THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Computer Aided Translation: Advances and Challenges

Citation for published version:
Koehn, P 2015, 'Computer Aided Translation: Advances and Challenges' MT Summit XV, Miami, FL, United States, 30/10/15-3/11/15, .

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Publisher's PDF, also known as Version of record

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Computer Aided Translation Advances and Challenges

Philipp Koehn
30 October 2015

Overview

- A practical introduction: the CASMACAT workbench
- Postediting
- Types of assistance
- Logging, eye tracking and user studies
- Implementation details of the CASMACAT workbench

part I

CASMACAT workbench

CASMACAT workbench

CASMACAT Project 2011-2014

- Cognitive studies of translators leading to insights into interface design
\rightarrow better understanding of translator needs
- Workbench with novel types of assistance to human translators
- interactive translation prediction
- interactive editing and reviewing
- adaptive translation models
\rightarrow better tools for translators
- Demonstration of effectiveness in field tests with professional translators
\rightarrow increased translator productivity

Architecture

Core Modes

Postediting Modes

GUI Features

Postediting Interface

Le Pakistan a donc été récompensé par l'assistance et les armes des États-Unis.

Pour mieux redistribuer ses cartes, Moucharraf a envoyé l'armée pakistanaise dans les zones ethniques qui longent I'Afghanistan, pour la première fois depuis l'indépendance du Pakistan.

As a result, Pakistan was rewarded with American financial assistance and arms.
visualization >>
In furtherance of his re-alignment, Musharraf sent the Pakistani army into the tribal areas bordering Afghanistan for the first time since Pakistan's independence.

Les opérations contre les forces des Talibans et d'Al-Qaeda ont obtenu des résultats mitigés.

- Source on left, translation on right
- Context above and below

Incremental Updating

Incremental Updating

Incremental Updating

Word Alignment

Le Pakistan a donc été récompensé par l'assistance et les armes des
États-Unis.

As a result, Pakistan was rewarded with American financial assistance and arms.
visualization >> displayMouseAlign \checkmark displayCaretAlign \square displayShadeOffTranslatedSource \square displayConfidences \square highlightValidated \square highlightPrefix highlightLastValidated limitSuffixLength

Pour mieux redistribuer ses cartes, Moucharraf a envoyé
I'armée pakistanaise dans les zones ethniques qui longent I'Afghanistan, pour la première fois depuis l'indépendance du Pakistan.

Les opérations contre les forces des Talibans et d'Al-Qaeda ont obtenu
des résultats mitigés.

- Caret alignment (green)
- Mouse alignment (yellow)

Confidence Measures

- Sentence-level confidence measures
\rightarrow estimate usefulness of machine translation output
- Word-level confidence measures
\rightarrow point posteditor to words that need to be changed

Interactive Translation Prediction

Bilingual Concordancer

Translation Option Array

 after Mount Ontake（御嶽山，Ontake－san），a popular climbing spot in central Japan，erupted for the first time in five years．

Translation Options \qquad

－Visual aid：non－intrusive provision of cues to the translator
－Clickable：click on target phrase \rightarrow added to edit area
－Automatic orientation
－most relevant is next word to be translated
－automatic centering on next word

Paraphrasing

How do we Know it Works?

- Intrinsic Measures
- word level confidence: user does not change words generated with certainty
- interactive prediction: user accepts suggestions
- User Studies
- professional translators faster with post-editing
- ... but like interactive translation prediction better
- Cognitive studies with eye tracking
- where is the translator looking at?
- what causes the translator to be slow?

Logging and Eye Tracking

Home Edition

- Running casmacat on your desktop or laptop
- Installation
- Installation software to run virtual machines (e.g., Virtualbox)
- installation of Linux distribution (e.g., Ubuntu)
- installation script sets up all the required software and dependencies

Home Edition

You can access this page also from a web browser on your host com the address: http://192.168.56.102/

Installation install

 Administration tool MT softwarecomplete step 1 of 6 : downloading moses complete

Administration through Web Browser

Administration

Translate

- Translate new document
- List documents

Engines

- Manage engines
- Upload engine
- Build new prototype

Settings

- Reset CAT and MT server
- CAT Settings
- Update Software

Training MT Engines

Build New Prototype

Input language Greek 完

Output language English
Add corpus

- Train MT engine on own or public data

Add corpus	Choose File No file chosen	
	Name	Segment
	European Central Bank	102,98
	European Medicines Agency	372,82
	EU Bookshop	3,618,897
	European Constitution	6,66
	European Parliament	1,260,68
	KDE4	126,14
	KDE4 (el-en_GB)	125,53
	Open Subtitles	220,44
	Open Subtitles 2011	10,693,45
	Open Subtitles 2012	12,984,77
	Open Subtitles 2013	14,626,89
	South-East European Times	165,53
	South-East European Times v2	224,80
	SPC	7,03
	Tatoeba	2,46
	DGT-Translation Memory	3,016,40
Corpora	Use ID Name	Segmen
		126141
Re-Use	Previous setting none *	
Tuning set	KDE4 $\dagger \bigcirc$ all \odot select	1000
Evaluation set	KDE4 $\hat{}$ - all \odot select	1000 *
Name		
	build	

Managing MT Engines

CAT Settings

- With own MT engine, all casmacat modes are available

```
CAT Settings
Interactive Translation Prediction \boxtimes
Search and Replace \
Bilingual Concordancer
Hide Contributions\(\checkmark\)
Floating Predictions \checkmark
Translation Options
Allow Change of Visualization Options \
Restrict ITP to Draft Stage
update
```


part II

cat methods

post-editing

Productivity Improvements

(source: Autodesk)

MT Quality and Productivity

- What is the relationship between MT Quality and Postediting Speed
- One study (English-German, news translation, non-professionals)

System	Speed		Metric	
	sec./wrd.	wrds./hr.	BLEU	MANUAL
ONLINE-B	5.46	659	20.7	0.637
UEDIN-SYNTAX	5.38	669	19.4	0.614
UEDIN-PHRASE	5.45	661	20.1	0.571
UU	6.35	567	16.1	0.361

Translator Variability

- Translator differ in
- ability to translate
- motivation to fix minor translation
- High variance in translation time (again: non-professionals)

Post-editor	Speed	
	sec./wrd.	wrds./hr.
1	3.03	1,188
2	4.78	753
3	9.79	368
4	5.05	713

MT Quality and Postediting Effort

- Postediting effort $=$ number of words changed
- Evaluation metric at IWSLT 2014
- TER = automatic metric, comparison against a reference translation
- HTER = postediting metric, actual words changed

English-German

Ranking	HTER	TER
EU-BRIDGE	19.2	54.6
UEDIN	19.9	56.3
KIT	20.9	54.9
NTT-NAIST	21.3	54.7
KLE	28.8	59.7

English-French

Ranking	HTER	TER
EU-BRIDGE	16.5	42.6
RWTH	16.6	41.8
KIT	17.6	42.3
UEDIN	17.2	43.3
MITLL-AFRL	18.7	43.5
FBK	22.3	44.3
MIRACL	32.9	52.2

Translator Variability

- Professional translators

English-German

Posteditor	HTER	TER
PE 1	32.2	56.1
PE 2	19.7	56.3
PE 3	40.9	56.2
PE 4	27.6	55.9
PE 5	25.0	55.6

English-French

Posteditor	HTER	TER
PE 1	35.0	42.6
PE 2	17.5	42.8
PE 3	23.7	43.0
PE 4	39.7	42.3
PE 5	19.7	42.9

- Also very high variability

Postediting and MT Metrics

- Goal of MT quality metrics not clear
- understandability: do you get the meaning?
- post-editing effort: how much effort to change?
- Example: dropping of the word "not"
- understandability: big mistake
- post-editing effort: quick add of just one word
- Not clear, what tradition manual metrics prefer (adequacy, fluency)
- Not clear, what bleu score etc. prefer

word alignment

Word Alignment

Le Pakistan a donc été récompensé par l'assistance et les armes des
États-Unis.

