-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Sort vs. Hash Join Revisited for Near-Memory Execution

Citation for published version:
Mirzadeh, NS, Kocberber, O, Falsafi, B & Grot, B 2015, Sort vs. Hash Join Revisited for Near-Memory
Execution. in Fifth Workshop on Architectures and Systems for Big Data (ASBD 2015).

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Fifth Workshop on Architectures and Systems for Big Data (ASBD 2015)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/43718754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/sort-vs-hash-join-revisited-for-nearmemory-execution(02a95fdb-5f7a-468e-8558-e2857c135c78).html

Sort vs. Hash Join Revisited for Near-Memory Execution

Nooshin S. Mirzadeh'

Onur Kocberber!

Babak Falsafi’ Boris Grot*

TEcoCloud, EPFL *University of Edinburgh

Abstract

Data movement between memory and CPU is a well-known
energy bottleneck for analytics. Near-Memory Processing
(NMP) is a promising approach for eliminating this bottleneck
by shifting the bulk of the computation toward memory arrays
in emerging stacked DRAM chips. Recent work in this space
has been limited to regular computations that can be localized
to a single DRAM partition. This paper examines a Join work-
load, which is fundamental to analytics and is characterized
by irregular memory access patterns. We consider several join
algorithms and show that while near-data execution can im-
prove both energy-efficiency and performance, effective NMP
algorithms must consider locality, access granularity, and
microarchitecture of the stacked memory devices.

1. Introduction

Large-scale analytics on massive datasets have radically trans-
formed every aspect of our society, from medicine and sci-
entific discovery to business and warfare. As the volume of
data has skyrocketed over the last decade, growing at a pace
comparable to Moore’s Law [19], computing platforms for
data-intensive services have struggled to keep up with the load.

Power is the key bottleneck limiting the effectiveness of
computing platforms in the post-Dennard era. Semiconductor
makers are no longer able to scale down supply voltages to
offset the increase in switching energy that accompanies each
doubling of transistors. As a result, the growing demand for
data-intensive services has ushered an era of ever-larger and
more power-hungry datacenters. Indeed, the power draw of
leading-edge datacenters has been projected to increase 10-
fold over the decade, from around SMW per datacenter in
2005 to SOMW in 2015 [20].

The challenge, and also an opportunity, for system design-
ers is to bridge the gap between data and technology through
specialized architectures that leverage application character-
istics to boost processing efficiency. Our work takes a step
in this direction for in-memory analytics in the context of
contemporary databases. Specifically, we examine the Join
operation, which prior work has identified as the single largest
contributor to the execution time and power consumption of
an analytic pipeline [15]. The join operation combines records
that match a specified predicate from a pair of database tables
or columns. To reduce the number of comparisons, existing
join algorithms either sort or hash the datasets. In both cases,
the data movement between the memory and processor is
the dominant source of energy consumption, since the actual
per-element processing is trivial.

To address the data-movement bottleneck, we advocate
pushing join operations toward the memory by leveraging
emerging stacked DRAM designs. These designs integrate
several DRAM dies on top of a logic die that controls DRAM
and serves as an interface to the CPU. The logic die is an
ideal substrate for simple hardware capable of executing data-
intensive operations.

Recent work has examined near-memory processing (NMP)
for very regular workloads that require no communication
between DRAM modules [22]. In contrast, the join work-
load is less regular [8] and, for non-trivially sized datasets,
intrinsically requires cross-DRAM-module communication.
In order to be useful across a broad range of domains, NMP
must be able to effectively accommodate such irregular com-
putations. This work represents a first step in that direction by
demonstrating that simply shifting the computation near the
data is insufficient for attaining peak efficiency. Instead, NMP
algorithms must also leverage locality, minimize the number
of accesses to each DRAM row, and exploit microarchitectural
characteristics of the memory substrate.

