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Abstract— We present a qualitative approach to the dynamical
control of bipedal walking that allows us to combine the benefits
of passive dynamic walkers with the ability to walk on uneven
terrain. We demonstrate an online control strategy, synthesizing
a stable walking gait along a sequence of irregularly spaced
stepping stones. The passive dynamic walking paradigm has
begun to establish itself as a useful approach to gait synthesis.
Recently, researchers have begun to explore the problem of
actuating these passive walkers, to extend their domain of ap-
plicability. The problem of applying this approach to applications
involving uneven terrain remains unsolved and forms the focus of
this paper. We demonstrate that through the use of qualitative
descriptions of the task, the use of the nonlinear dynamics of
the robot mechanism and a multiple model control strategy, it
is possible to design gaits that can safely operate under realistic
terrain conditions.

I. INTRODUCTION

A majority of land animals travel on legs [1] and they
do so in a very efficient, reliable and graceful manner, with
minimal cognitive effort and attention. Inspired by the success
of legged animals, roboticists have long attempted to construct
legged machines that are capable of operating in difficult
environments, ranging from swamps to rescue sites. Over
the years, several legged robots, often bipeds, have been
constructed - to walk [2], hop [3], run [4] and even perform
gymnastic maneuvers [5].

Bipedal walking robots are nonlinear underactuated dy-
namical systems. As described in [6], even simple walking
machines are capable of surprising complexity. How does one
compel these machines to behave as desired?

Traditionally, the problem of robotic walking has been
solved in two stages. First, the nonlinear and nonholonomic
aspects of the dynamics are actively compensated, e.g., via
feedback linearization [7]. This yields a simpler linear system
for which there exist several mathematically sophisticated
control design techniques. This linear system also forms the
basis for planning a trajectory to be tracked by the robot.
Several techniques exist for this planning process, ranging
from numerical optimization of parametric curves, e.g., B-
Splines, to temporal planning algorithms that operate on other
discrete representations.

Notwithstanding the successes of this approach to gait
design [8], there are some crucial limitations. Due to the need

for continuously active control to compensate and eliminate
the undesirable aspects of the dynamics, the resulting robot
gaits are not very energy efficient. It has been observed [9] that
such actively controlled robots utilize more than 10 times the
power required by comparable biological walkers. Also, the
process of implementing tracking controllers by compensating
the natural dynamics requires high bandwidth and attention
from the control computers, which places corresponding limits
on the simplicity of the robots.

Biological walkers avoid these penalties of energy con-
sumption and computational complexity by structuring the gait
in a very different way - by skillfully utilizing, instead of
overcoming, the nonlinearities in the physical mechanism.

Dynamic walking represents a promising alternate paradigm
to gait synthesis that is based on utilizing the natural dy-
namics of the robot to reduce the complexity and increase
the efficiency of gaits. Broadly speaking, dynamic walking
is an approach to encoding the task in a language that is
natural to the physical system [10] - the language of dynamical
systems. In this setting, planning amounts to the selection of
desirable trajectories in the natural dynamics of the system
and active control is only required, occasionally, to correct
deviations from these trajectories. In the passive dynamic
walking literature, [9], [11], [12], [13], this encoding is often
done empirically and largely through clever mechanical design
possibly augmented by machine learning. This has already
yielded interesting and useful results. However several open
questions remain [13] - including that of synthesizing gaits
that can handle irregular terrain such as might be encountered
in rescue, planetary exploration and other applications.

In this paper, we present a novel gait synthesis strategy for
dynamic bipedal walking. Through the use of natural nonlinear
dynamics of the bipedal mechanisms, the analysis of these
natural dynamics to extract control strategy primitives and
the synthesis of composite control strategies, it is possible
to design gaits that can safely operate under realistic terrain
conditions. We believe this to be the first demonstration of
intermittently actuated passive dynamic walking involving
planned footfalls on irregular terrain. We demonstrate this on
the task of stably walking on a sequence of irregularly spaced
stepping stones.