As a result, Pakistan was rewarded with American financial assistance and arms.
visualization >> displayMouseAlign \checkmark displayCaretAlign \square displayShadeOffTranslatedSource \square displayConfidences \square highlightValidated \square highlightPrefix highlightLastValidated limitSuffixLength

Pour mieux redistribuer ses cartes, Moucharraf a envoyé
I'armée pakistanaise dans les zones ethniques qui longent I'Afghanistan, pour la première fois depuis l'indépendance du Pakistan.

ITP

T
DRAFT
TRANSLATED

Les opérations contre les forces des Talibans et d'Al-Qaeda ont obtenu
des résultats mitigés.

- Caret alignment (green)
- Mouse alignment (yellow)

Word Alignment from MT

- Machine translation output is constructed by phrase mappings
- Each phrase mapping has internal word alignment
\Rightarrow This can be used to visualize word alignments
- But: word alignment points become invalid after user edits

Word Alignment from Alignment Tools

- During machine translation training, standard component is word alignment
- Standard tools
- old workhorse: GIZA++
- currently popular tool: fast-align
- These tools have been adapted to align new sentence pairs

Mouse Over Alignment

Pour mieux redistribuer ses cartes, Moucharraf a envoyé l'armée pakistanaise dans les zones ethniques qui longent I'Afghanistan, pour la première fois depuis l'indépendance du Pakistan.

In furtherance of his re-alignment, Musharraf sent the
Pakistani army into the tribal areas bordering Afghanistan for the first time since Pakistan's independence.

- Highlight the source word aligned to the word at the current mouse position

Caret Alignment

Pour mieux redistribuer ses cartes, Moucharraf a envoyé I'armée pakistanaise dans les zones ethniques qui longent l'Afghanistan, pour la première fois depuis l'indépendance du Pakistan.

In furtherance of his re-alignment, Musharraf sent the Pakistani army into the tribal areas bordering Afghanistan for the first time since Pakistan's independence.

- Highlight the source word aligned to the word at the current caret position

Shade Off Translated

L'intervention israélienne dans la bande de Gaza et les bombardements américains en Irak pour lutter contre les djihadistes de l'État islamique en Irak et au Levant ont également ajouté de la nervosité sur les marchés.

- Use in interactive prediction mode
- Shade off words that are already translated
- Highlight words aligned to first predicted translation word

confidence measures

Levels

- Machine translation engine indicates where it is likely wrong
- Different Levels of granularity
- document-level (SDL's "TrustScore")
- sentence-level
- word-levell
- What are we predicting?
- how useful is the translation - on a scale of (say) 1-5
- indication if post-editing is worthwhile
- estimation of post-editing effort
- pin-pointing errors

Sentence-Level Confidence

- Translators are used to "Fuzzy Match Score"
- used in translation memory systems
- roughly: ratio of words that are the same between input and TM source
- if less than 70%, then not useful for post-editing
- We would like to have a similar score for machine translationl
- Even better
- estimation of post-editing time
- estimation of from-scratch translation time
\rightarrow can also be used for pricing
- Very active research area

Quality Estimation Shared Task

- Shared task organized at WMT since 2012
- Given
- source sentence
- machine translation
- Predict
- human judgement of usefulness for post-editing $(2012,2014)$
- HTER score on post-edited sentences (2013, 2014, 2015)
- post-editing time $(2013,2014)$
- Also task for word-level quality estimation $(2014,2015)$ and document-level quality estimation (2015)

QuEst

- Open source tool for quality estimation
- Source sentence features
- number of tokens
- language model (LM) probability
- 1-3-grams observed in training corpus
- average number of translations per word
- Similar target sentence features
- Alignment features
- difference in number of tokens and characters
- ratio of numbers, punctuation, nouns, verbs, named entities
- syntactic similarity (POS tags, constituents, dependency relationships)
- Scores and properties of the machine translation derivation
- Uses Python's scikit-LEARN implementation of SVM regression

word level confidence

Visualization

- Highlight words less likely to be correct

Methods

- Simple methods quite effective
- IBM Model 1 scores
- posterior probability of the MT model
- Machine learning approach
- similar features as for sentence-level quality estimation

Annotation

- Machine translation output

> Quick brown fox jumps on the dog lazy.

- Post-editing

The quick brown fox jumps over the lazy dog.

- Annotation
Fast brown fox jumps on the dog lazy
bad good good good bad good good good good
- Problems: dropped words? reordering?

Quality Requirements

- Evaluated in user study
- Feedback
- could be useful feature
- but accuracy not high enough
- To be truly useful, accuracy has to be very high
- Current methods cannot deliver this

automatic reviewing

Automatic Reviewing

- Can we identify errors in human translations?
- missing / added information
- inconsistent use of terminologyl

Input Sentence
Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Human Translation

Moreover, he planned for months to give a lecture in Miami.

Reviewing with E-Pen

- Intuition
- reviewing more efficient with pen and paper
- e-pen enables this work process in digital environment
- Work carried out
- fronted modified for larger drawing area
- backend support for hand-written text recognition (HTR)
- development of methods for HTR
- Field trial carried out \rightarrow corpus of reviewing edits

Analysis of Reviewer Edits

- 171 insertions - vast majority function words
- 152 deletions - about half substantial content
- 621 replacements - of which:
- 75 changes to punctuation only
- 28 change to lowercase / uppercase
- 29 cases that are mostly deletions
- 8 cases that are mostly insertions
- 289 morphological/spelling changes (Levenshtein distance of less than 50%)
- 190 other changes, about equal amounts function words and content words

Automatic Reviewing

- Focus on translation errors
- not: basic spell checking
- not: basic grammar checking
- Do not try the impossible
- semantic errors
- errors in function words
- What is left?
- added content (insertions)
- non-translated content (deletions)
- inconsistency in terminology

Method

- Word alignment of human translation and source
- Detect unaligned words
- insertion of content words: unaligned sequence of words in the draft translation
- deletion of content words: unaligned sequence of words in the source sentence
- inconsistent terminology: source word occurs multiple times, aligned to different word
- Only content words (minimum 4 characters)

Evaluation on Field Trial Data

- Two evaluation metrics
- strict: predicted word X deleted / inserted
- generous: predicted any deletion / insertion

	Strict Scoring		Generous Scoring		
Edit type	Precision	Recall	Precision	Recall	Baseline Precision
Deletion	7%	27%	11%	48%	7%
Insertion	-	-	5%	35%	4%
Any edit	-	-	20%	60%	14%

- Good enough to be useful?