In this paper, we make the following contributions:

e We revisit sort-based and hash-based join algorithms and ex-
amine their efficiency in both NMP and CPU deployments.

o Our preliminary evaluation shows that for CPU-centric exe-
cution, hash-based algorithm performs better than the sort-
based one both in terms of performance and energy con-
sumption, corroborating the prior results [5]. However, in
the NMP systems, the fine-grained random accesses in the
partitioning phase penalize both the performance and energy
benefits of the hash-based algorithms, making sort-based
approaches more attractive for various workload scenarios.

e Overall, we show that performing a join near the mem-
ory can improve energy-efficiency by 4.5-10.7x and perfor-
mance by 1.9-5.1x over the CPU execution.

2. Motivation

2.1. Database Operation: Join

Databases systems are crucial for maintaining, manipulating
and analyzing large volumes of data. Contemporary databases
optimized for large-scale analytics store the data as a col-
lection of individual columns each containing attributes of a
particular type. The columns are accessed via queries, writ-
ten in a specialized query language (e.g., SQL), which are
eventually converted into physical operators by the database
system. Join is one of the fundamental operators in database
systems, which iterates over a pair of columns to produce
a single column based on a common key. Figure 1 shows

I

Key | Payload

Join

4

il

Column R

Output: Matched keys

Column S

Q: SELECT .. FROM R, S WHERE R.Key = S.Key

Figure 1: Join example.
an example of a join query. Join is an expensive operation
whose efficient implementation plays an important role in both
database queries’ performance and energy consumption.

In practice, join algorithms fall into one of two categories:
sort-based and hash-based. As the name implies, the idea of
the sort join algorithm is sorting the two columns, and then
merging them to find the matched keys. In contrast, the hash
join starts by building a hash table on one of the columns and
then probes the table with keys from the other column to find
matches. To reduce the latency of accessing the hash table, a
cache-aware radix-hash join algorithm [18] will partition both
columns into slices that fit in the on-chip caches.

Both sort- and hash-based approaches have well-known
overheads. The sort-based algorithm suffers from the high
preparation time (i.e., sorting, whose time complexity is O(N
logN)). The logN factor adversely affects not just the run time,
but also the energy-efficiency of the algorithm. The hash-based
approach is plagued by random memory accesses in both the
build and probe phases, which diminish both performance and
energy-efficiency.

2.2. Near-Memory Processing with Stacked DRAM

An attractive way to eliminate the high energy cost of moving
the data between DRAM and CPU is to perform the processing
near the memory arrays. Processing in memory, pursued by
researchers in the late 90’s, tried to do exactly that by integrat-
ing compute capabilities into DRAM chips [21, 13]. The ideas
never caught on due to technology challenges (DRAM and
logic benefit from very different process technologies) and the
lack of a killer application or an economic driver.

Recently, advances in integration and packaging technology
have led to an emergence of a new breed of memory chips that
combine multiple DRAM dies into a vertical stack. Through-
silicon vias (TSVs) provide a low-latency high-bandwidth
interface between the DRAM dies and a logic die contain-
ing the DRAM control circuitry and CPU interfaces. As of
this writing, Micron is shipping its second-generation stacked
memory part called the Hybrid Memory Cube [11]. A compet-
ing product from Hynix/AMD [12] has also been announced.

By integrating high-speed logic on a dedicated die right next
to DRAM, stacked memory presents an opportunity to bring
processing close to the memory in a practical and affordable
manner. Moreover, a strong economic incentive in the form of

DRAM/die
DRAM/die
DRAM die Vault
DRAM/die
d cont.
Plooche /L
Figure 2: Hybrid Memory Cube (HMC).

energy-efficiency is now in place to do so. With the two major
barriers to adoption (technology and market) out of the way,
there is now renewed interest in NMP [2].

Recent work examining NMP has focused on very regular
processing localized to a single DRAM partition [22]. How-
ever, in order for NMP to be truly useful across a broad range
of workloads, it must effectively handle less regular access
patterns and data distributed across multiple partitions. From
that standpoint, a Join workload makes for a good case study,
as both sort- and hash-based approaches operating over a large
memory space must deal with these issues.