II. SOME OBSERVATIONS REGARDING BIOLOGICAL AND
BIOMIMETIC ROBOTIC WALKING

Depending on one’s perspective, bipedal locomotion may
seem surprisingly difficult or trivially easy. Locomotion results
from complex dynamical interactions between the walker and
its environment. The walker, whether natural or artificial, is
a complex multi-link mechanism. The environment is also
complex and constantly changing. Yet, legged animals do not
seem to be bogged down by this complexity.

Nature penetrates the wall of complexity through the clever
use of synergies and symmetries. In [14], Full and Koditschek
present a strong argument that animals handle complexity
by devising control strategies based on dynamically simple
template models and then embedding them into the higher
dimensional physical system, the anchor. There is reason
to believe that this is a generally applicable law of nature.
Observations of infants [15] during their first walking months
demonstrate that the process of learning to walk includes, as a
critical step, the process of learning to reliably synergize their
muscles to make each leg behave like a rigid pendulum.

Engineers would benefit greatly from adopting this para-
digm. From the perspective of the designer of a robot, the
goal of such a decomposition is to break down a complex
control problem into two factored problems - (a) to design a
safe adaptive strategy for a template model, the simplest model
that is sufficiently expressive to capture all necessary design
specifications while also being dynamically equivalent to the
anchor model, and (b) to embed this strategy in the higher
dimensional anchor model. This paper focuses on the first
problem and aims to present a general and extensible solution.
Once the first problem is solved, several possible strategies
may be adopted to implement the strategy in more complex
systems. A very appealing approach, presented in [2], is to
define dynamical primitives that apply to simpler subsystems
- the global dynamics being composed from such primitives.
However, there is an unfulfilled need for a design methodology
that could be used to reason about the global behavior of such
strategies. This is crucial if we wish to handle realistic types
of irregular terrain, and we address this issue.

The dominant hypothesis regarding templates for bipedal
walking is that each leg acts as a pendulum, executing a
”compass gait” [16], [17] - walking consists of a synchronized
sequence of vaulting over an inverted pendulum and swinging
a suspended pendulum. Roboticists have constructed systems
that are direct physical embodiments of this model, e.g.,
[12]. In [9], we find mechanical embodiments of actuated
versions of simple compass gait robots and an empirical
demonstration that they are capable of walking on flat ground.
While these machines are elegantly simple, they are also
fragile and unsuitable for rugged environments. In [6], we
find mathematical analysis of the dynamics of this class of
robots, called simple walkers. The walker is analyzed as a
nonlinear system, to locate periodic orbits whose stability is
understood in terms of convergence in a Poincare map. This
analysis provides insight but it does not make it possible for

the walker to navigate rugged terrain. Nonetheless, the work
on passive walking highlights an organizing principle in nature
- the dynamics of the interaction with the environment can be
gainfully utilized to implement energy storage and exchange
mechanisms, bringing down total energy consumption [1].
Even in situations where energy storage mechanisms, e.g.,
springs, are not physically available in the robot, it is often
more energy efficient to simulate the passive component than
it is to pursue alternate active strategies.

Walking in the real world requires tradeoffs [1]. In animals,
we see tradeoffs between energy efficiency and the need for
rapid reliable maneuvers, e.g., while escaping from a predator.
In robotics, we seek the ability to build machines that can
perform useful tasks as they walk, e.g., bring a cup of coffee
while simultaneously avoiding obstacles on the floor. This
suggests that gaits ought to be designed to be capable of rapid
adaptation to a changing environment. It has been challenging
to implement such adaptation while maintaining safety. Robots
that are designed according to the passive/simple walking
paradigm and are amenable to principled analysis are not well
suited to unstructured environments. Correspondingly, several
empirically successful adaptive machines have no clear basis
for stability or correctness arguments. We propose a way to
merge the two paradigms.

III. A QUALITATIVE HYBRID CONTROL STRATEGY FOR
DYNAMIC BIPEDAL WALKING

At the core of this problem is the task of generating, in
a finite horizon setting, a sequence of control actions that
induces safe walking over irregular terrain. This is a motion
planning problem with several possible solutions.