Subjective Evaluation

- Evaluation on community translation platform data
- English-German
- Predict insertions and deletions
- Manually check if these are valid suggestions (i.e., precision only) by native German speaker

Results

- 4 cases of detection of valid errors (3 deletions, 1 inset ion)
- 31 false alarms

Count	Type
16 cases	unaligned verb
6 cases	one-to-many alignment
2 cases	non-literal
6 cases	misalignment, often due to unknown word
1 case	valid verb ellipsis, repeated in sub clause

- Good enough to be useful?

interactive translation prediction

Interactive Translation Prediction

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

Interactive Translation Prediction

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

```
He
```


Interactive Translation Prediction

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

He | has

Interactive Translation Prediction

Input Sentence
Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator
He has | for months

Interactive Translation Prediction

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

He planned |

Interactive Translation Prediction

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

He planned | for months

Visualization

- Show n next words

- Show rest of sentence

Spence Green's Lilt System

- Show alternate translation predictions

- Show alternate translations predictions with probabilities

Prediction from Search Graph

Search for best translation creates a graph of possible translations

Prediction from Search Graph

One path in the graph is the best (according to the model)
This path is suggested to the user

Prediction from Search Graph

The user may enter a different translation for the first words
We have to find it in the graph

Prediction from Search Graph

We can predict the optimal completion (according to the model)

Speed of Algorithm

- Average response time based on length of the prefix and number of edits
- Main bottleneck is the string edit distance between prefix and path.

Refinements

- Matching Last Word
- more important to match last word in path
- refinement of best path: search for last word
- Case-insensitive matching
- Approximate word matching
- lower substitution cost for words that differ by a few letters
- implemented at letter edit distance $\leq 10 \%$
- Stemmed matching
- allow for difference in word endings (last 3 letters)
- assumed to be morphological variation

Word Completion

- Complete word once few letters are typed
- Example: predict college over university?
- User types the letter $u \rightarrow$ change prediction
- "Desperate" word completion: find any word that matches

Some Results

- News translation produced by post-editing MT output
- Same MT system used for simulated interactive translation prediction

$\#$	Method	Word Acc.	Letter Acc.
1	Baseline	56.0%	75.2%
2	1 + Matching last word	59.0%	80.6%
3	2 + Case insensitive matching	58.7%	80.4%
4	2 + Approximate word matching	60.5%	80.6%
5	2 + Stemmed matching	59.4%	80.5%
6	4 + "Desperate" word completion	60.5%	84.5%

- Details see Koehn [ACL, 2014]

Open Challenges

- Better metric than string edit distance to account for moves
- Retranslation or search graph matching?
- Interactive translation prediction for syntax-based models
- syntax-based models work better for German, Chinese
- search lattice \rightarrow search forest
- some preliminary work...
- Are neural machine translation models better at this?
\Rightarrow Lots of interesting work in this area to be done

bilingual concordancer

Bilingual Concordancer

How does it Work?

- Have word-aligned parallel corpus
- Efficient data structure to quickly look up queried phrases (suffix arrays, we'll come back to them later)
- Translation spotting
- look up queried phrase
- use word alignment to identify target phrase
- some edge cases (unaligned words at beginning/end)

machine translation 1) noun
 maschinelle Übersetzung f (i)

Maschinenübersetzung $f(\mathbb{I}$

translation machine noun

Übersetzungsmaschine ${ }_{f}$

See also:
 [...]
© Linguee Dictionary, 2015

Abstract

- Wikipedia

External sources (not reviewed)

The implementing provisions applicable to the machine translation system would have to be established by the Select Committee [...]

Die Durchführungsbestimmungen für das System der maschinellen Übersetzung müssten vom engeren Ausschuss des EPO-Verwaltungsrats [...]

By user licence agreements relating to the SYSTRAN machine translation software program concluded between the applicants' [...]
\leftrightarrows eur-lex.europa.eu
[...] curriculum vitae, in forms suitable for multilingual machine translation, without restricting a user's option of adding other [...] $\quad \leftrightarrows$ europarl.europa.eu

Durch Lizenzverträge über die Benutzung der Software für maschinelle
Übersetzungen SYSTRAN zwischen den Rechtsvorgängern der
Klägerinnen [...]
\leftrightarrows eur-lex.europa.eu
[...] standardisierten Lebenslauf zu prüfen, die für eine automatische Übersetzung in mehrere Sprachen geeignet sind, wobei der Nutzer [...]

Verification of Terminology

- Translation of German Windkraft

	Windkraft (noun, feminine) (also: Windenergie)	(wind power (noun)	,
	Zum Vergleich: Windkraft schafft fast sieben Mal mehr. German: www.goethe.de/wis/umw/thm/ntr/de92305.htm	By way of comparison, wind power generates almost seven times as much. English: www.goethe.de/wis/umw/thm/ntr/en92305.htm	
	Einführung von Windcube, einer neuen Generation von Wind Lidar für Windkraft. $G \rightarrow$ German: www.husumwindenergy.com/index.php?L...howUid]=1177	Introducing Windcube, a new generation of wind Lidar for wind power. \leftrightarrow English: www.husumwindenergy.com/index.php?L...howUid]=1177	
	Windkraft ist eine etablierte, wettbewerbsfähige Technologie mit hoher Zuverlässigkeit $G \rightarrow$ German: www.powergeneration.siemens.de/abou...nsservices/	Wind power is an established, competitive technology with high reliability \leftrightarrows English: www.powergeneration.siemens.com/abo...nsservices/	
	Windkraft (noun, feminine) (also: Windenergie)	- wind energy (noun)	\checkmark
	Je mehr aber klimapolitische Sonntagsreden von der Politik auch in Taten umgesetzt werden, desto höher steigt dieser Preis und desto wettbewerbsfähiger werden saubere Energien wie die Windkraft. $G \rightarrow$ German: emagazine.credit-suisse.com/app /art... 4382 (=DE	But as the focus of the climate change issue shifts increasingly from policy to action, this price will increase and cleaner energy sources like wind will become more competitive. \leftrightarrows English: emagazine.credit-suisse.com/app /art... 4382 (=en	
	Nur wenige befürchten hingegen, dass dies auch bei erneuerbaren Energieträgern wie Biomasse oder Windkraft der Fall sein wird. \leftrightarrows German: www.eu2006.gv.at/de /News/Press_Rele...1 proell.html	However, only a few fear that this will also be the case with renewable energy sources such as biomass or wind energy. $\leftrightarrows \rightarrow$ English: www.eu2006.gv.at/en /News/Press_Rele...1proell.html	

- Context shows when each translation is used
- Indication of source supports trust in translations

TRANSSEAR H3

\rightarrow

UTILISATEUR : Iapalme

REQUÊTES
MON COMPTE | PRÉFÉRENCE
AIDE
QUITTER
Signet / Favori personnalisé :

(qu'est-ce que c'est?)