2.3. Stacked-Memory Example: HMC

To understand the opportunities for NMP of database oper-
ations with stacked DRAM, we briefly examine the Hybrid
Memory Cube as a representative design point. HMC consists
of several DRAM dies and one logic die, stacked together
using TSV technology. Each die is segmented into 32 au-
tonomous partitions. A vertical stack of the partitions forms a
vault, with each such vault controlled by a dedicated controller
located on the logic die partition [11, 1]. Figure 2 shows a
conceptual picture of the HMC.

Compared to conventional DRAM organized into multi-KB
rows, the HMC features small rows of 256 bytes and a user-
configurable fetch granularity of 32 to 128 bytes. To interface
with the CPU, the HMC uses serial links running a packet-
based protocol. Each 32-bit link operates independently and
can be used to access any of the vaults in the HMC. The
actual DRAM control logic is distributed among the vault con-
trollers. A typical HMC access consumes 10.48pJ/bit energy
which breaks down into two parts: accessing the DRAM itself
(3.7pJ/bit) and the CPU-HMC interface (6.78pJ/bit) [11].

The 2x difference between the access and interface energy
implies cheaper processing within an HMC as opposed to
across multiple chips. However, the capacity of each stack is
only up to 8GB. Thus, to support today’s requirement, multiple
stacks must be used in a system. Up to 8 HMCs can be chained
together via the SerDes links [1]. Since a memory access
may require traversing multiple SerDes links to reach the
appropriate target HMC, and because a SerDes link traversal
is more expensive than the actual DRAM access, it is essential
to consider data placement and communication costs in the
design of NMP algorithms.

3. Hash Join vs. Sort Join

3.1. Prior Work in Software

Over the past few decades, various algorithms have been pro-
posed for efficient join implementation by taking advantage
of the novel micro-architectural features of the processors
such as multiple cores, larger on-chip caches, and additional
memory bandwidth [18, 14, 5]. Among these, radix-hash and
sort-merge join algorithms are the two most popular hardware-
conscious join algorithms.

The hash-based join algorithms attempt to avoid the cache
misses encountered during the join phase by partitioning both
input columns into cache-sized chunks. The radix-hash join
[18] proposes a lightweight, cache-aware radix-partitioning
algorithm, which makes partitioning large inputs practical for
main-memory systems. In contrast, parallel sort-merge join
algorithms advocate for sorting both inputs to allow a join of
two columns only with sequential accesses. Although joining
the sorted columns is a trivial operation, because the merging
(during sorting) is an inherently serial operation, the merge
phase becomes the execution bottleneck. To mitigate such
bottleneck, Albutiu et al. [3] proposes a partitioned massively
parallel sort-merge join (P-MPSM) algorithm, which employs
an additional partitioning phase to avoid the global merging
of the partitioned and sorted data.

In this work, we focus on the two state-of-the-art join algo-
rithms, namely radix-hash join [18] and parallel sort-merge
join (P-MPSM) [3]. Unlike recent work, which only evalu-
ated these algorithms in the context of CPU-centric execu-
tion [14, 5], we further evaluate them for NMP. The input
columns of both algorithms, R and S, include an 8B key and
8B payload tuples with the assumption that |R| < |S].

3.1.1. Radix-hash join The algorithm consists of three

phases: partition, build and probe [18, 14]. In the partitioning

phase, both columns are partitioned based on the upper B bits
of the join key in three steps:

Step P1: Iterate over the entire relation and build a histogram
counting the number of the tuples in each partition.

Step P2: Perform a prefix sum of the histogram to compute
the starting addresses of the elements mapping to the respec-
tive indexes of the histogram.

Step P3: Reorder the tuples by scattering them to the corre-
sponding partitions.

The partitioning phase is followed by the build phase: a hash

table is created for each partition of R (the smaller relation).

To locally build a hash table for each partition, the three steps

described above is performed by using a hash function instead

of the join key’s upper bits. The result is reordered partitions

of R.

