

Edinburgh Research Explorer

A Rapid Prototyping Tool for Embedded, Real-Time Hierarchical
Control Systems

Citation for published version:
Ram, R, Ramamoorthy, R, Lothar, W & Hugo, A 2008, 'A Rapid Prototyping Tool for Embedded, Real-Time
Hierarchical Control Systems' EURASIP Journal on Embedded Systems, vol. 2008, 162747. DOI:
10.1155/2008/162747

Digital Object Identifier (DOI):
10.1155/2008/162747

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
EURASIP Journal on Embedded Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2008/162747
https://www.research.ed.ac.uk/portal/en/publications/a-rapid-prototyping-tool-for-embedded-realtime-hierarchical-control-systems(af528fb3-7e99-4023-b09c-7a49464695a3).html

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 162747, 14 pages
doi:10.1155/2008/162747

Research Article
A Rapid Prototyping Tool for Embedded, Real-Time
Hierarchical Control Systems

RamRajagopal,1 Subramanian Ramamoorthy,2 Lothar Wenzel,3 and Hugo Andrade3

1 Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720-1770, USA
2School of Informatics, The University of Edinburgh, Edinburgh, EH9 3JZ, UK
3National Instruments Corp., Austin, TX 78759, USA

Correspondence should be addressed to Ram Rajagopal, ramr@eecs.berkeley.edu

Received 24 May 2007; Revised 25 February 2008; Accepted 17 May 2008

Recommended by Shuvra Bhattacharyya

Laboratory Virtual Instrumentation and Engineering Workbench (LabVIEW) is a graphical programming tool based on the
dataflow language G. Recently, runtime support for a hard real-time environment has become available for LabVIEW, which
makes it an option for embedded systems prototyping. Due to its characteristics, the environment presents itself as an ideal
tool for both the design and implementation of embedded software. In this paper, we study the design and implementation of
embedded software by using G as the specification language and the LabVIEW RT real-time platform. One of the main advantages
of this approach is that the environment leads itself to a very smooth transition from design to implementation, allowing for
powerful cosimulation strategies (e.g., hardware in the loop, runtime modeling). We characterize the semantics and formal model
of computation of G. We compare it to other models of computation and develop design rules and algorithms to propose sound
embedded design in the language. We investigate the specification and mapping of hierarchical control systems in LabVIEW and
G. Finally, we describe the development of a state-of-the-art embedded motion control system using LabVIEW as the specification,
simulation and implementation tool, using the proposed design principles. The solution is state-of-the-art in terms of flexibility
and control performance.

Copyright © 2008 Ram Rajagopal et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

LabVIEW (Laboratory Virtual Instrumentation and Engi-
neering Workbench) is a graphical programming environ-
ment, developed by National Instruments Corp., based on
the dataflow paradigm. It was originally targeted towards the
test, measurement, and automation industries.

In recent years there has been tremendous growth in the
embedded software and systems market. It is driven by the
need for low cost, fast and portable solutions with short time
to market. National Instruments Corp. developed LabVIEW
Real Time (LabVIEW RT) to cater to these demands. The
LabVIEW RT environment includes the original LabVIEW
environment, as well as an ETS/vxWorks-based real-time
hardware system that includes modules for data acquisition
and control.

In the LabVIEW environment, programs are described
using the G programming language. Broadly, this language
can be understood as a structured dataflow programming

language. The environment integrates a compiler and sched-
uler for the G language. In LabVIEW RT, these compiler
and scheduler have been extended to generate executable
programs from G that can be executed in real-time operating
systems, such as RTOS. Using the current compiler and
scheduler, the complete language specification can be exe-
cuted in the system, but only with soft real-time constraints.

The objective of this paper is to outline a framework for
using the LabVIEW RT software and hardware environments
for embedded systems design in a principled way, avoiding
issues that compromise real-time operation performance.
Whenever required, we consider specifically LabVIEW RT
version 7.1. We summarize our contributions.

In Section 2, we provide a formal description of the G
language. We determine some important characteristics of
the language. We compare the G model of computation to
other comparable models in the literature.

In Section 3, we show how programs can be specified
in G in order to satisfy some important requirements

2 EURASIP Journal on Embedded Systems

for programs that define embedded systems. We develop
principles so that G programs compiled and scheduled by
LabVIEW RT are sound according to the stated require-
ments. We also compare the LabVIEW RT environment and
some other tools available for embedded systems design and
deployment.

In Section 4, we show how a complete solution for an
embedded control system can be developed and deployed
using the proposed environment. Our chosen application is
embedded motion control, a general task that is a corner-
stone of many manufacturing automation applications. It is
also a staple hierarchical control system. The algorithms used
to implement the solution use the principles developed in
previous sections. We propose some novel approaches which
are enabled by the environment, among them an online
design based on qualitative control definition. The design is
performed online, as the system is operating.