Requête bilingue
Collection de documents : Les Hansards canadiens \uparrow

Expression : take+ .. ride

Chercher

92 traductions de take+ .. ride dans 106 occurrences

dindons de la farce	4
monté un bateau	3
faire avoir	3
se fasse rouler	2
fait berner	2
se fait jouer	2
moqués de	2
fait	2
les a	2
se sont fait avoir	1
le public pour attirer la	1
a fait une ballade	1
nous rouler dans ce projet nous tous	1
en train de monter un bateau à la population canadienne	1
tête des contribuables que se paie le	1
passer une petite vite	1
bourrer de l'autre côté de la chambre en	1
ont pris la voiture que pour faire une balade	

TransSearch: Improved Transpotting

- Used to solve difficult translation problems
- 7.2 million queries submitted to the system over a 6-year period
- 87% contain at least two words
- mainly search for idiomatic expressions such as in keeping with
- Improved translation spotting [Bourdaillet et al., MT Journal 2011]
- Filtering with classifier (45 features, trained on annotated data)
- relative word count
- word alignment scores
- ratio of function words
- Merging of translations that only differ in function words, morphology
- Pseudo-relevance feedback

translation options

Translation Option Array

after Mount Ontake（御誉山，Ontake－san），a popular climbing
spot in central Japan，erupted for the first time in five years． spot in central Japan，erupted for the first time in five years．
 beliebter Kletterplatz im zentralen Japan，
ausbrach，zum ersten

Translation Options

－Visual aid：non－intrusive provision of cues to the translator
－Trigger passive vocabulary

Visualization

- Show up to 6 options per word or phrase
- Rank best option on top
- Use color highlighting to show likelihood (grey = less likely to be useful)
- Clickable: click on target phrase \rightarrow added to edit area
- Automatic orientation
- most relevant is next word to be translated
- automatic centering on next word

How to Rank

- Basic idea: best options on top
- Problem: how to rank word translation vs. phrase translations?
- Method: utilize future cost estimates
- Translation score
- sum of translation model costs
- language model estimate
- outside future cost estimate

Improving Rankings

- Removal of duplicates and near duplicates

bad	good
erupted	
ausbrach	climbing
ausbrach,	
Klettern	
platzte	Bergsteigen
Ausbruch	
ausgebrochen	Aufstieg
ausgebrochen ist	abhalten,

- Ranking by likelihood to be used in the translation
\rightarrow can this be learned from user feedback?

Enabling Monolingual Translators

- Monolingual translator
- wants to understand a foreign document
- has no knowledge of foreign language
- uses a machine translation systeml
- Questions
- Is current MT output sufficient for understanding?
- What else could be provided by a MT system?

Example

- MT system output:

The study also found that one of the genes in the improvement in people with prostate cancer risk, it also reduces the risk of suffering from diabetes.

- What does this mean?
- Monolingual translator:

The research also found that one of the genes increased people's risk of prostate cancer, but at the same time lowered people's risk of diabetes.ll

- Document context helps

Example: Arabic

up to 10 translations for each word / phrase

Example: Arabic

\%	إل0.0)	或北!	[Syyl	is	الهوإ9
withdrawal of	combat troops		Us		iraq
	the fighting forces		the us	from	iraq
	fighting forces		us		mirac
withdrawal of troops		fighter	the us		
ithdrawal of	combat forces			of	
e withdrawal	forces	the fighter		from	
: withdrawal of	troops			ira	-
vithdrawal of				of the	
withdrawal				from	irag ir
le withdrawal			the ame	erican	

Monolingual Translation with Options

No big difference - once significantly better

Monolingual Translation Triage

- Study on Russian-English (Schwartz, 2014)
- Allow monolingual translators to assess their translation
- confident \rightarrow accept the translation
- verify \rightarrow proofread by bilingual
- partially unsure \rightarrow part of translation handled by bilingual
- completely unsure \rightarrow handled by bilingual
- Monolingual translator highly effective in triage

Monolingual Translation: Conclusions

- Main findings
- monolingual translators may be as good as bilinguals-
- widely different performance by translator / storyl
- named entity translation critically importantl|
- Various human factors important
- domain knowledgel
- language skills\|
- effort

paraphrasing

Paraphrasing

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

He planned for months to give a lecture in Miami in October.

give a presentation
present his work
give a speech
speak

User requests alternative translations for parts of sentence.

Visualization in CASMACAT

- User marks part of translation
- Clicks on paraphrasing button
- Alternative translations appear

Paraphrasing Research

- Somewhat popular research area
- Popular method: extract from parallel data
- goal: find paraphrases for phrase e
- look up likely translations f_{1}, f_{2}, \ldots for e
- for each f_{i}, look up likely translations $e_{i 1}^{\prime}, e_{i 2}^{\prime}, \ldots$
\Rightarrow these are the paraphrases

- Refinement: collect over several foreign languages, intersect
- Paraphrase database for several languages: http://paraphrase.org/

Paraphrasing in Context

- Our problem: paraphrasing in context
- driven by source
- considers sentence context
- ranking and diversity important
- real time performance
- Approach
- target span is mapped to source span
- search graph is consulted for alternative translations for source span
- additional translations generated by combining translation options
\Rightarrow initial list of translations
- various components to distill n-best paraphrases

Components

- Filtering: remove some translations
- with extraneous punctuation
- too similar to others
- additional function words
- Scoring: score translations
- translation model scores
- language model score in context
- compare alternate translations against best path
- Sorting: rank list
- cluster translations by similarity
- picks best translation from each cluster

Automatic Evaluation

- Motivation
- alternative translations should fix translation errors
\rightarrow create bad translations by back-translation
- Process
- Train machine translation system for both directions
- Translate test set target \rightarrow source \rightarrow target*
- Spot differences between target and target*
- Use span in target* as "marked by user", span in target as correct

Example

- Translate

> Unlike in Canada, the American states are responsible for the organisation of federal elections.

- Into

в отличие от канады, американские штаты ответственны за организацию федеральных выборов в соединенных штатах .

- Back into English

Unlike in Canada, US states
are responsible for the organization of federal elections.

Manual Evaluation

- Web based interactive evaluation tool
- Same setup as automatic evaluation
- shows target span
- 5 selectable paraphrases
- user accepts one \rightarrow correct
- Four users (U1-U4)
- Number of instances where one translation is correct

Method	U1	U2	U3	U4	average score
1	8	6	9	6	$6 / 50$
7	15	17	12	10	$13 / 50$
10	24	20	26	29	$26 / 50$

adaptation

Adaptation

- Machine translation works best if optimized for domain
- Typically, large amounts of out-of-domain data available
- European Parliament, United Nations
- unspecified data crawled from the web
- Little in-domain data (maybe 1% of total)
- information technology data
- more specific: IBM's user manuals
- even more specific: IBM's user manual for same product line from last year
- and even more specific: sentence pairs from current project
- Various domain adaptation techniques researched and used

Combining Data

- Too biased towards out of domain data
- May flag translation options with indicator feature functions

Interpolate Models

- $p_{c}(e \mid f)=\lambda_{\text {in }} p_{\text {in }}(e \mid f)+\lambda_{\text {out }} p_{\text {out }}(e \mid f)$
- Quite successful for language modelling

Multiple Models

- Multiple models \rightarrow multiple feature functions

Backoff

Fill-Up

- Use translation options from in-domain table
- Fill up with additional options from out-of-domain table

Sentence Selection

- Select out-of-domain sentence pairs that are similar to in-domain data
- Score similarity with language model, other means

Project Adaptation

- Method developed by the Matecat project
- Update model during translation project
- After each day
- collected translated sentences
- add to model
- optimize
- Main benefit after the first day

Instant Adaptation

Adaptable Translation Model

- Store in memory
- parallel corpus
- word alignment
- Adding new sentence pair
- word alignment of sentence pair
- add sentence pair
- update index (suffix array)
- Retrieve phrase translations on demand

Word Alignment

- Needed: word alignment method that scores a sentence pairs
- Online EM algorithm
- keep sufficient statistics of corpus in memory
- run EM iteration on single sentence pair
- update statistics
- return word alignment
- For efficiency reason, a static model may be sufficient
- Implementations in bith mGIZA and fast-align