The last phase is the probe phase, where we iterate over
each partition of S and probe the hash table of R to find the
matching keys and output the result.

In the CPU-centric execution, the number of partitions are
chosen based on the L1-D cache size in order to fit a partition

in it, whereas in NMP, the number of partitions is equal to the
number of physical memory partitions to take advantage of
the available parallelism in the probe and build phases.
3.1.2. Sort-merge join In P-MPSM [3], both columns are
equally divided into C chunks (typically equal to the number
of workers). The P-MPSM algorithm consists of three phases:
Phase 1 (partition R): R is partitioned into C partitions (sim-
ilar to the partitioning phase in Radix-hash join).
Phase 2 (sort): Each chunk of S and R is locally sorted.
Phase 3 (merge-join): Each sorted chunk of R is merge-
joined with each sorted chunk of S.
Note that because R is partitioned into the C chunks, each
chunk of R is joined with only 1/C™ of each chunk of S.
In the CPU-centric execution, the number of chunks is equal
to the core count, whereas in NMP it is equal to the number of
physical memory partitions.

3.2. Join Algorithms Near Memory

Without loss of generality, we assume an HMC-like design
(for convenience, referred to as "HMC" below) as a NMP
system. However, the key ideas are applicable to other stacked
memory architectures (e.g., HBM [12]).

There are two key aspects in NMP:

(1) The memory interface energy consumption is 2x
more than the DRAM energy consumption in stacked-
memories [11], therefore we need to exploit locality in one
stack as much as possible.

(2) We need to minimize the number of fine-grain (e.g., single
word) accesses to DRAM. The DRAM access has a wide
interface in comparison to a cache access, and the access
is destructive (i.e., even when a single word of a DRAM
row is accessed, the whole row must be precharged in the
row buffer, and then written back to DRAM). As a result,
accessing one tuple key (typically 16 bytes) from DRAM
consumes significant energy as the entire row is accessed.
In contrast, "bulk" accesses that operate on the entire row
can amortize the DRAM access energy over operations on
multiple words [25].

3.2.1. Locality The number of partitions (in Radix-hash join)

and the number of chunks (in P-MPSM) are equal to the total

number of vaults (v) in HMCs to exploit the available paral-
lelism. However, due to the nature of the algorithms, data
movement is unavoidable. In Radix-hash join, the data move-
ment occurs during the partitioning phase and in P-MPSM,
data is moved during the partitioning and merge-join phases

(phases 1 and 3).

In the partitioning phase of both algorithms, the tuples that
belong to the other partitions will be sent to the other vaults,
which can be either on the same chip or on the other chips.
The number of chips is denoted by /4. Given the uniform data

distribution, U’;l) of the tuples will move between the chips.
The difference between the two algorithms is the amount of
data that needs to be partitioned. In Radix-hash join, both

columns § and R are partitioned, while in P-MPSM only R is

partitioned. If we assume that |S| = c|R|, Radix-hash join’s
data movement is (¢ + 1) times more than P-MPSM’s data
movement in the partitioning phase.

Radix-hash join does not suffer from data movement in its
build and probe phases, because both phases are performed
within a vault. However, P-MPSM, in merge-join phase, needs
to move each R partition to the all S chunks. To do so, P-
MPSM requires moving each partition of R, v x (h— 1) times
between the chips, which could result in a large amount of
data movement. To reduce such data movement, we can move
each R partition only once per HMC and have each receiving
HMC broadcast the incoming partitions to its vaults. Thus, we
need to move each partition of R just (A — 1) times. In total,
we have v partitions which include ‘—If‘ amount of data and we
need to move each partition (& — 1) times. Thus, P-MPSM’s
merge-join phase needs to move (2 — 1) x |R| amount of data.

The total data movement of Radix-hash join is equal to

the data movement in partition phase which is @ x (|R]+

IS]) = @ x (c+1) x |R|. In contrast, the total data move-
ment of P-MPSM is equal to the sum of data movement in
partition and merge-join phases which is @ X |R| 4+ (h—

2
1) x |R| = (’:1) X |R|. Therefore, the ratio of data movement

in Radix-hash join to P-MPSM is {-13.. This ratio shows that

by increasing c (i.e., the ratio of |S| to |R|), Radix-hash join
algorithm has more data movement than P-MPSM, which is
not the case for the CPU-centric execution.

