

Edinburgh Research Explorer

An Approach for the Qualitative Analysis of Open Agent
Conversations

Citation for published version:
Serrano, E, Rovatsos, M & Botía, JA 2012, An Approach for the Qualitative Analysis of Open Agent
Conversations. in Proceedings of The Third International Workshop on INFRASTRUCTURES AND TOOLS
FOR MULTIAGENT SYSTEMS ITMAS 2012. Editorial Universitat Politècnica de València, pp. 79-92.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of The Third International Workshop on INFRASTRUCTURES AND TOOLS FOR MULTIAGENT
SYSTEMS ITMAS 2012

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/an-approach-for-the-qualitative-analysis-of-open-agent-conversations(bd338179-9f60-4ac1-af94-9d72ce851a98).html

An Approach for the Qualitative Analysis

of Open Agent Conversations

Emilio Serrano1, Michael Rovatsos2, and Juan A. Botia1

1University of Murcia ∗, {emilioserra,juanbot}@um.es
2University of Edinburgh, michael.rovatsos@ed.ac.uk

Abstract

This paper presents an approach for the qualitative analysis of data ob-
tained from past communicative interactions in an open multiagent system.
Such qualitative analysis focuses on the use of high-level agent communica-
tion languages to infer theories about agents with mental states which are
normally not accessible for the outside observer. The inference of these the-
ories, or context models, is based on logging semantic data available from
protocol execution traces and using this information as samples for the appli-
cation of data mining algorithms. These context models can be applied both
by system developers and agents themselves at run-time for various tasks,
e.g. to predict future agent behaviour, to support the process of ontological
alignment in communication, or to assess the trustworthiness of agents. An
implementation of the approach presented is also given, the ProtocolMiner
tool, which automates the building of context models from arbitrary protocol
executions.

Keywords: Agent communication languages, interaction protocols, in-
teraction analysis, data mining, agent-oriented software engineering.

1 Introduction

The interaction among autonomous, rational agents is one of the essential charac-
teristics of a multiagent system (MAS). For this reason, most MAS platforms offer
various mechanisms to support such interaction, including an infrastructure for
sending and receiving messages, establishing conversations, following interaction
protocols, sharing vocabularies using ontologies, etc.

Most of the analysis tools included in MAS development frameworks fall into
two categories: (1) analysis of agents’ mental states, and (2) analysis of the in-
teractions among agents. The analysis of mental states usually assumes that the

∗Acknowledgments: This research work is supported by the Spanish Ministry of Science
and Innovation under the grant AP2007-04080 and in the scope of the Research Projects TSI-
020302-2010-129, TIN2011-28335-C02-02 and through the Fundación Séneca within the Program
04552/GERM/06. Facultad de Informática, Campus Universitario de Espinardo, 30100 Murcia,
Spain.

1

agents’ implementation is known and available. This constraint is very restrictive
in open MAS that run on interoperable agent interaction platforms where different
agents can be added to the system by different users at runtime. On the other
hand, methods for interaction analysis often remain very superficial and address
only fixed syntactic elements that can be observed in message exchanges (e.g. per-
formative, sender and receiver, successful/unsuccessful completion of the protocol,
etc). This paper covers these shortcomings employing the semantics of interactions
to perform a qualitative analysis which is able to infer theories about agents with
hidden mental states.

To appreciate the utility of a qualitative analysis, let us take the FIPA Contract-
Net protocol as example [1]. This protocol describes an agent (the Initiator) who
wants one or more agents (the Participants) to perform a task. In this proto-
col, there are a large number of analysis tasks that can be performed following
a quantitative analysis: (1) obtaining the number of conversations in which each
agent has participated; (2) conversations in which an error occurred in the flow of
messages defined by the protocol; (3) number of agents which rejected a proposal;
(4) number of tasks that a participant was unable to perform after committing to
them; etc.

Although this quantitative analysis can be very useful for a developer, more
interesting information is usually captured in the specific semantics of messages,
i.e. qualitative properties. The developer of the Initiator agent, for example, may
be interested in which tasks are usually rejected by agents or, more specifically,
how the process used by a Participant to accept or reject a task is implemented
(in the sense of a decision rule in the agent’s reasoning mechanism). Of course,
this information is hidden if the Participant agents’ implementation is unknown by
the Initiator. Nonetheless, considering a concrete past execution of the protocol,
the Initiator agent can easily recognise if a particular task has been accepted or
rejected by a specific Participant. What is more, after several executions of the
protocol, the Initiator can generalise the individual cases to build a more general
theory that explains participants’ behaviours.