A crucial assumption that is made in nearly all existing
approaches to robotic walking is that walking results from a
limit cycle behavior. In passive walkers [11], [12], this limit
cycle is numerically computed and an appropriately initialized
machine converges to this cycle. In actively controlled walkers
[8], such a limit cycle is enforced by feedback compensation.
However, on irregular terrain and especially in settings where
planned footfalls need to be placed on a specific sequence
of locations, it is not clear that there is a single limit cycle
that should have a preferred position with all deviations being
actively compensated [1]. Instead, we argue that it is beneficial
to define a family of trajectory segments from which elements
may be selected at the beginning of each step, in order to
achieve specific goals. An exactly periodic limit cycle could
certainly be composed in this way. However, such a hybrid
strategy is also capable of several other trajectories, forming
a richer family. The notion of composing hybrid control
strategies using families of local controllers has been explored
in [18], [19]. In this paper, we apply this concept in the
intermittently actuated passive dynamics setting.

In this section, we will present an algorithm that implements
this approach. Before doing that, we will present a model
of a bipedal walker and make some observations regarding
its dynamical behavior which motivates the structure of the
algorithm.



Fig. 1. Conceptual schematic of the compass gait model of human walking
(Reproduced from Kuo, A.D., Science 309:1686-1687).

A. Template model for bipedal walking

Walking is a process of vaulting over an inverted pendu-
lum while simultaneously swinging another pendulum, in a
synchronized fashion. Various aspects of this pendulum like
behavior have been investigated in the biomechanics literature
[16], [17], [11], [20], [21]. These ideas have also received
considerable attention within the robotics community [9], [6].
We use a slightly modified version of this model. Figure 1
illustrates the concept of the compass gait model.

Figure 2 depicts the corresponding pendulum system ab-
straction. It consists of three point masses, one corresponding
to the torso and two corresponding to the legs and feet. In
the swing phase, one foot is on the ground and the system
has only two moving masses, the torso and the swinging
foot. Viewed from the vantage point of the stationary foot,
the system looks like a double pendulum (when not actuated)
and like the acrobot (when actuated). However, there is one
difference in that each leg/link is modeled as being capable of
achieving any desired length quickly, to overcome the terrain.
A retraction in this model would correspond to a movement
of the foot and bending of the knee in a multi-link robot. In
numerical experiments, we will use a noticeable retraction (leg
length at 80% of full extension, i.e., ρ = 0.8). However, this
variable may be tuned to the terrain conditions.

(a) (b)
Fig. 2. Schematic of the dynamic model of the simple walking machine along
with the relevant variables. Parts a and b correspond to the single support and
double support phases, respectively.

For the single support phase, the equations of motion for
this system can be derived using the Euler-Lagrange equations
that encode the physical principle of least action [22]. The
Lagrangian is the difference between kinetic and potential
energies of the system,

L =
1
2
(m1 +m2)l12φ̇2 +

1
2
m2l2

2θ̇2 +m2l1l2φ̇θ̇ cos(φ+ θ)

− (m1 +m2)gl1 cosφ+m2gl2 cos θ (1)

where θ is the angle made by the swing leg with the vertical
axis and φ is the angle made by the stance leg with the vertical
axis.

From L, we can derive the equations of motion as two
coupled nonlinear ordinary differential equations. With, µ =

m2
m1+m2

, ρ = l2
l1

, k1 = g
l1

, α1 = 1
(m1+m2)l12 and α2 = 1

m2l12 ,
we express the equations of motion as,

φ̈− k1 sinφ = ∆1 (2)

θ̈ +
k1

ρ
sin θ = ∆2 (3)

∆1 = −µρ cos(φ+ θ)θ̈ + µρ sin(φ+ θ)θ̇2 + α1τφ (4)

∆2 = −1
ρ

cos(φ+ θ)φ̈+
1
ρ

sin(φ+ θ)φ̇2 +
α2

ρ2
τθ (5)

where τθ and τφ are ”hip” and ”ankle” torques. The ankle
is not actuated, i.e., τφ = 0, for the purposes of handling
terrain uncertainty, although it remains available for lower
level controllers to compensate noise, etc.