3.2.2. Accessing Memory The second key point in the NMP
execution is to reduce word-granularity accesses to DRAM.
To do so, we must avoid random accesses as much as possible.
Considering the three phases of Radix-hash join, we can see
that reordering data in both partition and build phases always
requires random accesses. In the probe phase, reading S tuples
is sequential, however, reading the corresponding R tuples
requires random accesses to memory. As a result, Radix-hash
join algorithm writes R and S columns randomly in partition
phase and reads R column randomly in probe phase. On
the other hand, all phases in P-MPSM algorithm access the
data sequentially except for phase 1 (i.e., partition R), which
randomly writes only R column.

Because a sequential access pattern amortizes the DRAM
activation energy over all words in the DRAM row, it is pre-
ferred to a random access pattern that opens each row to oper-
ate on just one tuple. As aresult, comparing the two algorithms
based on their memory access patterns shows that for near-
memory execution, P-MPSM is superior. The difference is
particularly significant as the ratio of |S| to |R| increases.

3.3. Hardware Requirements

In order to execute the join algorithms near memory, several
hardware components are required. First, every HMC vault
needs to employ a logic unit, which is capable of sorting,
hashing, comparing, and generating data load/stores. The

load/store interface should be wide enough to be able to oper-
ate on an entire DRAM row at once (e.g., wide SIMD logic).
The unit can either be programmable (e.g., a microcontroller)
or fixed-function. Second, each HMC needs to have an inter-
vault network-on-chip (NOC) with broadcast or multicast ca-
pability (see Section 3.2.1). Finally, a TLB may be used if
virtual addressing is extended to cover near-memory execution.
However, we observe that database management systems typi-
cally preallocate and pin large chunks of contiguous memory,
which may imply that physical or segment-based addressing
[6] is sufficient.

4. Methodology

Evaluated Systems: We compare the efficiency of Radix-
hash join and P-MPSM on two platforms. CPU-centric rep-
resents a typical setup of a CPU and a memory. However,
instead of commodity DDR3 DRAM, we consider four HMCs
as a main memory for future-generation servers. In this design,
the join algorithms execute on the CPU. The other platform is
NMP in which join algorithms execute on the logic layer of the
HMC:s. It is important to note that although both Radix-hash
join and P-MPSM can handle skewed data, in this work, for
simplicity we assume uniform data distribution.

Table 1 summarizes the key parameters of the modeled
systems. On the CPU side, we model a core microarchitecture
that is expected to maximize overall performance and energy-
efficiency for the target workload domain. Specifically, we
choose a modest-complexity out-of-order core and augment it
with a wide vector unit that is able to exploit the rich data-level
parallelism that exists in analytic kernels [24]. Our specific
design point combines a low-power 3-way OoO core modeled
after the Qualcomm Krait 400 [10] with a high-performance
512-bit vector engine similar to that in the Intel Xeon Phi.

For the join logic, we model a simple micro-controller
which can support 256B SIMD. We also assume that it is
able to support bitonic merge sort for 16 elements. To sup-
port modeling data movement within a chip, we consider a
2D mesh NoC in 20mm x 20mm chip. We also model ring
topology for connecting the HMCs to each other and the CPU.
Performance evaluation: Our evaluation is based on a first-
order analytical model. For the CPU-centric design, we use
a similar analytical model used in the prior studies [14, 18].
Additionally, for the NMP design, we augment our model
with the following two parameters: (1) latency of moving data
from device to another in the partition phase, and (2) latency
of random/sequential read/write operations within a physical
memory partition.