We call theories which allow a developer to perform a qualitative analysis con-
text models. As illustrated in the example, these models correlate the status of log-
ical constraints attached to interaction protocol specifications to perceived agent
behaviour. In other words, they map the conditions under which a certain be-
haviour occurs to the resulting behaviour itself.

Construction of these context models is based on capturing regularities in pre-
viously observed interactions by using data mining techniques. Context models are
able to reveal implicit causal relationships between states of the system and the
reasoning and decision-making mechanisms of all agents involved. These models
can be used for various purposes: (1) to make predictions about future behaviour;
(2) to infer the definitions other agents apply when validating logical constraints
during an interaction; and (3) to analyse the reliability and trustworthiness of
agents based on the logical coherence of their utterances.

In addition to the definition, construction and use of the context models; the
contribution of this paper is to present an approach to automatically generate these
models and an implementation of this approach, the ProtocolMiner tool.

The remainder of the paper is structured as follows. After reviewing related

2

work in section 2, we introduce the formal approach in section 3. The Proto-
colMiner tool is presented in section 4. Section 5 gives empirical results obtained
in a case study. Finally, section 6 concludes.

2 Related work

Many tools for run-time multiagent systems analysis address the testing, debug-
ging, validation or verification of these systems. For example, the Tracer Tool [9]
provides a semi-automated solution for agent software understanding, using high-
level agent concepts instead of detailled execution traces and programming data
structures. The tool proposed in [14] for the JADEX agent platform can be used
to verify the consistency of internal events and message declarations and to obtain
an overall communication structure as a three-dimensional graph. The inspector
tool [6] for the the Agent Factory Agent Programming Language (AFAPL) provides
support for the inspection of the internal states of agents, and for monitoring the
performance of the underlying agent components. Similarly, INGENIAS [8] pro-
vides a visual debugging tool to inspect agents’ mental states. These approaches
are, however, only suitable for systems in which the mental states of the agents can
be inspected by the designer, i.e. effectively only for systems whose code has been
disclosed a priori, or who have been designed by the user performing the analysis
themselves.

In contrast to this, there are also methods aimed at design-time (static) analysis
of multiagent systems properties such as MABLE [15]. This imperative program-
ming language uses the SPIN model checker to automatically verify properties of
the system. While valuable, these approaches can only verify certain properties
of agent interactions (based on observed interactions or on design-time specifica-
tions). However, they cannot derive any additional and explicit knowledge about
the emergent behaviour of the system apart from whether agents are behaving
correctly or not.

The only exception to this is some work that has recently emerged in the area
of ontology matching [3, 4]. In these contributions, hypotheses about the possible
meanings of unknown terms used by the other agent are filtered based on structural
knowledge of the protocols. This is achieved by either (1) looking at the ontological
relationships between candidate concepts based on the terms that appear earlier in
the same dialogue or in previous dialogues, or (2) by reasoning about the overall
syntactic structure of the protocol. However, this kind of reasoning is only used
to resolve ontological conflict. On the other hand, the approach presented in this
paper is able to infer more general emergent properties of interactions.

The notable limitation of all (but the latter) existing work is that it does not
consider semantic elements of interactions for analysis, e.g. the constraints used by
the agents while they are executing protocols, and which cause a concrete protocol
execution to unfold in a particular way. Also, they fail to induce compact, explicit
theories about the ways in which interaction evolves in a system, and which could
be useful for the design of adaptive agents. The following section describes the
ProtocolMiner tool which is able to induce this kind of theories. MR: the next
section describes the theory, not the tool.

3

3 Formal approach for a qualitative analysis

Beyond the presentation of the ProtocolMiner tool, which uses a specific protocol
specification language, the analysis provided by this tool is based on a formal
approach. This approach for qualitative interaction analysis is independent of
the specific development platform used. This section formalises: how to define
protocols that are semantically annotated; how to obtain a context model from the
execution of these protocols using data mining techniques; and how to build the
training data set for these techniques.