These equations describe two pendulum subsystems, one
inverted and one suspended, each perturbed by the other. In
most realistic walking systems, µρ ∼ 0, so that ∆1 ∼ 0 when
τφ = 0. However, the effect of the stance leg on the swing
leg, ∆2, need not be negligible. In fact, this coupling term
continues to influence the motion once the system is in single
support.

In the double support phase, both legs are on the ground
and the system dynamics is much more constrained. For our
purposes, the most relevant dynamics is that of the torso,
which has four forces and torques acting on it to redirect its
motion. The system comes into double support with a state,
(φ−, θ−, φ̇−, θ̇−). Following [21] and [23], the double support
phase is treated as being short enough that the configuration of
legs is roughly unchanged (hence, after swapping roles, φ+ =
−θ−, θ+ = −φ−) but long enough that feasibly bounded
forces can be applied to influence the velocity variables.

The primary mode of actuation in our strategy is to apply
F1, F2, τ1, τ2 during double support, which takes a nonzero
time, δtDSP . These quantities may be computed to achieve a
desired φ̇+. Equating the applied forces to the rate of change
of momentum during double support, and rearranging terms,



Fig. 3. Phase portrait (θ − θ̇) of the frictionless simple pendulum.

we get,

(
cosφ− cos θ− − sin φ−

l1
− sin θ−

l1

sinφ− − sin θ− − cos φ−

l1
− cos θ−

l1

)
F1

F2

τ1
τ2


=

m1l1
δtDSP

(
sin θ− sinφ−

cos θ− − cosφ−

)(
φ̇+

φ̇−

)
+
(
m1g

0

)
(6)

A similar analysis yields the torque τθ to achieve desired
θ̇+. With the exception of these short pulses during double
support, the system dynamics will be permitted to evolve
naturally without actuation. This is consistent with empirical
observations of human walking. In biological experiments
[24], [20], [21] it has been observed that muscles are silent
during most of the swing phase and all activity is restricted
to short intervals at the beginning and end of the swing.
Similarly, the use of toe-off forces, biologically implemented
via plantarflexion, as the primary means of actuating stance leg
velocity is also consistent with biological theories of walking.

The equations of motion define a nonlinear map, in terms
of the state space, S1 ≡ {φ, θ, φ̇, θ̇}, a subspace, S2 =
{φ̇, θ̇} and the action space, A = {F1, F2, τ1, τ2, τθ}. The
dynamic evolution of the system yields mappings between
these spaces. In particular, the single support phase represents
the uncontrolled map, MSSP : S1 7→ S1 and the double
support phase represents a map, MDSP : S2 × A 7→ S2

which does not influence the kinematic variables, θ and φ. At
the algorithmic level and for planning purposes, it is assumed
that these maps admit functional evaluation, either through a
dynamic simulation or by experiments on a physical robot.

B. Dynamic behaviors of the template model

The pendulum is a simple Hamiltonian system and its
phase space behavior can be completely understood in terms
of two families of orbits, called the libration and rotation
orbits, separated by a single trajectory called the separatrix (the
singular homoclinic orbit that connects the hyperbolic, i.e., −π
and π, fixed points). Figure 3 depicts the phase space of the
frictionless simple pendulum. All closed orbits ”inside” the
separatrix belong to the family of libration orbits and all other
periodic orbits, ”outside” the separatrix, belong to the family
of rotation orbits. Each of these orbits is uniquely specified by
the energy of the system (which corresponds to initial position
and velocity of the pendulum).

Fig. 4. Synthesizing composite trajectories based on selections from families
of qualitatively similar orbits. This figure depicts only a few representative
rotation and libration trajectories. In fact, these are dense families and there
are infinitely many such curves to choose from. Note that, for clarity of
exposition, the trajectory segments have been aligned and transition is a simple
vertical line. In general, these trajectories could be asymmetrical and aligned
differently along the velocity axis, depending on kinematic conditions and
terrain.

The behavior of the stance leg of the compass gait biped is
represented by the family of rotation orbits, and the swing leg
behavior is represented by libration orbits. A composite orbit
obtained by switching between representative trajectories from
these qualitatively defined families of orbits is capable of de-
scribing the walking behavior. Of course, not all compositions
will be admissible and further conditions will be necessary to
achieve foot placement goals.

