
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DAPPER: a database-inspired approach to persistent memory

Citation for published version:
Cintra, M, Chatzistergiou, A, Joshi, A, Nagarajan, V & Viglas, SD 2015, DAPPER: a database-inspired
approach to persistent memory. in The 6th Annual Non-Volatile Memories Workshop (NVMW 2015).

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
The 6th Annual Non-Volatile Memories Workshop (NVMW 2015)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/dapper-a-databaseinspired-approach-to-persistent-memory(d9059bab-534e-4260-b424-3bcdb2cd8db9).html


DAPPER: a database-inspired approach to persistent memory
Marcelo Cintra
Intel, Germany

marcelo.cintra@intel.com

Andreas Chatzistergiou, Arpit Joshi, Vijay Nagarajan, Stratis D. Viglas
University of Edinburgh, UK

{{a.chatzistergiou, a.joshi}@sms, {vnagaraj, sviglas}@inf}.ed.ac.uk

Abstract

Persistent memory collapses the boundaries between the in-
memory and secondary storage representations of data structures,
and enables the programmer to process data directly from an
imperative runtime. We present the early results of the DAPPER
project, which takes a database-inspired approach to persistent
memory. It supports recoverable data structures in persistent mem-
ory at the imperative language level, algorithms optimized for the
performance characteristics of the new medium and a runtime to
support them, and workload-driven adaptive data placement.

1 Introduction

Fast byte-addressable persistent memory brings the possibility
of a universal persistent memory device that can replace both
volatile memory and persistent storage. But how should it be
used? Treating persistent memory as persistent storage means
that we using algorithms and techniques that have been designed
for a different medium. Treating persistent memory as volatile
memory means that we will need to rethink our data structures
in light of the new available capacity and assume that everything
can be memory-resident. In both alternatives, we are effectively
reusing a prior abstraction that has been originally built for
different performance characteristics. We argue that we need
to collapse these abstractions into a single universal interface.

Our work is also fuelled by the observation that if these abstrac-
tions are not collapsed, then applications will need to account for
different representations based on whether data resides in volatile
DRAM or persistent memory. Consider a multi-tier application:
the programmer decides on the application-level control and data
structures, and then decides on the persistent representation of the
data structures. Specialized APIs translate data between the two
runtimes, in a cumbersome and sometimes error-prone process.
Moreover, data may be replicated in both DRAM and non-volatile
memory (NVM1), while the byte-addressability of NVM is not
leveraged. In the future, what is more likely to be the case is that
NVM will be accessed directly from the programming language.
This is a highly disruptive model when compared to contemporary
systems. We argue that we need a solution that is not intrusive to
the programmer and seamlessly integrates the application’s data
structures with their persistent representation at the system level.

We present the preliminary results of the DAPPER project,
which aims to deliver a database-inspired approach to persistent
memory. We assume a hybrid system with both DRAM and NVM
and we identify the best use of both substrates when dealing with
typical data management use-cases in the context of an imperative
programming language. Our approach is shown in Figure 1. We
use compiler support to identify transactional code fragments and
a lightweight data management library to provide transactional
semantics and recoverability to arbitrary data structures (Sec-
tion 2). We then move on to mitigating the write inefficiency of
NVM for two typical operations commonly encountered in data
management applications: sorting and hash-based relational join
processing (Section 3). Finally, we give methods for choosing
what data to store in either DRAM or NVM depending on the

1We use the terms ‘persistent’ and ‘non-volatile’ interchangeably.

write-limited algorithms and runtime

cache DRAM

persistent memory

primary data data structures

data structures

data structures

persistence layer

user code compiler support
data 

management 
libraries

Figure 1: The overarching DAPPER approach
workload and the data access patterns (Section 4). In what fol-
lows, we will briefly present each problem and our solution before
concluding and identifying future work directions (Section 5).

2 Recoverable data structures
The first step in enabling data processing over NVM is ensuring
that persistence is readily accessible to the higher level program-
ming substrates. This means that the data structures chosen by
the programmer are persistent and recoverable. We have designed
and implemented a recovery substrate for imperative languages
termed REWIND, which stands for REcovery Write-ahead
system for In-memory Non-volatile Data structures [1].