3.1 Defining a protocol and its context

In brief, our framework is based on defining a protocol model as a graph G = (V,E).
In this graph, each node v ∈ V is labelled with a message m(v) = q(X,Y, Z) with
performative q (a string) and sender / receiver / content variables X, Y , and
Z. Besides, each edge is labelled with a (conjunctive) list of (say, n) constraints
c(e) = {c1(t1, . . . , tk), . . . , cn(t1, . . . tkn)}. Each constraint ci(. . .) has arity ki, head
ci and arguments tj which may contain constants, functions or variables (in general
the label of an edge could be an arbitrary formula φ ∈ L of a logical language L). All
variables that occur in such constraints are implicitly universally quantified. The
framework also assumes that all outgoing edges of a node result in messages with
distinct performatives, i.e. for all (v, v′), (v, v′′) ∈ E, (m(v′) = q(. . .) ∧ m(v′′) =
q(. . .)) ⇒ v′ = v′′. Therefore, each observed message sequence corresponds to (at
most) one path in G by virtue of its performatives. Figure 1 shows an example
protocol model in this generic format for illustration purposes.

The semantics of a protocol model G can be defined by looking at the pairs
〈π, θ〉 which specify the path and variable substitution that any message sequence
m corresponds to in protocol model G. With this, we can define the context of
m as c(G, 〈m1, . . . ,mn〉) =

∧n−1
i=1 c(ei)θ where G(m) = 〈π, θ〉. Crucial to our

view of qualitative interaction analysis is the assumption that for any observed
message sequence m, the conjunction of edge constraints described by the context
c(G, 〈m1, . . . ,mn〉) was logically true at the time of the interaction.

3.2 Obtaining a context model by data mining

The basic method for applying data mining methods to protocol interactions is as
follows: Consider a protocol model G, and message sequences m obtained from
past executions of G. Any such sequence can be translated to a pair G(m) = 〈π, θ〉
as defined above. This approach assumes that only sequences allowed by G occur
(if necessary, G can be modified on the fly to accommodate unexpected messages
by adding constraint-free edges and message nodes). Assuming that a set of such
substition-annotated paths are used as a training data set D, an inductive learning
algorithm L : D → H can be used to map any concrete data set D ⊆ D, where D
is the set of all possible observations, to a learning hypothesis h ∈ H taken from
the hypothesis space of the machine learning algorithm in question [10].

This paper proposes to augment the learning data by the logical context of the
data samples, i.e. to include the logical formula c(G,m) in the data samples, which

4

termsWantedA(T) inStockB(T)

alternativeB(T) altAcceptableA(T)

keepNegotiatingA(T)ר

priceWantedA(T,P)

inStockB(T,P)

alternativeB(T,P)
altAcceptableA(T,P)

keepNegotiatingA(T,P)ר

altAcceptableA(T) ^ keepNegotiatingA(T)ר

altAcceptableA(T,P) ^ keepNegotiatingA(T,P)ר

Figure 1: A simple negotiation protocol model: A decides the terms of a desired
product, and requests T from B. The initial response from B depends on availabil-
ity: if terms T cannot be satisfied, A and B go through an iterative process of ne-
gotiating new terms for the item, depending on the keepNegotiating , altAcceptable,
and alternative predicates. In case of acceptance, the process of negotiation is
repeated to decide the price P for the product. Edge constraints are annotated
with the variable representing the agent that has to validate them (subscript A
or B). Additional (redundant) shorthand notation ci/mj is introduced. Different
out-edges represent XOR if constraints are mutually exclusive, and OR else.

can be directly inferred using the logical constraints provided by the definition of
G. The model obtained with the learning algorithm using the context as training
data is what we call a context model.

Determining the most suitable learning algorithms for a particular context min-
ing task is beyond the scope of this paper, our method does not depend on the
use of a specific algorithm. For example, figure 2 shows the context model for the
constraint altAcceptableA of the protocol described in figure 1 when used in a car
trading system. In this case, a decision tree algorithm has been employed to learn
a specific constraint in the protocol.

3.3 Preparing the training data set

Due to the nature of multiagent interaction, additional design decisions have to be
made before standard data mining machinery can be used, which are to do with
the details of how exactly training data is constructed from raw protocol execution
traces. We discuss these in the following sections.