This process of composition is depicted in figure 4. The
swing leg and stance leg trajectories will have to synchro-
nize for the robot to successfully walk. Further constraints,
e.g., desired step length, will enter this picture indirectly, as
constraints on the sets from which trajectory segments may
be chosen. This composition results in mappings of the form,
MDSP ◦MSSP : S1×A 7→ S1. Steady walking consists of a
possibly infinite composition, MDSP ◦ . . .◦MSSP ◦MDSP :
S1 × A 7→ S1. The goal of planning is to select a policy of
forces and torques that will impart certain properties to this
map.

The basic property we wish to ensure in these maps is
that the swing leg and stance leg trajectory segments are
synchronized, i.e., they take the same amount of time to
reach the planned footfall position. For a pendulum, the swing
time may be determined analytically. In terms of a parameter
describing energy, κ =

√
1
2 (1 + E

mgl ) (where m and l stand
for m1/m2 and l1/l2, as appropriate), we have for small angles,

τ(κ) =
{ 2π

√
l
g κ < 1

π
κ

√
l
g κ > 1

(7)



and for larger angles,

T (κ, τ) =
{ τ K(κ)

K(0) κ < 1

τ K(κ−1)
K(0) κ > 1

(8)

where K(κ) =
∫ π

2
0

dθ√
1−κ2sin θ2

.

We could achieve synchronization of the swing and stance
legs by setting the energy appropriately. Given analytical
expressions of this form, computing the forces and torques
is simply a matter of equating two such quantities and solving
for the unknowns.

However, this argument assumes that the stance and swing
legs are decoupled. In fact, the swing leg is driven at the pivot
by the movement of the torso. This complicates the dynamics
of the swing leg and poses problems for a passive dynamics
framework that avoids actuating the swing leg, except to set
an initial velocity as it enters single support.

It is well known that the driven pendulum is chaotic [22],
implying the possibility that the families of trajectories we
deal with may be more complex than indicated in figure 4. In
the worst case, this could invalidate our hypothesis about the
possibility of synthesizing composite gaits from qualitatively
defined families of orbits.

The source of this chaos is a resonance between the natural
periodic dynamics and the periodic components of the external
driving force. A key feature of the transition to chaos [25] is
that it is gradual. As the driving amplitude is smoothly varied
from a small value, only a few trajectories near critical points
and the separatrix are affected. Chaos begins here and slowly
affects the rest of phase space. For our purposes, this implies
that families of topologically equivalent orbits do not suddenly
disappear. Instead, these regions gradually shrink. Eventually,
as the driving amplitude increases, no meaningful qualitative
statements can be made - global unpredictability sets in. If
we can identify operating regimes and phase space regions
where regular trajectories persist then we can still implement
the strategy discussed so far, safely ignoring the more complex
dynamics in other regions of phase space.

It is possible to estimate the regions of phase space where
such complex dynamics exists, and avoid it. One approach
is to estimate the width of the separatrix layer [25] and
suitably restrict θ̇ to avoid this region. Another approach is
to reason about the nature of the individual solutions. For
instance, it is a theorem [26] that, if f(t) is a τ -periodic
function and v̈(t)+ sin v(t) = 0 admits a jτ periodic solution
for some positive integer j, then for sufficiently small |ε|,
ü(t) + sinu(t) = εf(t) admits at least two solutions that
are slightly shifted versions of the original solution, Z =
{v(• + ψ) : ψ ∈ <}. Through the use of such ideas, it is
possible to establish bounds on θ̇, φ̇ so that the distortion of
the family of libration orbits may be bounded, providing a
continuous selection of swing leg trajectories. In a companion
paper, we will make this argument rigorously with relevant
proofs. For the current purposes, we provide a visual depiction
of the above statement using a simple numerical experiment.

Our method is to observe the phase space behaviors through
the evolution of randomly distributed points in phase space.
By allowing an ensemble of points to evolve for a short
period of time, we are able to visualize the deformation of the
phase portrait. Figure 5 depicts a representative result of these
experiments. We have overlaid the original trajectory shapes
from figure 4 over our random dots results to aid visualization.