Our processing model is that persistent data is on byte-
addressable NVM, accessible directly from user code through
CPU loads and stores. Traditionally, data updates are first
performed in volatile memory. It is thus possible to delay making
log entries persistent until the transaction commits or the data
updates are purged from main memory. In REWIND, updates
are done directly on NVM data: the log entries must be made
persistent immediately, and ahead of the data updates. We achieve
this through enhanced versions of memory fences (i.e., barriers
that enforce ordering and persistence to preceding instructions),
cacheline flushes and non-temporal stores (i.e., direct to NVM
stores that bypass the cache) with persistence guarantees.

REWIND uses physical logging as it fits better with imperative
languages and allows easier compiler support. The log itself must
be manipulated atomically in a recoverable way. Traditionally,
the log is maintained in volatile memory and pushed to persistent
storage through system calls. In REWIND, the log itself resides in
persistent main memory and updates are made in-place. Transac-
tional handling of failure of log updates is attained with carefully
crafted data structures and code sequences. Furthermore, perfor-
mance is relative to a baseline with the low cost of individual mem-
ory operations. Thus, logging must be optimized to incur only a
small increase in the cost of a memory operation. In REWIND, we
guarantee this with minimalist data structures and code sequences.

While contemporary systems offer record-level locking, they
use coarse-grained page-level latching internally. REWIND em-
ploys fine-grained latching at a log record granularity: this enables
more efficient and flexible locking mechanisms. The majority of
recovery managers based on ARIES [5] are implemented within
DBMSs [2]. Thus, they hide data management behind some data
model (e.g., relational) and allow data manipulation through a
query language (e.g., SQL). REWIND is implemented as a user-
mode library that can be linked to any native application, allowing
the programmer to access the data using an arbitrary sequence

1



of imperative commands. Moreover, the design of REWIND
itself is such that it can be straightforwardly embedded into the
compiler so that the disruption to user code is further minimized.

REWIND currently provides strong ACID semantics: at the
time of crash, we guarantee that whatever transactions are visible
at that instant are also made durable. We are currently working
on relaxing this with a scheme in which durability trails visibility:
upon a crash, the transactions that are durable may not correspond
to the current state of visible transactions, but a past (yet
consistent) state. In other words, we tradeoff some loss of work
(during recovery) for gains in logging performance. We are also
working on adding architectural support to speed up the logging.

3 Write-limited algorithms and supporting runtime

With the mechanics of recoverability in place, we next incorporate
higher-level workflows that will leverage persistent data structures
for more elaborate processing. We have focussed on two types
of data-centric operations: sorting and hash-based relational join
processing. Sorting is ubiquitous in a host of data processing
algorithms and solutions. Whereas hash-based relational join
processing builds on the powerful technique of splitting a dataset
in disjoint partitions. Sorting and hash partitioning are used in data
mining, (e.g., producing association rules), machine learning (e.g.,
clustering), and graph management (e.g., nearest neighbor search).

We have devised a family of algorithms that we term write-
limited that focus on mitigating the write cost of persistent mem-
ory for sorting and hash-partitioning [6]. The algorithms are
based on a simple observation. Consider the simple process of
reading an input dataset and then writing it—perhaps by applying
a total ordering on it, as is the case of sorting; or by applying
a hash function, as is the case for partitioning. Assume now a
write-to-read cost of λ , meaning that writing is λ times more
expensive than reading. Then for the cost of writing the output,
we can afford λ extra reads. We therefore leverage this ratio
to trade writes for reads. The result is that we can achieve the
same I/O performance as well-known algorithms (e.g., external
merge-sort) but at a fraction of its write cost. Or, alternatively, the
developer can tune the write intensity of the algorithms for a small
hit on performance. With the algorithms in place, we implement
these algorithms by proposing a flexible API. Our API records a
blueprint of each algorithm’s computation and enables the system
to dynamically decide whether to trade writes for reads. The key
notion is that the generation of new datasets (be they results of
computation, or intermediate structures) is deferred by default.
The system keeps track of the accumulated savings and the poten-
tial cost associated with generating a dataset. It then performs a
dynamic cost-benefit analysis to decide if materializing the dataset
would be more cost-effective than deferring its materialization.