5

1 persons = 2: F (158)

2 persons = 4: F (158)

3 persons = more

4 | lug_boot = small

5 | | doors = 2: F (8)

6 | | doors = 3: F (7)

7 | | doors = 4: F (8)

8 | | doors = 5-more: T (105)

9 | lug_boot = med

10 | | doors = 2: F (13)

11 | | doors = 3: F (8)

12 | | doors = 4: F (13)

13 | | doors = 5-more: T (120)

14 | lug_boot = big: T (402)

Figure 2: Context model of the altAcceptableA constraint, obtained using the
J48 decision tree algorithm after 1000 negotiations using the protocol described
in figure 1. The notation a =v : T/F denotes that “if a has value v the target
predicate has value T/F”. Every leaf includes the number of instances classified
under a certain path in parentheses.

3.3.1 Dealing with different agents

In defining the datasets to be used for protocol mining, one important design de-
cision is how to deal with the presence of multiple agents. If all messages and
contexts that occur in observed interactions were treated as features of learning
samples this would amount to an attempt to derive globally valid interaction pat-
terns. This learning strategy would imply that a shared theory regarding logical
constraints and a shared ontological understanding of all terms used in commu-
nication exists among agents. In many cases, however, the purpose of interaction
mining is to infer definitions of constraints or behavioural patterns that are specific
to an agent or a group of agents.

To be able to make these distinctions, we need a method for filtering data ob-
tained from protocol executions according to individual agents or groups of agents.
Assume an assignment σ : Var → Ag where Var is the set of all variables occurring
as sender/receiver variables in nodes of the graph, and Ag the set of agent names.
Then for any agent a ∈ Ag , Vσ(a) are the nodes that correspond to messages sent
by agent a under role assignment σ, and Eσ(a) are the incoming edges to those
messages (formally, Eσ(a) = {(v, v′) ∈ E|v′ ∈ Vσ(a)}). We generalise these notions
to Vσ(A)/Eσ(A) for A ⊆ Ag by taking the union over the respective sets for agents.

As an example, consider the protocol model depicted by the graph in figure 1.
Assuming a set of agents Ag = {a1, a2}, a role assignment σ = {[A/a1], [B/a2]},
and the request-provide-termsAccepted path, Vσ(a1) would contain the request
and termsAccepted messages and Eσ(a1) = {termsWanted(T)} as the only con-
straint of the incoming edges to utterances performed by a1.

The most cautious form of data filtering in this setting would be to reduce
the path π of every sample to those nodes and edges that pertain to the learn-

6

ing agent ai. Only contextual information c(Gai ,m) from the restricted graph
Gai = 〈Vσ(ai), Eσ(ai)〉) would be considered because ai can safely verify “own”
constraints along π. With this strategy, all logical constraints verified by other
agents are dropped. Note, however, that the path π and substitution θ used in the
learning sample are still based on the full graph, as the observed messages were
objectively perceived, i.e. G(m) = 〈π, θ〉.

At the other end of the spectrum, if ai fully trusts the other agent(s) and can
safely assume that all agents’ ontologies and logical theories are fully aligned, it
can use the entire path information as part of each learning sample. This strategy
assumes that the definitions of constraints are common to all agents and that every
agent verifies the constraints reliably and honestly.

3.3.2 Dealing with paths, loops, and variables

Standard data mining algorithms assume a fixed number of attributes (features)
and values. Because of this, in our approach to qualitative analysis a number of
issues arise that require certain further design decisions to be made.

Firstly, when collecting different paths for inclusion in the training dataset, their
labels (messages/constraints) and the set of variables contained in these labels may
differ. This is not a problem in principle, as data samples can be “padded” with
“unknown” values for all messages and context constraints that do not occur in
them, but this can be computationally wasteful. In many practical cases, it will be
more appropriate to create a different data set for each observed path π. This is
because any model learnt over such path-specific training data captures better the
precise circumstances under which it occurs.

Moreover, at a domain-specific level, one can merge data across different paths
into a single set while only observing a fixed set of certain messages and con-
straints. Different messages along the path can even be ignored introducing a sin-
gle path label (or path group label) for each path to predict interaction outcomes.
For example, an artificial boolean label success can be attached to a number of
paths, effectively classifying different paths into two categories (where paths with
success = true belong to the category of successful interactions, and all other paths
are deemed unsuccessful).