Suffixes

1 government of the people, by the people, for the people
2 of the people, by the people, for the people
3 the people, by the people, for the people
4 people, by the people, for the people
5 , by the people, for the people
6 by the people, for the people
7 the people, for the people
8 people, for the people
9 , for the people
10 for the people
11 the people
12 people

Sorted Suffixes

5 , by the people, for the people
9 , for the people
6 by the people, for the people
10 for the people
1 government of the people, by the people, for the people
2 of the people, by the people, for the people
12 people
4 people, by the people, for the people
8 people, for the people
11 the people
3 the people, by the people, for the people
7 the people, for the people

Suffix Array

```
, by the people, for the people
for the people
by the people, for the people
for the people
government of the people, by the people, for the people
of the people, by the people, for the people
people
people, by the people, for the people
people, for the people
the people
the people, by the people, for the people
the people, for the people
suffix array: sorted index of corpus positions
```


Querying the Suffix Array

, by the people, for the people , for the people
by the people, for the people
for the people
government of the people, by the people, for the people of the people, by the people, for the people people
people , by the people, for the people
people, for the people
the people
the people, by the people, for the people the people, for the people

Query: people

Querying the Suffix Array

5	, by the people, for the people
9	, for the people
6	by the people, for the people
10	for the people
1	government of the people, by the people, for the people
2	\longrightarrow of the people, by the people, for the people
12	people
4	people, by the people, for the people
8	people, for the people
11	the people
3	the people, by the people, for the people
7	the people, for the people

Query: people
Binary search: start in the middle

Querying the Suffix Array

5	, by the people, for the people
9	, for the people
6	by the people, for the people
10	for the people
1	government of the people, by the people, for the people of the people, by the people, for the people
12	people
4	people, by the people, for the people
8	people, for the people
11	the people
3	the people, by the people, for the people
7	the people, for the people

Query: people
Binary search: discard upper half

Querying the Suffix Array

| 5 |
| :--- | :--- |
| 9 |
| 6 |
| 10 |
| 1 |
| 2 |
| 12 |
| 4 |
| 8 |
| 11 |
| 3 |
| 7 |\quad| , by the people, for the people |
| :--- |
| , for the people |
| by the people, for the people |
| for the people |
| government of the people, by the people, for the people |
| of the people, by the people, for the people |

Query: people
Binary search: middle of remaining space

Querying the Suffix Array

| 5 |
| :--- | :--- |
| 9 |
| 6 |
| 10 |
| 1 |
| 2 |
| 12 |
| 4 |
| 8 |
| 11 |
| 3 |
| 7 |\quad| , by the people, for the people |
| :--- |
| , for the people |
| by the people, for the people |
| for the people |
| government of the people, by the people, for the people |
| of the people, by the people, for the people |

Query: people
Binary search: match

Querying the Suffix Array

| 5 |
| :--- | :--- |
| 9 |
| 6 |
| 10 |
| 1 |
| 2 |
| 12 |
| 4 |
| 8 |
| 12 |
| 3 |
| 7 |\quad| , by the people, for the people |
| :--- |
| , for the people |
| by the people, for the people |
| for the people |
| government of the people, by the people, for the people |
| of the people, by the people, for the people |

Query: people
Finding matching range with additional binary searches for start and end

Bias Towards User Translation

- Cache-based models
- Language model
\rightarrow give bonus to n-grams in previous user translation
- Translation model
\rightarrow give bonus to translation options in previous user translation
- Decaying score for bonus (less recent, less relevant)

integration of translation memories

Progress in Translation Automation

- Translation Memory (TM)
- translators store past translation in database
- when translating new text, consult database for similar segments
- fuzzy match score defines similarity
widely used by translation agenciesl
- Statistical Machine Translation (SMT)
- collect large quantities of translated text
- extract automatically probabilistic translation rules
- when translating new text, find most probable translation given rules
wide use of free web-based services not yet used by many translation agencies
used by
human translator
restricted domain (e.g. product manual)
very repetitive content
corpus size:
1 million words
commercial developers
(e.g., SDL Trados)
used by
target language information seeker
open domain translation
(e.g. news)
huge diversity (esp. web)
corpus size:
100-1000 million words
academic/commercial research
(e.g., Google)

Main Idea

- Input

The second paragraph of Article 21 is deleted .

- Fuzzy match in translation memory

The second paragraph of Article 5 is deleted .
\Rightarrow Part of the translation from TM fuzzy match
Part of the translation with SMT

The second paragraph of Article 21 is deleted .

Example

- Input sentence:

The second paragraph of Article 21 is deleted .

Example

- Input sentence:

The second paragraph of Article 21 is deleted .

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted .
À l' article 5 , le texte du deuxiéme alinéa est supprimé .

Example

- Input sentence:

The second paragraph of Article 21 is deleted.

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted. $=$
À l' article 5 , le texte du deuxiéme alinéa est supprimé .

- Detect mismatch (string edit distance)

Example

- Input sentence:

$$
\text { The second paragraph of Article } 21 \text { is deleted. }
$$

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted. =
À 1' article 5 , le texte du deuxiéme alinéa est supprimé .

- Detect mismatch (string edit distance)
- Align mismatch (using word alignment from GIZA ++)

Example

- Input sentence:

$$
\text { The second paragraph of Article } 21 \text { is deleted . }
$$

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

$$
=
$$

À l' article 5 , le texte du deuxiéme alinéa est supprimé .

Output word(s) taken from the target TM

Example

- Input sentence:

$$
\text { The second paragraph of Article } 21 \text { is deleted. }
$$

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

$$
=
$$

À l' article 5 , le texte du deuxiéme alinéa est supprimé .

Output word(s) taken from the target TM
Input word(s) that still need to be translated by SMT

Example

- Input sentence:

$$
\text { The second paragraph of Article } 21 \text { is deleted. }
$$

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

$$
=
$$

À l' article 5 , le texte du deuxiéme alinéa est supprimé .

- XML frame (input to Moses)

$$
\text { <xml translation=" À l' article "/> } 21
$$

<xml translation=", le texte du deuxiéme alinéa est supprimé . "/>

Example

- Input sentence:

$$
\text { The second paragraph of Article } 21 \text { is deleted. }
$$

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

$$
=
$$

```
À l' article 5 ,le texte du deuxiéme alinéa est supprimé .
```

- More compact formalism for the purposes of this presentation:
$<$ À l' article $>21<$, le texte du deuxiéme alinéa est supprimé . >

Two Solutions

- XML frames
$<$ À l' article> $21<$, le texte du deuxiéme alinéa est supprimé .>
for input
The second paragraph of Article 21 is deleted .
- Very large hierarchical rule
(The second paragraph of Article x is deleted .
; À l' article X , le texte du deuxiéme alinéa est supprimé .)