Stance leg Swing leg Swing leg constr.

(a) (b) (c)

Fig. 5. Random dots based phase portraits for the nonlinear system of
equations 2 and 3. Phase space trajectories representing the unperturbed
pendulum have been overlaid on the results to enable visualization of the
deformation due to chaos. Note that these phase portraits correspond to the
full 4D system. Each plot represents a projection onto a 2D phase plane, with
angular position as the x-axis and angular velocity as the y-axis. As seen in
part b, the swing leg phase space has been significantly perturbed. However,
by placing the constraints outlined in section III-B, we are able to extract a
family of regular trajectories, as shown for the swing leg in part c.

Regular regimes correspond to bounded φ̇, θ̇, i.e., bounded
subsets of S1. In particular, the following constraints will
yield an operating region in state space where the original
description of figure 4 will be essentially correct:
• Swing and stance leg angles, φ, θ, are restricted to a

magnitude of 45o, from basic mechanical considerations.
• The stance leg trajectories are restricted to ”separatrix-

like” trajectories, i.e., to a manifold defined by φ̇ =
β
√

2g
l1

(1− cosφ), where β = 1 describes the separatrix.

This equation defines the chosen value of φ̇+ in the
double support phase.

• The magnitude of swing leg velocity, θ̇, is bounded above
in our experiments [0,8] rad/s.

C. An Online Adaptive Algorithm for Dynamic Walking

We are now able to describe the motion planning algorithm.
The concrete problem we solve is that of walking on a series
of footholds, presented sequentially - one step at a time, in
terms of a desired displacement (xd, yd) measured from the
current stance leg foothold. There are several ways to select
footholds, based on a variety of considerations that are beyond
the scope of this paper. However, footholds selected by any
technique can be translated to a requirement in (xd, yd) and
so our algorithm can be applied.

Beginning from an initial state, φ−, θ−, φ̇−, θ̇−, with a
particular assignment of swing and stance legs (e.g., stance
= right, swing = left), this algorithm executes the following
steps in a loop:

1) (Double Support)



a) Apply F1, F2, τ1, τ2 to implement desired value of
φ̇+. The stance leg velocity is given by φ̇+ =
β
√

2g
l1

(1− cosφ+). The desired swing leg veloc-

ity, θ̇+, will be computed by numerical optimiza-
tion, described below in more detail. This value can
be achieved using τθ. This represents the execution
of the map, MDSP : S2 ×A 7→ S2.

2) (Single Support)
a) Retract the swing leg to length l2.
b) Allow the dynamics to evolve passively, according

to the map MSSP : S1 7→ S1, until a stopping
condition is reached (to be described below).

c) When this stopping condition is reached, assign
new values to φ−, θ−, φ̇−, θ̇− and extend the swing
leg from length l2 to l1.

3) (Transition)
a) Swap the roles of legs (e.g., for the first step, we

will have stance = left and swing = right) and
assign φ+ = −θ−, θ+ = −φ−.

The only step involving active control with energy injec-
tion/dissipation is 1a, representing the application of constant
forces and torques for a small period of time, δtDSP . In our
experiments, we fix this time period in order to compute forces
and torques. However, this value is a variable that can be
changed for other experiments, perhaps based on empirical
data.

The angular velocity, θ̇+, and the separatrix scaling factor,
β, are determined by constrained optimization. A dynamic
simulation is used to evaluate a cost function that encodes task
specifications. In essence, optimization computes MSSP

−1.
The dynamic simulation for MSSP is executed until a stop-
ping condition is reached, specified by geometrical consider-
ations. The requirement is that φ(t) = φdes and θ(t) = θdes

for some value of t. If A(x1, y1), B(x2, y2) and C(xd, yd)
are the coordinates of the torso COM, swinging foot and
desired foothold respectively, then φdes and θdes result from
the consideration that AB and BC lie on the same line and
AC has length l1. We will use the former requirement and
terminate the simulation when xd = x1 + (yd−y1)(x2−x1)