Secondly, the results of the constraints functions in the context (but not the
attributes in the arguments of these constraints) should be removed when the
learning algorithm tries to predict the “outcome” value. This information is explicit
in the definition of the protocol and is reflected in the path models it provides.
Moreover, including these results may hinder learning techniques from relating the
details of constraint argument values (note that the definition of the constraints in
the protocol is still necessary) to the overall outcome of the protocol.

Thirdly, many common interaction protocols (e.g. negotiation protocols like
auction and bargaining protocols) involve iterations of sub-sequences that can be
repeated an arbitrary or number of times. The existence of a loop in a proto-
col means that variables occurring in a logical constraint or messages used in the
loop can have several constants as ground instantiations in the same execution
{g1, g2...gn}, where n is the number of iterations in the loop. Moreover, n may
vary depending on the number of iterations occurred in each run. Different strate-

7

1 a(participant , B) ::

2 request(X) <= a(initiator , A) then

3 (agree(X) => a(initiator , A) <- consider(X) then

4 (informDone(Y) => a(initiator , A) <- performed(X,Y))

5 or

6 (failure () => a(initiator , A))

7) or (refuse () => a(initiator , A))

Figure 3: LCC implementation of the “participant” role in the FIPA Request
Interaction Protocol

gies can be employed to obtain fixed-length samples for use in the training dataset.
(1) If N is the maximum number of iterations observed in a protocol across various
runs, N “copies” of each variable can be kept (with copies of messages and context
predicates that contain it as attributes in the learning samples). This, however,
introduces a lot of redundancy in paths with fewer than N iterations of the loop
which will have to use a value of “unknown”. (2) Considering only the first/last
ground term g1/gn for a specific variable V in a loop. In many cases (e.g. nego-
tiations) keeping two copies of each variable, one for the first and one for the last
value will suffice as intermediate steps are less important for the outcome of the
interaction.

4 ProtocolMiner

ProtocolMiner is a prototypical tool that provides comprehensive functionality for
qualitative protocol mining. While the tool itself is designed for use by a human
designer, an application programming interface (API) is also provided to allow
agents to exploit emerging knowledge extracted from past interaction.

We first briefly introduce the definition of semantically annotated protocols
that ProtocolMiner is designed to operate on. This is followed by details about
how ProtocolMiner implements the formal approach described in Section 3.

4.1 Defining protocols in ProtocolMiner

The ProtocolMiner tool is a plugin for the OpenKnowledge platform [13], a pro-
tocol specification and execution platform designed for large-scale heterogeneous
multiagent systems. ProtocolMiner automates the construction of context models.
This includes the registration and recovery of the training data for any protocol
implemented and executed in OpenKnowledge. OpenKnowledge uses a protocol
definition language called the Lightweight Coordination Calculus or LCC [11], a
language that uses declarative Prolog-like constraints in protocol specifications.
As an example, an implementation of the “participant” role in the FIPA Request
Interaction Protocol [2] in LCC is shown in figure 3. This specification defines
a role a(participant,B) (binding the concrete agent identifier to variable B at
runtime when the agent adopts the role) in terms of the message sequences allowed
for that role. Incoming/outgoing messages are denoted by double arrows <= and

8

Figure 4: ProtocolMiner user interface

=> from/to another role identifier, and guards (preconditions) on messages appear
on the right hand side of a message exchange, prefixed by a single arrow <- (the
language also allows for postconditions prefixed by ->, these are not used in the
above example). Sequential concatenation, disjunction, and iteration are captured
by keywords then, or and Prolog-like recursive calls of role clauses, respectively.
In this specific example, the constraint consider(X) is used to determine whether
to agree or refuse the request for X.

Although ProtocolMiner has been implemented to use LCC based protocol
specifications, other interaction platforms may be used as data sources as long
as their specification mechanism can be translated to the protocol-model graph
structure defined in section 3.1.