Energy consumption: Table 1 summarizes the power and
energy estimates for various components. We estimate the
energy of the scalar core and L1 complex by using publically
available data for the Krait 400 [10]. To account for the energy
overhead of the vector unit, we use recent studies showing
that SIMD/AVX engines on both a simple ARM core and a
high-end Intel core add approximately 10% to core’s dynamic

Arch/uArch Features Energy/Power
CMP 22nm
16 cores
Core 000, 3-wide, 60-entry ROB
512-bit SIMD, 2.5GHz Power: 900mW
64KB L1-1/D, 64B blocks
LLC 4MB, 16-way Read/Write:
8-cycle hit latency .63nJ/.70nJ
HMC 4 cubes, ring
50nm DRAM, 8GB
8 DRAM dies, 32 vaults Access: 3.7pj/bit
10GB/s BW per vault I/O+logic:
4 links per each cube 6.78pj/bit
BW per link: 60GB/s per dir.
Join logic | 22nm logic die logic:
256B SIMD 0.042pl/bit
2D mesh NoC NOC:
0.04pJ/pit/mm

Table 1: Evaluation parameters.

power for vector widths of 128 and 256 bits [7, 23]. Based on
these results, we increase the scalar core’s power by 20% to
account for the modeled 512-bit vector engine.

Beyond the core, we estimate LLC power through CACTI
6.5 [16]. For the HMC, we use the energy data reported by
Micron [11]. For the NOC, we use the previously published
data [9]. Finally, we estimate the energy for the join design
by using the numbers in [4] for a fixed point logic and scale it
down to 22nm.

5. Evaluation

Figure 3 quantifies the normalized performance and energy
benefits of the sort and hash-based join algorithms varying
the relation (S) size. On the CPU-based platform, we observe
that Radix-hash join constantly outperforms the P-MPSM by
achieving a 52% better performance and 54% reduction in
energy consumption on average. Although both algorithms
have preparation overheads (i.e., sorting and partitioning), the
sort-based algorithm suffers from a logarithmic preparation
overhead dominated by the sort step, while the random ac-
cesses in Radix-hash join’s partitioning phase are filtered by
the L1-D cache as the algorithm can be tuned to take advantage
of the L1-D cache parameters [5].

Near-memory processing (NMP) of both algorithms further
improves the performance by taking advantage of parallelism
across many vaults and HMC’s high internal bandwidth. The
offloaded NMP sort- and hash-based designs execute the join
operations 2X and 3.5X faster, respectively, than the CPU-
based algorithms by spreading the computation across the 128
partitions of the HMC. If the same degree of parallelism ex-
isted in the CPU baseline, NMP offloading would still deliver
a 1.7x speedup by exploiting HMC'’s high internal bandwidth.

We observe that P-MPSM is sensitive to the |R| to |S| ratio
and performs better than Radix-hash join when |R] to |S| ratio
is 1:4 or greater. As explained in Section 4, P-MPSM has the

1 1§
o H performance B
£ £
£075 Energy 075 5
c
2 8
T 05 05
(7] >
g &
© [
©
Eo2s 025 5
T
Sl 1 l. . | :
0 [C— | n | o =
S g s g s /s /s /s g/ s £ 35| ¢ £
n O wnv O v O wnv O wn Olwn O wn O un O =
=S - B B - e - B B - O B - R B - O B - R B]
I HEHE I HEHE
el %>z >z
kel o el e el el el kel
© © © © © © I} o]
o o o o o o o o

CPU | NMP | CPU | NMP | CPU | NMP | CPU | NMP

ISI=IR] IS|=4IR] IS|=8|R| IS|=16]R|

Figure 3: Performance and energy consumption of hash- and
sort-based join algorithms (normalized to P-MPSM |S| = 16|R|
on CPU).

sorting overhead of both columns but requires partitioning only
R, while Radix-Hash Join algorithm requires partitioning both
R and S. Therefore, as the size of S grows, the performance
penalty of remote and random writes in the partitioning of
S leads to poor performance in Radix-hash join for larger
probe relations. This behavior is not observed in CPU-based
execution as the close coupling of the CPU and L1-D and their
fast, narrow interface are well-matched to fine-grain accesses.