Result: Acquis

logging and eye tracking

Logging functions

- Different types of events are saved in the logging.
- configuration and statistics
- start and stop session
- segment opened and closed
- text, key strokes, and mouse events
- scroll and resize
- search and replace
- suggestions loaded and suggestion chosen
- interactive translation prediction
- gaze and fixation from eye tracker

Logging functions

- In every event we save:
- Type
- In which element was produced
- Time
- Special attributes are kept for some types of events
- Diff of a text change
- Current cursor position
- Character looked at
- Clicked UI element
- Selected text
\Rightarrow Full replay of user session is possible

Keystroke Log

Input: Au premier semestre, l'avionneur a livré 97 avions.
Output: The manufacturer has delivered 97 planes during the first half.

black: keystroke, purple: deletion, grey: cursor move height: length of sentence

Example of Quality Judgments

Src. Sans se démonter, il s'est montré concis et précis.
MT Without dismantle, it has been concise and accurate.
1/3 Without fail, he has been concise and accurate. (Prediction+Options, L2a)
4/0 Without getting flustered, he showed himself to be concise and precise.(Unassisted, L2b)
4/0 Without falling apart, he has shown himself to be concise and accurate. (Postedit, L2c)
1/3 Unswayable, he has shown himself to be concise and to the point. (Options, L2d)
0/4 Without showing off, he showed himself to be concise and precise. (Prediction, L2e)
1/3 Without dismantling himself, he presented himself consistent and precise.
(Prediction+Options, L1a)
2/2 He showed himself concise and precise.(Unassisted, L1b)
3/1 Nothing daunted, he has been concise and accurate. (Postedit, L1c)
3/1 Without losing face, he remained focused and specific.(Options, L1d)
3/1 Without becoming flustered, he showed himself concise and precise. (Prediction, L1e)

Main Measure: Productivity

Assistance	Speed	Quality
Unassisted	$4.4 \mathrm{~s} /$ word	47% correct
Postedit	$2.7 \mathrm{~s} \mathrm{(-1.7s)}$	$55 \%(+8 \%)$
Options	$3.7 \mathrm{~s} \mathrm{(-0.7s)}$	$51 \%(+4 \%)$
Prediction	$3.2 \mathrm{~s} \mathrm{(-1.2s)}$	$54 \%(+7 \%)$
Prediction+Options	$3.3 \mathrm{~s} \mathrm{(-1.1s)}$	$53 \%(+6 \%)$

Faster and Better, Mostly

User	Unassisted	Postedit		Options		Prediction		Prediction+Options	
L1a	3.3sec/word 23% correct	$\begin{gathered} \hline 1.2 \mathrm{~s} \\ 39 \% \end{gathered}$	$\begin{aligned} & \hline-2.2 \mathrm{~s} \\ & +16 \%) \end{aligned}$	$\begin{array}{r} \hline 2.3 \mathrm{~s} \\ 45 \% \end{array}$	$\begin{aligned} & \hline-1.0 \mathrm{~s} \\ & +22 \% \end{aligned}$	$\begin{gathered} \hline 1.1 \mathrm{~s} \\ 30 \% \end{gathered}$	$\begin{aligned} & \hline-2.2 \mathrm{~s} \\ & +7 \%) \end{aligned}$	$\begin{array}{r} \hline 2.4 \mathrm{~s} \\ 44 \% \end{array}$	$\begin{aligned} & \hline-0.9 \mathrm{~s} \\ & +21 \% \end{aligned}$
L1b	$7.7 \mathrm{sec} /$ word 35% correct	$\begin{gathered} \hline 4.5 \mathrm{~s} \\ 48 \% \end{gathered}$	$\begin{aligned} & \hline-3.2 \mathrm{~s}) \\ & +13 \% \end{aligned}$	$\begin{gathered} \hline 4.5 \mathrm{~s} \\ 55 \% \end{gathered}$	$\begin{aligned} & -3.3 \mathrm{~s} \\ & +20 \% \end{aligned}$	$\begin{gathered} \hline 2.7 \mathrm{~s} \\ 61 \% \end{gathered}$	$\begin{aligned} & \hline-5.1 \mathrm{~s} \\ & +26 \% \end{aligned}$	$\begin{gathered} 4.8 \mathrm{~s} \\ 41 \% \end{gathered}$	$\begin{aligned} & -3.0 \mathrm{~s} \\ & +6 \% \end{aligned}$
L1c	$3.9 \mathrm{sec} /$ word 50\% correct	$\begin{gathered} \hline 1.9 \mathrm{~s} \\ 61 \% \end{gathered}$	$\begin{aligned} & \hline-2.0 \mathrm{~s} \\ & +11 \% \end{aligned}$	$\begin{gathered} \hline 3.8 \mathrm{~s} \\ 54 \% \end{gathered}$	$\begin{aligned} & -0.1 \mathrm{~s} \\ & +4 \% \end{aligned}$	$\begin{gathered} \hline 3.1 \mathrm{~s} \\ 64 \% \end{gathered}$	$\begin{aligned} & -0.8 \mathrm{~s} \\ & +14 \% \end{aligned}$	$\begin{gathered} 2.5 \mathrm{~s} \\ 61 \% \end{gathered}$	$\begin{aligned} & \hline-1.4 \mathrm{~s} \\ & +11 \% \end{aligned}$
L1d	$\begin{gathered} \hline 2.8 \mathrm{sec} / \text { word } \\ 38 \% \text { correct } \end{gathered}$	$\begin{gathered} \hline 2.0 \mathrm{~s} \\ 46 \% \end{gathered}$	$\begin{aligned} & \hline-0.7 \mathrm{~s} \\ & +8 \% \end{aligned}$	$\begin{gathered} 2.9 \mathrm{~s} \\ 59 \% \end{gathered}$	$\begin{aligned} & (+0.1 \mathrm{~s}) \\ & (+21 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~s} \\ & 37 \% \end{aligned}$	$\begin{aligned} & \hline(-0.4 \mathrm{~s}) \\ & (-1 \%) \end{aligned}$	$\begin{gathered} 1.8 \mathrm{~s} \\ 45 \% \end{gathered}$	$\begin{aligned} & -1.0 \mathrm{~s} \\ & +7 \% \end{aligned}$
L1e	5.2sec/word 58% correct	$\begin{gathered} \hline 3.9 \mathrm{~s} \\ 64 \% \end{gathered}$	$\begin{aligned} & -1.3 \mathrm{~s} \\ & +6 \% \end{aligned}$	$\begin{gathered} 4.9 \mathrm{~s} \\ 56 \% \end{gathered}$	$\begin{aligned} & \hline(-0.2 \mathrm{~s}) \\ & (-2 \%) \end{aligned}$	$\begin{gathered} \hline 3.5 \mathrm{~s} \\ 62 \% \end{gathered}$	$\begin{aligned} & -1.7 \mathrm{~s} \\ & +4 \% \end{aligned}$	$\begin{gathered} 4.6 \mathrm{~s} \\ 56 \% \end{gathered}$	$\begin{aligned} & \hline(-0.5 \mathrm{~s}) \\ & (-2 \%) \end{aligned}$
L2a	$\begin{gathered} \hline 5.7 \mathrm{sec} / \text { word } \\ 16 \% \text { correct } \end{gathered}$	$\begin{gathered} \hline 1.8 \mathrm{~s} \\ 50 \% \end{gathered}$	$\begin{aligned} & -3.9 \mathrm{~s} \\ & +34 \% \end{aligned}$	$\begin{gathered} \hline 2.5 \mathrm{~s} \\ 34 \% \end{gathered}$	$\begin{aligned} & -3.2 \mathrm{~s} \\ & +18 \% \end{aligned}$	$\begin{gathered} \hline 2.7 \mathrm{~s} \\ 40 \% \end{gathered}$	$\begin{aligned} & -3.0 \mathrm{~s} \\ & +24 \% \end{aligned}$	$\begin{gathered} 2.8 \mathrm{~s} \\ 50 \% \end{gathered}$	$\begin{aligned} & -2.9 \mathrm{~s} \\ & +34 \% \end{aligned}$
L2b	3.2sec/word 64\% correct	$\begin{aligned} & \hline 2.8 \mathrm{~s} \\ & 56 \% \end{aligned}$	$\begin{aligned} & \hline(-0.4 \mathrm{~s}) \\ & (-8 \%) \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~s} \\ & 60 \% \end{aligned}$	$\begin{aligned} & \hline+0.3 s \\ & -4 \% \end{aligned}$	$\begin{gathered} \hline 6.0 \mathrm{~s} \\ 61 \% \end{gathered}$	$\begin{aligned} & \hline+2.8 s \\ & -3 \% \end{aligned}$	$\begin{gathered} \hline 4.6 \mathrm{~s} \\ 57 \% \end{gathered}$	$\begin{aligned} & \hline+1.4 \mathrm{~s} \\ & -7 \% \end{aligned}$
L2c	$5.8 \mathrm{sec} /$ word 52% correct	$\begin{gathered} \hline 2.9 \mathrm{~s} \\ 53 \% \end{gathered}$	$\begin{aligned} & -3.0 \mathrm{~s} \\ & +1 \% \end{aligned}$	$\begin{aligned} & 4.6 \mathrm{~s} \\ & 37 \% \end{aligned}$	$\begin{aligned} & \hline(-1.2 \mathrm{~s}) \\ & (-15 \%) \end{aligned}$	$\begin{gathered} \hline 4.1 \mathrm{~s} \\ 59 \% \end{gathered}$	$\begin{aligned} & \hline-1.7 \mathrm{~s} \\ & +7 \% \end{aligned}$	$\begin{array}{r} \hline 2.7 \mathrm{~s} \\ 53 \% \end{array}$	$\begin{aligned} & \hline-3.1 \mathrm{~s} \\ & +1 \% \end{aligned}$
L2d	3.4sec/word 49% correct	$\begin{aligned} & \hline 3.1 \mathrm{~s} \\ & 49 \% \end{aligned}$	$\begin{gathered} (-0.3 \mathrm{~s}) \\ (+0 \%) \end{gathered}$	$\begin{gathered} 4.3 \mathrm{~s} \\ 51 \% \end{gathered}$	$\begin{aligned} & (+0.9 \mathrm{~s}) \\ & (+2 \%) \end{aligned}$	$\begin{aligned} & 3.8 \mathrm{~s} \\ & 53 \% \end{aligned}$	$\begin{aligned} & (+0.4 \mathrm{~s}) \\ & (+4 \%) \end{aligned}$	$3.7 \mathrm{~s}$	$\begin{aligned} & (+0.3 \mathrm{~s}) \\ & (+9 \%) \end{aligned}$
L2e	$\begin{gathered} \hline 2.8 \mathrm{sec} / \text { word } \\ 68 \% \text { correct } \end{gathered}$	$\begin{gathered} \hline 2.6 \mathrm{~s} \\ 79 \% \end{gathered}$	$\begin{aligned} & -0.2 \mathrm{~s} \\ & +11 \% \end{aligned}$	$\begin{gathered} \hline 3.5 \mathrm{~s} \\ 59 \% \end{gathered}$	$\begin{aligned} & \hline+0.7 s \\ & -9 \% \end{aligned}$	$\begin{gathered} \hline 2.8 \mathrm{~s} \\ 64 \% \end{gathered}$	$\begin{aligned} & \hline(-0.0 \mathrm{~s}) \\ & (-4 \%) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3.0 \mathrm{~s} \\ 66 \% \end{gathered}$	$\begin{aligned} & +0.2 s \\ & -2 \% \end{aligned}$
avg.	4.4sec/word 47% correct	$\begin{gathered} 2.7 \mathrm{~s} \\ 55 \% \end{gathered}$	$\begin{aligned} & -1.7 \mathrm{~s} \\ & +8 \% \end{aligned}$	$\begin{gathered} \hline 3.7 \mathrm{~s} \\ 51 \% \end{gathered}$	$\begin{aligned} & -0.7 \mathrm{~s} \\ & +4 \% \end{aligned}$	$\begin{gathered} \hline 3.2 \mathrm{~s} \\ 54 \% \end{gathered}$	$\begin{aligned} & -1.2 \mathrm{~s} \\ & +7 \% \end{aligned}$	$\begin{gathered} 3.3 \mathrm{~s} \\ 53 \% \end{gathered}$	$\begin{aligned} & -1.1 \mathrm{~s} \\ & +6 \% \end{aligned}$