4.2 ProtocolMiner features

The ProtocolMiner user interface is shown in figure 4 after logging executions
of the case study presented for evaluation purposes in the following section. As
explained above, ProtocolMiner allows a developer to define a protocol which meets
the requirements specified in section 3.1 using LCC language. ProtocolMiner also
integrates the Weka [5] algorithms allowing the tool to use a large number of data
mining algorithms to obtain the context models describes in section 3.2. The
strategies to build a training data described in section 3.3 are also implemented in
the tool. The ProtocolMiner GUI, shown in figure 4, allows a developer or agent to
select the agents considered in the dataset through SQL expressions. For example,
if the developer is only interested in agents a1 and a2, the “add filter” option can be
used to introduce A=’a1’ and B=’a2’. Additionally, the list of selected attributes
in the dataset allows for arbitrary selections of subsets of constraints (or edges)

9

to be considered by the data mining procedure. The tool also allows a developer
or agent to select the paths considered in the data set and to label them with an
“output attribute” by means of the option “add label”. Moreover, several paths
that only differ in the number of iterations of a loop can be selected and merged
to a single path using the “join paths” option. Besides, the tool can be configured
to (1) log all the values given to an attribute in a path (every value is stored in a
new attribute), (2) to log only the first and last values along a path, or (3) to log
only the last value given to an attribute at the end of a protocol execution.

5 Case study

To illustrate the usefulness of our approach, we have analysed data generated in a
car selling domain, where agents negotiate over cars using the protocol shown in
figure 1.

5.1 Description of the system under test

To make the discussion concrete, we apply our system to a well-known database for
car evaluation [7]. This database includes the technical characteristics and prices
which are used in the system. More specifically, a potential customer (role A) is
requesting offers from a car selling agent (role B) where T specifies the technical
characteristics including number of doors, capacity in terms of persons to carry, the
size of luggage boot and estimated safety of the car. For the interactions analysed
in the case study, we assume that the values for car characteristics are given as a
tuple T = (doors, persons, lug boot , safety).

After negotiating the car’s technical features, the agents use the protocol to ne-
gotiate the price and maintenance terms (below we refer to these as “price terms”).
Specifically, the potential customer (role A) requests price terms P from a car sell-
ing agent (role B) for the negotiated features T . Price terms are given as a tuple
P = (buying ,maint), where the two attributes refer to the cost of purchase and
maintenance.

We define ten customer agents Ci, where 1 ≤ i ≤ 10, with associated mental
states, i.e. different preferences regarding T and P that determine what offers they
will accept, where Ci := MS i mod 5. Therefore, agents C1 and C6 have mental
state MS 1, C2 and C7 have mental state MS 2, and so on.

For the purposes of this case study, we assume that a single seller (S) is
analysing the system evolution from its local point of view, aiming to predict the
different outcomes of its interactions based on perceived regularities regarding the
observed behaviour of the customers1.

1Due to space limitations, this section does not detail the possible values of T , P , the mental
states for the customers, and the decisions made by customers and sellers to follow the protocol
described in figure 1. An extended version of this evaluation can be found at http://ants.dif.

um.es/staff/emilioserra/QA/EE.pdf, and provides the necessary detail to reproduce our results.

10

http://ants.dif.um.es/staff/emilioserra/QA/EE.pdf
http://ants.dif.um.es/staff/emilioserra/QA/EE.pdf

5.2 Strategy to build the training data

In converting raw sequences of message exchanges to training data samples (see
section 3.3), we make use of the simplest, most general data generation method
that ProtocolMiner offers.

Firstly, we consider the agent B = S (S is the seller agent name) who performs
the analysis to obtain knowledge about the others agents’ (opaque) mental states.
Therefore, the learning input is restricted to Vc(A) and Ec(A), where c is the
customer role in the protocol and A is any agent participating in this role.

As far as variables occurring in constraints are concerned, we uniformly record
all attributes contained in “terms” descriptions T and P , including a “?” (un-
known) value for those not mentioned in a given execution trace. Our strategy to
deal with loops is to only record the last value of every variable occurring in mul-
tiple iterations. We introduce a variable outcome ∈ {S, F,N} to denote Successful
completion of the negotiation (path ended with m11, see figure 1), Failure to un-
successful (paths m4 and m6) and Neutral for a “neutral” outcome (the remaining
paths).

Three open source implementations of data mining techniques are employed
using their default parameters to illustrate the impact of using different algorithms
in an exemplary way, and also to show that our method does not depend on the
use of a specific learning algorithm. More specifically, we use the J48 decision
tree algorithm (an implementation of the C4.5 algorithm), the NNge classification
rules algorithm (Nearest neighbor like algorithm) and the BayesNet technique (a
Bayesian network classifier) [5].