Figure 3 also compares the energy efficiency of NMP and
CPU-based approaches. We observe that NMP reduces the
energy consumption of the join operation by 81-95% over
the CPU. Nearly two-thirds of the energy savings come from
the use of wide specialized logic in the NMP design. The
rest of the efficiency benefit is attributed to the reduction in
chip-to-chip data movement.

We further explore the energy-efficiency of the NMP execu-
tion in Figure 4, which is normalized to P-MPSM IS| = 16IRI
on CPU. It breaks down the energy consumption into three
categories: 1) computation, 2) data movement, and 3) DRAM
access energy. An important conclusion of Figure 4 is that
Radix-hash join, which achieves significantly lower energy
consumption than P-MPSM on the CPU, is just marginally
better than P-MPSM in the |R| = |S| NMP case. Moreover,
Radix-hash join’s energy consumption relative to P-MPSM
increases consistently with the size of |S|. In the |R| = 16]S]
case, P-MPSM achieves 47% lower energy consumption than
Radix-hash join.

As we analyze the two algorithms, we conclude that the
locality and access granularity play an important role in the
energy efficiency of NMP-based systems. P-MPSM’s sorting
phase, which is the energy hog on the CPU-based execution,
almost disappears as P-MPSM algorithm sorts data locally in
each HMC vault, where it effectively leverages DRAM row
locality. At the same time, both probe and partitioning phase
in Radix-hash join require data accesses at word granularity
that burn significant energy in full DRAM row activations.

0.1

Computation energy
Data movement energy
B DRAM energy

P-MPSM | Radix |P-MPSM| Radix |P-MPSM| Radix |P-MPSM | Radix
Hash-Join Hash-Join Hash-Join Hash-Join

0.05

Normalized Energy Consumption

0

ISI=IR] [SI=4IR] ISI=8IR| [SI=16R|

Figure 4: Energy breakdown of hash- and sort-based join al-
gorithms in NMP (normalized to P-MPSM |S| = 16|R| on CPU).

Overall, we observe that NMP can provide high perfor-
mance and energy benefits, but the choice and tuning of the
algorithm greatly impacts the overall performance and effi-
ciency.

6. Related Work

Virtually all prior research on near-memory processing fo-
cused on bringing programmable cores close to the DRAM
arrays. Examples include work in 90s and early 2000 (e.g.,
IRAM [21] and FlexRAM [13]), as well as recent work from
AMD [26]. While fully programmable designs are clearly
the most flexible, they do incur an array of complexities [17].
These include energy-efficiency and thermal considerations;
orchestration of exception handling (e.g., in response to a
page fault); and address translation challenges or, for designs
aiming to extend virtual memory to cover the near-memory
processing logic, extensions to the cache coherence protocol.

Recent work from Loh et al. made a general case for
fixed-function near-memory accelerators [17]. The authors
described a number of potential functions that could be viable
targets for such acceleration and introduced a taxonomy to
help reason about the design space. Our study represents a
concrete case for near-memory accelerators. Our key contri-
butions include identifying a specific high-value functionality
for acceleration, characterizing the workload behavior, as well
as identifying and addressing two key efficiency challenges —
namely, data access granularity and locality.

7. Conclusion

This work revisits the "Hash vs. Sort" question in the con-
text of Near-Memory Processing (NMP). Our results show
that NMP systems have a great potential to overcome the
performance and energy bottlenecks of today’s CPU-centric
systems. However, achieving the full potential of NMP re-
quires a careful analysis of the algorithms. We find that data
access granularity and locality play an essential role in NPM
efficiency and performance. To increase the utility and effec-
tiveness of such near-memory processing, future work should

study data skew, and focus on composing multiple operations
with minimal CPU involvement.

Acknowledgments

This work has been partially funded by the DeSyRe project
of the Seventh Framework Programme of the European Com-
mission, the Google Faculty Research Award, the Google
Europe Doctoral Fellowship, and the Microsoft Research PhD
Scholarship.