(y2−y1)
. The

constraint that l1 = |AC| is handled in the optimization.
If γ = {θ̇+, β}, then the evolution of the dynamics de-

termines the values of φγ(t) and θγ(t). If the single support
phase operates during the time interval, t ∈ [t1, t2], then we
require that, γ = arg min |w1(xd − [x3(t2)]γ)2 + w2(yd −
[y3(t2)]γ)2 + w3(φ̇+

γ )2|, (x3, y3) being the coordinate of the
point of footfall. This needs to be a constrained minimization.
In addition to the constraints mentioned in section III-B, we
need to account for finite actuator strengths and unilateral force
constraints, i.e., 0 < F1 < Fmax, 0 < F2 < Fmax, |τ1| <
τmax, |τ2| < τmax.

Given values of φ̇−, φ̇+, equation 6 sets up a force assign-
ment problem. We solve this problem to obtain a minimum
norm solution, by solving the quadratic program, minx′Ix
such that Ax = b, where x = {F1, F2, τ1, τ2}′ and A, b result
from collecting the terms in equation 6.

The procedure adopted for the constrained optimization
problem is as follows:

1) Generate n uniformly distributed values for γ = {θ̇+, β}
and evaluate J = |w1(xd − [x3(t2)]γ)2 + w2(yd −
[y3(t2)]γ)2 + w3(φ̇+

γ )2|
2) With J1 = |w1(xd − [x3(t2)]γ)2 +w2(yd − [y3(t2)]γ)2|

and J2 = |w3(φ̇+
γ )2|, compute the best multiobjective

optimum from the above set (subject to constraints men-
tioned above) using a vector distance from the origin,√
J2

1 + J2
2 .

3) Solve a sequential quadratic program using the γ =
{θ̇+, β} from the previous step to refine the solution.

Solving this problem amounts to achieving the kinematic
specification (xd, yd) through the use of a low energy, rotation
trajectory for the stance leg. The kinematic specifications
specify a curve in the 2-dimensional space of γ, not a unique
point. An optimization problem that is based on just this
requirement (with w3 = 0) would be underspecified and the
solution would oscillate along this feasible curve. This is
undesirable because it implies significant unnecessary force
expenditure to switch between orbits. The term, w3(φ̇+)2,
is intended to encourage convergence towards a low energy
gait, in keeping with our goal of energy efficiency. In a multi-
objective and multi-task environment, the above cost functions
may be augmented without impacting the structure of the
algorithm.

The reader may observe that the above procedure involves
some computational complexity, which would seem to be
at odds with our stated goal of simplicity. In this context,
we remark that the above algorithm may be used offline to
acquire a mapping between α = (xd, yd) and γ = {θ̇+, β},
e.g., radial basis functions of the form γ = Σiwi(α)γi

Σiwi(α) where

wi(α) = 1√
2π

exp −(α−αi)
2

σ2 . A map of this form is a fairly
simple representation of the strategy that may be evaluated
efficiently, allowing the above algorithm to be used online
in realistic robots. In biology, such a map may be acquired
developmentally, through continuous learning. The point of
the design in this paper is to constructively arrive at a similar
result, in such a way that we are able to reason about
dynamical behavior.

IV. THE STEPPING STONES EXPERIMENT

We evaluate this algorithm by simulating dynamic walking
under progressively more irregular terrain conditions - going
from flat ground, to climbing a set of regularly spaced stairs
to walking on random terrain. In each of these simulations,
the robot begins at rest. In every case, the maximum x-error
is within 0.9 mm and the maximum y-error is within 0.3 mm.
These are tight error bounds (for a robot with l1 = 0.84m)
and suggest that this algorithm can be safely used in situations
where only small discontinuous footholds are available.

The base case experiment is to make the robot walk along
equally spaced footholds on flat ground. For this case, figure
6 depicts the phase space behavior (corresponding to the
conceptual schematic of figure 4).



Stance leg Swing leg

(a) (b)
Fig. 6. Hybrid phase space trajectories for simple flat ground walking.
Notice that, barring transients, the trajectories settle into a stable limit cycle
comparable to that resulting from traditional techniques.