5.3 Learning a context model for a constraint

In our first experiment, the seller tries to learn a context model for a single con-
straint, c4 = altAcceptableA(T), and a single customer agent, C1.

The output of the J48 algorithm after 1000 protocol executions is shown in
figure 2. The time taken to build the model (on a 2.4 Ghz 4GB RAM machine) is
0.01 seconds and a tree with 15 nodes is obtained as the hypothesised mental state
that corresponds to the logical formula

altAcceptableC1(T) ⇔(persons(T) = more ∧ lug boot(T) = small ∧ doors(T) = 5-more)∨
(persons(T) = more ∧ lug boot(T) = med ∧ doors(T) = 5-more)∨
(persons(T) = more ∧ lug boot(T) = big)

This formula is logically equivalent to the mental state implemented by the cus-
tomer, MS 1(T), and, therefore, the constraint has been learned completely by the
seller using context models even without having access to the customer’s imple-
mentation.

5.4 Protocol outcome prediction by context models

To conduct a more exhaustive evaluation, a seller tries to learn a context model for
the overall outcome of the protocol. Figure 5 shows the average model accuracy
across 100 repeated experiments. The accuracy of the context models is evaluated
using cross-validation across 100 experiments with 10000 negotiations each.

11

65%

70%

75%

80%

85%

90%

95%

100%

%
CC

I f
or
 C
ro
ss
 V
al
id
at
io
n

Negotiations

J48

NNge

Bayes

Figure 5: Average model accuracy (based on cross-validation) shown across total
number of negotiation (100 experiments). Learning algorithms: J48, NNge and
BayesNet. Error bars show standard deviation.

The experiments demonstrate that accurate context models can be built using
contextual information extracted from concrete executions of a protocol to predict
its final outcome. More specifically, after an average of 200 total negotiations
(i.e. 20 per customer), the models classified at least 80% of all instances correctly.
Therefore, as the following section shows, an agent can build a context model
after only a few negotiations, consider a specific context as input for the model,
and predict the outcome of the protocol without actually interacting with another
agent.

5.5 Agents predicting interactions by context models

In this section, we show how agents can use context models directly to improve
their own performance in communicative exchanges with others. For this, we enable
customers to build and use context models to choose a good seller for the concrete
context (including the product) they are looking for. Assume that we have three
sellers, S1, S2 and S3, who are able to offer products which satisfy the different
mental state models used by customers.

We compare the prediction accuracy of our system against two alternative anal-
ysis strategies: (1) Random and (2) Quantitative. For (1), the seller is chosen
randomly – this provides a baseline for the minimum performance that could be
achieved without any use of context models. An optimal strategy is not included,
as 100% success constitutes the upper bound of what can be achieved in this sce-
nario (we ensure that there are always sellers in the system who can provide the
requested items). For (2), the seller is chosen using a distance function based on
the number of past successes and failures with them in the customer’s personal

12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 250 500 750 1000 2500 5000 7500 10000 25000

%
Su

cc
es
se
s

Negotiations

J48 NNge NaiveBayes Random Quantitative

Figure 6: Average number of successful negotiations against number of total ne-
gotiations (100 experiments); error bars show standard deviation. Learning algo-
rithms: J48, NNge and BayesNet.

experience. The function used is D(s, f) = 1−(1+ s
2f+1)−1, where s is the number

of successes and f the number of failures with a particular seller, and the seller to
interact with is chosen with a probability proportional to D(s, f) [12].

As figure 6 shows, after 100 negotiations (10 negotiations per customer) the use
of context models (independently of the data mining technique used) greatly out-
performs the random and quantitative strategies. Besides, the use of decision trees
converges faster to optimal performance than the other two learning techniques
considered. In these experiments, using context models built with J48 or NNge,
customers reach over 90% of successes after only 750 negotiations (75 negotiations
per customer) and over 99% after 7500 conversations.

6 Conclusions and future work

In this paper, we have presented a novel mechanism to exploit qualitative infor-
mation provided by high-level ACLs and interaction protocols. In these protocols,
messages are associated with logical constraints, which can be used as “semantic”
annotations of communication in a natural way. This work is motivated by short-
comings in existing multiagent systems analysis methods which mostly ignore this
rich source of contextual information when analysing run-time multiagent interac-
tions. The main advantage of using contextual information is that data mining
methods can be used to infer qualitative information from observed message ex-
changes.