References

[1] “The HMC Specification 2.0,” http://www.hybridmemorycube.org/.

[2] First Workshop on Near-Data Processing (WoNDP), Dec. 8, 2013.

[3] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively parallel sort-
merge joins in main memory multi-core database systems,” VLDB,
vol. 5, no. 10, 2012.

[4] D. A. Bader, “Opportunities beyond single-core microprocessors.”

[5] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu, “Multi-core, main-
memory joins: Sort vs. hash revisited,” VLDB, vol. 7, no. 1, 2013.

[6] A.Basu,J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in ACM SIGARCH Computer
Architecture News, vol. 41, no. 3. ACM, 2013.

[7] J.Cebrian, http://research.idi.ntnu.no/multicore/_media/jmcg_pp4ee.pdf.

[8] B. Gold, A. Ailamaki, L. Huston, and B. Falsafi, “Accelerating database
operators using a network processor,” in Proceedings of the 1st interna-
tional workshop on Data management on new hardware, 2005.

[9] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-noc: a het-
erogeneous network-on-chip architecture for scalability and service
guarantees,” ACM SIGARCH Computer Architecture News, vol. 39,
no. 3, 2011.

[10] L. Gwennap, “Qualcomm Krait 400 Hits 2.3GHZ,” in Microprocessor
report, January 2013.

[11] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM Archi-
tecture Increases Density and Performance,” in VLSIT, 2012.

[12] JESD235, “High Bandwidth Memory (HBM) DRAM,” October 2013.

[13] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “FlexRAM: Toward an Advanced Intelligent Memory
System,” in ICCD, 1999.

[14] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs. hash revisited: Fast
join implementation on modern multi-core cpus,” VLDB, vol. 2, no. 2,

[15] %)Qol%ocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ran-
ganathan, “Meet the Walkers: Accelerating Index Traversals for In-
Memory Databases,” in MICRO, 2013.

[16] S.Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P:
Architecture-Level Modeling for SRAM-Based Structures with Ad-
vanced Leakage Reduction Techniques,” in ICCAD, 2011.

[17] G. H. Loh, N. Jayasena, M. H. Oskin, M. Nutter, D. Roberts,
M. Meswani, D. Ping Zhang, and M. Ignatowski, “A Processing-in-
Memory Taxonomy and a Case for Studying Fixed-function PIM,” in
WoNDP, 2013.

[18] S. Manegold, P. Boncz, and M. Kersten, “Optimizing main-memory
join on modern hardware,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 14, no. 4, 2002.

[19] A.McAfee and E. Brynjolfsson, “Big Data: The Management Revolu-
tion,” in Harvard Business Review, October 2012.

[20] M. P. Mills, “Big Data, Big Networks, Big Infrastructure, and Big Power.
An Overview of the Electricity Used by the Global Digital Ecosystem,”
August 2013.

[21] D. PattersonT, N. C. Anderson, R. Fromm, K. Keeton, C. Kozyrakis,
R. Tomas, and K. Yelick, “A Case for Intelligent DRAM: IRAM,” IEEE
Micro, 1997.

[22] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “Ndc: Analyzing the impact
of 3d-stacked memory+ logic devices on mapreduce workloads,” in
ISPASS, 2014.

[23] C. Shore, “Developing Power-Efficient Software Systems on ARM
Platforms,” http://www.igmagazineonline.com/current/pdf/Pg48-53.pdf.

[24] J. Sompolski, M. Zukowski, and P. Boncz, “Vectorization vs. Compila-
tion in Query Execution,” in DaMoN, 2011.

[25] S. Volos, J. Picorel, B. Falsafi, and B. Grot, “Bump: Bulk memory
access prediction and streaming,” in MICRO, 2014.

[26] D.P.Zhang, N. Jayasena, A. Lyashevsky, J. Greathouse, M. Meswani,
M. Nutter, and M. Ignatowski, “A New Perspective on Processing-in-
Memory Architecture Design,” in MSPC, 2013.