Fig. 7. Relationship between preferred forward speed and step length in
human walking. The blue line depicts empirical data that also minimizes
metabolic cost. The absolute minimum and the operating point of the proposed
algorithm are depicted by black dots.

This corresponds to a forward velocity of approximately 1.1
m/s. It is known [21] that humans adopt a preferred speed for
each step length. This relationship is depicted in figure 7. We
remark that the speed chosen by the proposed algorithm is
only slightly above the preferred speed curve for humans, at
the 110% metabolic cost level. This implies that not only is the
algorithm capable of recovering the stable limit cycle behavior
of other walking control strategies, but also, it naturally results
in realistic velocity behavior.

Next, we make the robot climb a flight of stairs, with
results depicted in figures 8 and 9. From figure 7, we note
the empirical observation that humans walk faster when step
lengths increase. This is indeed our observation as well and
the trajectories cluster around two different orbits according
to this change in speed.

Lastly, figures 10 and 11 depict results for irregular
footholds in two dimensions. Due to the wide variations in
footholds, each step requires a different trajectory. We believe
this to be the first demonstration of actuated passive walking
on an irregular sequence of footholds.

The stability or correctness of gaits resulting from the
proposed strategy may be characterized by the availability of
a nonempty family of feasible trajectories, given a realization
of the foothold sequence. Formally proving the existence of
such a family for all (or for a set of well-defined) irregular

Fig. 8. Configuration, over time, of 12 steps of the simulated robot climbing
a flight of stairs.

Stance leg Swing leg

(a) (b)
Fig. 9. Hybrid phase space trajectories for stair climbing. Notice that
trajectories separate into two categories, for flat ground and ramp respectively.

terrain conditions is an open question. This is a part of our
current investigations.

V. DISCUSSION

A. Benefits of qualitative representation of dynamics

In this work, we have depended substantially on the quali-
tative structure of the nonlinear dynamics. The idea that there
exists a family of possible periodic orbits is certainly not
new. The novel idea in our work, we believe, is that the
desired orbits may be constructed, online, by composing mul-
tiple trajectory segments that admit qualitative descriptions.
By identifying families of elemental trajectory segments, we
have found a way to construct orbits, that may be periodic,
quasiperiodic or even aperiodic, as required. The composite
orbit accommodates changing task requirements. Yet, due to
the existence of a dense family of orbits, we have not sacrificed
the core stability properties that are essential for this task.

Fig. 10. Configuration, over time, of 10 irregularly spaced steps. The step
length is a Gaussian random variable, N(0.75, 0.1) resulting here in an
interval [0.494, 0.799] m and step height is N(0.0, 0.025) resulting here
in the interval [−0.037, 0.045] m.



Stance leg Swing leg

(a) (b)
Fig. 11. Hybrid phase space trajectories for irregularly spaced footholds with
variations in 2-dimensions.

B. Relation to more complex robot architectures

Complex multi-link walking robots (that we earlier referred
to as anchor models) have been controlled in various ways,
some more complex than others. In nature, these strategies
seem to be acquired in an incremental fashion [15], so that
multiple primitives may be reused [1] and multiple global
objectives may be achieved in a straight-forward manner. The
goal of our work has been to define a strategy that is construc-
tively designed using primitives that are biologically plausible.
We believe that the modular nature of the strategy and the
associated understanding of the dynamics would ultimately
enable implementation in more complex multi-link system
(e.g., a humanoid robot with ankles, knees and hips) despite
imprecision in available models and constraints on controller
complexity - unavoidable problems that have been difficult to
deal with in traditional approaches to robust nonlinear control.
Demonstrating this claim is the focus of our current research
work.

VI. CONCLUSIONS

In this paper we present a novel approach to encoding
the task of dynamic walking. This methodology, based on
the use of natural dynamics, parsimonious active control and
biological inspiration, provides a natural and efficient way to
adapt to irregular terrain. At a higher level, we view this work
as a step towards a general theory of control strategies for
dynamically dexterous robots that behave robustly, efficiently
and gracefully through the intelligent use of natural dynamics.
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