A formal approach has been detailled with the aim of making interaction data
available for qualitative data mining. In this approach, information about the
shared protocol models has been used as background knowledge. As part of the

13

approach presented, this paper has discussed different alternatives for dealing with
the specific nature of agent interaction protocols when converting interaction ex-
periences to training data. This involves addressing issues such as the presence
of multiple agents, variable-length execution paths, and loops that are commonly
present in common multiagent interaction protocols. Subsequently, an implemen-
tation of our formal approach, ProtocolMiner, has been presented. Finally, a case
study has been described (with an extended version available on-line) to hint at
the potential of applying data mining in real-world multiagent systems.

In the future, we aim to apply our analysis methods to more real-world examples
in order to extract guidelines for making appropriate choices when selecting training
data extraction strategies and appropriate data mining algorithms. We would also
like to explore the use of more advanced machine learning methods to learn logical
theories of, for example, the internal ontological conceptualisations agents use, and
to rate their competence and trustworthiness based on the knowledge they appear
to have based on their interaction behaviour. We believe these to be promising
practical avenues for addressing one of the fundamental problems of open systems,
which is to be able to derive knowledge of the internal workings of other agents
without being able to observe their internal state.

References

[1] FIPA Contract Net Interaction Protocol Specification. SC00030, 2002. Foundation
for Intelligent Physical Agents.

[2] FIPA Request Protocol Specification. SC00026, 2002. Foundation for Intelligent
Physical Agents.

[3] M. Atencia and W. M. Schorlemmer. I-SSA: Interaction-Situated Semantic Align-
ment. In OTM’08, volume 5331 of Lecture Notes in Computer Science, pages 445–
455. Springer, 2008.

[4] P. Besana and D. Robertson. Probabilistic Dialogue Models for Dynamic Ontology
Mapping. In URSW’08, volume 5327 of Lecture Notes in Computer Science, pages
41–51. Springer, 2008.

[5] R. R. Bouckaert, E. Frank, M. Hall, R. Kirkby, P. Reutemann,
A. Seewald, and D. Scuse. Weka manual (3.7.1), June 2009.
http://prdownloads.sourceforge.net/weka/WekaManual-3-7-1.pdf?download.

[6] R. W. Collier. Debugging Agents in Agent Factory. In PROMAS’06, pages 229–248,
2006.

[7] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[8] J. J. Gómez-Sanz, J. Botia, E. Serrano, and J. Pavón. Testing and Debugging of
MAS Interactions with INGENIAS. In AOSE’08, pages 199–212, Berlin, Heidelberg,
2009. Springer-Verlag.

[9] D. N. Lam and K. S. Barber. Comprehending agent software. In F. Dignum,
V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and M. Wooldridge, editors, AA-
MAS, pages 586–593. ACM, 2005.

[10] T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[11] D. Robertson. A lightweight coordination calculus for agent systems. In DALT’04,
pages 183–197, 2004.

[12] E. Serrano, A. Quirin, J. A. Bot́ıa, and O. Cordón. Debugging complex software
systems by means of pathfinder networks. Inf. Sci., 180(5):561–583, 2010.

14

[13] R. Siebes, D. Dupplaw, S. Kotoulas, A. P. De Pinninck, F. Van Harmelen, and
D. Robertson. The OpenKnowledge system: an interaction-centered approach to
knowledge sharing. In OTM’07, pages 381–390, Berlin, Heidelberg, 2007. Springer-
Verlag.

[14] J. Sudeikat, L. Braubach, A. Pokahr, W. Lamersdorf, and W. Renz. Validation of
BDI Agents. In PROMAS’06, pages 185–200, 2006.

[15] M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-agent
systems with MABLE. In AAMAS’02, pages 952–959, New York, NY, USA, 2002.
ACM.

15

	Introduction
	Related work
	Formal approach for a qualitative analysis
	Defining a protocol and its context
	Obtaining a context model by data mining
	Preparing the training data set
	Dealing with different agents
	Dealing with paths, loops, and variables

	ProtocolMiner
	Defining protocols in ProtocolMiner
	ProtocolMiner features

	Case study
	Description of the system under test
	Strategy to build the training data
	Learning a context model for a constraint
	Protocol outcome prediction by context models
	Agents predicting interactions by context models

	Conclusions and future work