Unassisted Novice Translators

L1 = native French, L2 = native English, average time per input word only typing

Unassisted Novice Translators

L1 = native French, L2 = native English, average time per input word typing, initial and final pauses

Unassisted Novice Translators

L1 = native French, L2 = native English, average time per input word typing, initial and final pauses, short, medium, and long pauses most time difference on intermediate pauses

Activities: Native French User L1b

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s	-	-
Postedit	4.5 s	1.5 s	0.4 s	0.1 s	1.0 s	0.4 s	1.1 s	-	-
Options	4.5 s	0.6 s	0.1 s	0.4 s	0.9 s	0.7 s	1.5 s	0.4 s	-
Prediction	2.7 s	0.3 s	0.3 s	0.2 s	0.7 s	0.1 s	0.6 s	-	0.4 s
Prediction+Options	4.8 s	0.6 s	0.4 s	0.4 s	1.3 s	0.5 s	0.9 s	0.5 s	0.2 s

Activities: Native French User L1b

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s	-	-
Postedit	4.5 s	1.5 s	0.4 s	0.1 s	1.0 s	0.4 s	1.1 s	-	-
Options	4.5 s	0.6 s	0.1 s	0.4 s	0.9 s	0.7 s	1.5 s	0.4 s	-
Prediction	2.7 s	0.3 s	0.3 s	0.2 s	0.7 s	0.1 s	0.6 s	-	0.4 s
Prediction+Options	4.8 s	0.6 s	0.4 s	0.4 s	1.3 s	0.5 s	0.9 s	0.5 s	0.2 s

> Slightly less time spent on typing

Activities: Native French User L1b

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s	-	-
Postedit	4.5 s	1.5 s	0.4 s	0.1 s	1.0 s	0.4 s	1.1 s	-	-
Options	4.5 s	0.6 s	0.1 s	0.4 s	0.9 s	0.7 s	1.5 s	0.4 s	-
Prediction	2.7 s	0.3 s	0.3 s	0.2 s	0.7 s	0.1 s	0.6 s	-	0.4 s
Prediction+Options	4.8 s	0.6 s	0.4 s	0.4 s	1.3 s	0.5 s	0.9 s	0.5 s	0.2 s

Less
pausing

Slightly less time spent on typing

Activities: Native French User L1b

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s	-	-
Postedit	4.5 s	1.5 s	0.4 s	0.1 s	1.0 s	0.4 s	1.1 s	-	-
Options	4.5 s	0.6 s	0.1 s	0.4 s	0.9 s	0.7 s	1.5 s	0.4 s	-
Prediction	2.7 s	0.3 s	0.3 s	0.2 s	0.7 s	0.1 s	0.6 s	-	0.4 s
Prediction+Options	4.8 s	0.6 s	0.4 s	0.4 s	1.3 s	0.5 s	0.9 s	0.5 s	0.2 s

