit clusters, the output of the ICC seems to be shaped
more by the input and the arrangement of receptive fields
than by interactions between neural groups. Single neuron
recordings might allow us to quantify the amount of correlations
due to neuronal interactions, and possibly to infer structural
connectivities between neurons –although clear restrictions exist
(Melssen and Epping, 1987). It would be interesting in future
analyses to investigate whether temporal correlations of single
neurons within the multi-unit clusters are beneficial to encoding.

Multi-unit clusters in the ICC act as independent encoders
in the sense that correlations with other neurons do not
facilitate encoding, as demonstrated for single retinal ganglion
cells (Nirenberg et al., 2001), and redundancy is minimized as
suggested for central systems (Barlow, 1972).

In summary, our data show that the encoding of individual
vocalizations remains good over broad frequency regions, which
should be beneficial in a behavioral context. Our finding that
response redundancy is minimal for small groups of encoding
neurons supports an efficient encoding strategy for natural
behaviorally relevant vocalizations in the mammalian inferior
colliculus.
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