We have implemented all these algorithms in terms of different
potential deployments of non-volatile memory in contemporary
systems, ranging from treating NVM as standard memory
through persistent regions; to using block-level I/O; to a thin
persistent-memory-aware filesystem. Our work has quantified the
impact of implementations on performance and our results show
that there are various tradeoffs that one needs to take into account
in choosing the correct implementation alternative. But, at any
rate, a dynamic cost-benefit approach based on write-limited
algorithms is necessary to tune and maximize performance.

4 Adaptive data (re)placement

Next, we enhance memory utility through informed data
placement. Data structures are placed in NVM for long-term
storage, but may also be cached in DRAM. Data structures are
tagged according to their intended semantics by the user. This

tagging is used to inform the system whether the data structures
are primary, which indicates long-term usage, or temporary,
which indicates short-term access. We classify data structures
and use a rule-based approach to decide where they are to be
placed. We further build upon flow schemes [4, 3] to capture
the flow of data between the memory regions of the system.

DRAM is split in two sections: a cache and a data structure
store. The system decides the size of each section. The cache only
caches primary data that is stored in NVM. The data structure
store maintains various temporary auxiliary data structures that
are by-products of data processing: e.g., a version of an input
dataset sorted on some particular key, or a hash partitioning of
some dataset. The system employs replacement algorithms to
evict data from the cache to NVM. The system also manages
the data structure store by pushing temporary data structures to
NVM if they are deemed useful. Doing so frees DRAM for more
data structures but also incurs the cost of expensive NVM writes.
Alternatively, the system may decide to simply delete a temporary
data structure from DRAM or NVM if it is no longer useful (for
instance, when it is not in the ‘hot-set’ of the current workload).

5 Conclusions and outlook
In the DAPPER project, we aim to integrate non-volatile memory
into the data management stack, by following a database-inspired
approach. As NVM becomes mainstream, the boundary between
volatile and persistent memory will gradually disappear. This
means that the in-memory and the persistent representations of
data will no longer be separate. As such, we need mechanisms
that enable such seamless manipulation. We have presented our
approach to address these issues: (a) by proposing a recovery
runtime that uses write-ahead logging to provide persistence and
recoverability for arbitrary data structures stored in persistent
memory regions; (b) by introducing write-limited algorithms that
trade expensive writes for cheaper reads for key data processing
operations; (c) by incorporating these algorithms into a runtime
that leverages a cost-benefit analysis to dynamically support
them; (d) by integrating DRAM and NVM into a single storage
layer that decides on data placement based on the high-level
semantics and access patterns of the data structures it serves.

There is more work to be done. One might extend the recovery
runtime with architectural support for zero-overhead concurrency
primitives; or enrich the write-limited algorithms with generalized
approaches and indexes. It would also be interesting to see the
tradeoffs involved in using only persistent memory and doing
away with DRAM altogether. This becomes especially important
if the latency of persistent memory matches that of DRAM. At
any rate, we believe our approach to be a solid first step towards
optimizing data management for persistent memory.

References
[1] A. Chatzistergiou, M. Cintra, and S. D. Viglas. REWIND: Recovery

write-ahead system for in-memory non-volatile data-structures.
PVLDB, 8(1), 2015.

[2] R. Fang, H.-I. Hsiao, C. Mohan, and Y. Wang. High performance
database logging using storage class memory. In ICDE, 2011.

[3] I. Koltsidas and S. D. Viglas. Flashing Up the Storage Layer.
PVLDB, 1(1), 2008.

[4] I. Koltsidas and S. D. Viglas. Designing a flash-aware two-level
cache. In ADBIS, 2011.

[5] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
ARIES: A transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging. ACM
TODS, 17(1), 1992.

[6] S. D. Viglas. Write-limited sorts and joins for persistent memory.
PVLDB, 7(5), 2014.

2