Less
pausing

Especially less time in big pauses

Slightly less time spent on typing

Origin of Characters: Native French L1b

User: L1b	key	click	tab	mt
Postedit	18%	-	-	81%
Options	59%	40%	-	-
Prediction	14%	-	85%	-
Prediction+Options	21%	44%	33%	-

Origin of Characters: Native French L1b

User: L1b	key	click	tab	mt
Postedit	18%	-	-	81%
Options	59%	40%	-	-
Prediction	14%	-	85%	-
Prediction+Options	21%	44%	33%	-

Translation comes to large
degree from assistance

Pauses Reconsidered

- Our classification of pauses is arbitrary (2-6sec, 6-60sec, $>60 \mathrm{sec}$)
- Extreme view: all you see is pauses
- keystrokes take no observable time
- all you see is pauses between action pointsI
- Visualizing range of pauses:
time t spent in pauses $p \in P$ up to a certain length l

$$
\operatorname{sum}(t)=\frac{1}{Z} \sum_{p \in P, l(p) \leq t} l(p)
$$

Results

Learning Effects

Users become better over time with assistance

Learning Effects: Professional Translators

CASMACAT longitudinal study
Productivity projection as reflected in Kdur taking into account six weeks (Kdur $=$ user activity excluding pauses >5 secods)

Eye Tracking

- Eye trackers extensively used in cognitive studies of, e.g., reading behavior
- Overcomes weakness of key logger: what happens during pauses
- Fixation: where is the focus of the gaze
- Pupil dilation: indicates degree of concentration

Eye Tracking

- Problem: Accuracy and precision of gaze samples

Gaze-to-Word Mapping

- Recorded gaze lacations and fixations

Right eye gaze samples

- Gaze-to-word mapping

Families hit with increase in cost of living
British flamilie have to coligh up an extra $£ 31,300$ a year as foor in supermarkets have climbed analarming rate over the past : still, makng thard forthe Bank of Encland to cut interest rates control. To make malter \& worse, escalatind prices are racing ahe healthcare proferisionals, whis ha /e suflered from the governmen below-inflation salarv increases. In addition to fuel and fond. elec

Logging and Eye Tracking

 focus on target word (green) or source word (blue) at position x

Cognitive Studies: User Styles

- User style 1: Verifies translation just based on the target text, reads source text to fix it

Cognitive Studies: User Styles

- User style 2: Reads source text first, then target text

Cognitive Studies: User Styles

- User style 3: Makes corrections based on target text only

Cognitive Studies: User Styles

- User style 4: As style 1, but also considers previous segment for corrections

Users and User Styles

	Style 1			Style 2			Style 3			Style 4		
	target / source-fix			source-target			target only			wider context		
	P	PI	PIA									
P02	*	*	*	\bullet	\bullet	\bullet	\bullet			-	\bullet	\bullet
P03												
P04	-	*	*				*	-	-	-	\bullet	-
P05	-	\bullet	-				*	*	*	-	\bullet	\bullet
P07	*	*	*				\bullet	-	\bullet	-	\bullet	\bullet
P08	*	*	*	\bullet	\bullet	-				\bullet	\bullet	\bullet
P09	-	-	\bullet				*	*	*	-	\bullet	\bullet

- Individual users employ different user styles
- But: consistently across different types of assitance ($\mathrm{P}=$ post-editing, $\mathrm{PI}=$ interactive post-editing, $\mathrm{PIA}=$ interactive post-editing with additional annotations)

Backtracking

- Local backtracking
- Immediate repetition: the user immediately returns to the same segment (e.g. AAAA)
- Local alternation: user switches between adjacent segments, often singly (e.g. $A B A B)$ but also for longer stretches (e.g. ABC-ABC).
- Local orientation: very brief reading of a number of segments, then returning to each one and editing them (e.g. ABCDE-ABCDE).
- Long-distance backtracking
- Long-distance alternation: user switches between the current segment and different previous segments (e.g. JCJDJFJG)
- Text final backtracking: user backtracks to specific segments after having edited all the segments at least once
- In-text long distance backtracking: instances of long distance backtracking as the user proceeds in order through the text.

part III

CASMACAT workbench implementation

Components

Web Server

- Builds on Matecat open source implementation
- Typical web application: LAMP (Linux, Apache, MySQL, PHP)
- Uses model, view, controller breakdown

Model

- Relevant data is stored in MySQL database matecat_sandbox
- Major database tables
- Projects are stored in projects
- They have a corresponding entry in jobs
- Raw files (XLIFF) are stored in files
- Segments are stored in segments
- Translations of segments are stored in segment_translations
- Log events are stored in *_event
- etc.
- The major change from Matecat is the logging

Controller

- Typical request: get information about a segment: POST http://192.168.56.2:8000/?action=getSegments\&time=1446185242727
- Script index.php selects corresponding action in lib/controller e.g., getSegmentsController.php
- Response is HTML or JSON
- The main action is really in the Javascript GUI public/js
- core functionality from Matecat public/js/cat.js
- CASMACAT extensions public/js/casmacat

CAT Server

- To a large degree middleware
- Calls external services such as
- MT server
- word aligner
- interactive translation prediction
- Caches information about a sentence translation

MT Server

- Google-style API to MT Server
- Python wrapper for Moses
- basic translation request
- includes pre and post processing pipeline
- other functions: word alignment, incremental updating, etc.
- Uses mosesserver XMLRPC server
- Requires mosesserver to run as a service mosesserver -config \$MODELDIR/moses.ini --server-port 9010
- Script server.py requires a lot of parameters
- preprocessing tools (tokenizer, truecaser, etc.)
- IP address and port
- URL of the mosesserver API
- etc.
- Request to the script
http://127.0.0.1:9000//translate?q=Un+test\&key=0\&source=xx\&target=xx
- Response

```
{"data": {"translations": [{"translatedText": "A test",
"translatedTextRaw": "a test",
"annotatedSource": "un test",
"tokenization": {"src": [[0, 1], [3, 6]], "tgt": [[0, 0], [2, 5]]}}]}}
```


Home Edition

- Moses is installed in /opt/moses
- CASMACAT is installed in /opt/casmacat
- web server / GUI in /opt/casmacat/web-server
- MT server (server.py) in /opt/casmacat/mt-server
- CAT server in /opt/casmacat/cat-server
- installation scripts in /opt/casmacat/install
- log files in /opt/casmacat/logs
- Home Edition
- admin web server in /opt/casmacat/admin
- corpus data in /opt/casmacat/data
- prototype training in /opt/casmacat/experiment
- engines stored in /opt/casmacat/engines

Home Edition MT Engine

- Demo engine in /opt/casmacat/engines/fr-en-upload-1
- Files
biconcor. 1
biconcor.1.align
biconcor.1.src-vcb
biconcor.1.tgt
biconcor.1.tgt-vcb
corpus-1.binlm. 1
fast-align. 1
fast-align.1.log
fast-align.1.parameters
fast-align-inverse. 1
fast-align-inverse.1.log
fast-align-inverse.1.parameters
info
moses.tuned.ini. 1
phrase-table-mmsapt. 1
reordering-table.1.wbe-msd-bidirectional-fe.minlexr
RUN
truecase-model.1.en
truecase-model.1.fr
- The script RUN starts the engine

questions?