In Section 5, we discuss the changes in standard control
design practice that become possible by using LabVIEW RT
and G. Such changes should also be available to any design
tool that implements the toolset currently available in the
proposed language and system. In Section 5, we conclude
and propose future works.

2. THE G LANGUAGE

In this section, we explore the specification and properties of
the G programming language. We also compare the language
to other dataflow specification languages in the literature.

2.1. Specification of G

A G program has two components [1]: a diagram and a
user interface (called front panel) as shown in Figure 1.
Every input and output element in the user interface has its
corresponding representation in the diagram, as a source or
sink node, respectively. The user can change the values of
the input at any time during execution, introducing dynamic
elements into the diagram.

An actor in G is called a Virtual Instrument (VI). VIs
can be connected to each other through wires (edges) that
allow tokens to be exchanged. Each edge can only contain
a single data value at time. On the other hand, tokens can
have multiple dimensions such as single real numbers or
strings, n-dimensional matrices of numbers and structures
that contain numbers and strings.

VIs have multiple inputs and multiple outputs. Each
input has an incoming wire and each output has an outgoing
wire. So for example, if an actor has three vector outputs
that are input to another actor, three wires have to be used,
since each wire can only hold a single value. VIs fire when
all the inputs to them are available, in standard dataflow
fashion. Many of the basic actors (VIs) provided in G are also
polymorphic, as a convenience to developers.

Some basic data types in G are booleans, integers, reals,
strings, one-dimensional arrays, multidimensional arrays,
and structures that contain different types, called bundles.

Typical actors are standard arithmetic operators, stan-
dard string operators, and vector and array manipulation

0
Input variable 2

0
N Display double

0

0 0

Output variable
(1D array)

(a)

Computing vector of k! for k = 1, · · · ,n

Shift register

N
N
I32

1

+1

×

i

Input variable 2 Display double

×

Display double

DBL
DBL

Local variable

Tunnel
[I32]

Output variable
(1D array)

(b)

Figure 1: (a) Front panel and (b) diagram of a G program
to compute factorials and a sequential product in the LabVIEW
environment. Shown in the diagram is a for loop structure.

operators. An important operation is the build array con-
struct. It takes multiple arrays as an input, and outputs a
single array that contains all the elements of the input arrays.
Notice that multiple input tokens are consumed and only a
single output token is produced, but the produced output
token uses at least as much memory as the total memory used
by input tokens. This is one of the three methods for growing
tokens. The others are explained below.

G allows the specification of global and local variables
that can be used as a means to exchange data. Global
and local variables, front panel inputs, and outputs appear
as actors in the G diagram. Each input control, output
indicator, global or local variable can be represented as more
than one node in the diagram, with an attached read or write
property. The notion of input control and output indicators
has more to do with the original historical intended meaning
of these constructs.

There are four main imperative structures in G: the
case structure, the for loop, the while loop, and the
sequence structure. Other structures, such as timed loops
and feedback node, are available in current versions of

Ram Rajagopal et al. 3

LabVIEW RT. We do not address them here, but their
semantics satisfy the properties discussed in the paper.

All structures are integrated into the general program-
ming paradigm by working as a capsule that contains all the
actors inside it. The structure executes when all inputs to
the actors inside it become available. Tokens enter and exit
the structures through tunnels. Graphically, the structure
is appropriately represented as an object that envelops the
selected actors (Figure 1(b)).

The for loop is a standard loop where at each iteration all
the VIs inside it are fired as data to their inputs and outputs
become available. The next iteration is only executed after
all VIs in the loop have fired. The number of iterations is
specified as an input to the loop actor.

In the situation in Figure 1(b), for example, the product
between variable Display Double and Input Variable
2 is computed and stored in Display Double through
a local variable. In parallel, the current loop index i is
multiplied by the last factorial variable calculation stored in
a shift register. The output is put back in the shift register.
Both of these parallel operations are only executed again
when the loop executes again.

The for loop includes two loop specific features: the
shift register and a tunnel. The shift register is a con-
struct that stores the token input to it (right-hand side in
Figure 1(b)) and makes it available at the next iteration (left-
hand side in Figure 1(b)). It is a memory. A shift register
can be extended to remember any number of values,
but this number is fixed prior to the compilation of the
program. The output tunnel construct is also a form of
local memory. It can be configured to either remember the
last value input into it, or more interestingly to grow a
multidimensional token by appending incoming tokens. In
the example discussed, the output token from the tunnel
will be an array of integers of size N . The behavior of the
tunnel can be reproduced by using a shift register fed with
the output of a build array, which has as inputs the output
of the shift register and the token connected to the tunnel.

The while loop is similar to the for loop except that a
conditional statement inside the loop determines when the
loop stops executing. The conditional statement can be a
boolean output of an actor built out of comparison functions
available in G.

The sequence structure is a structure comprised of mul-
tiple frames. Actors inside each frame can receive inputs from
outside the structure, as well as from VIs in previous frames.
The sequence structure enforces an ordered execution of the
actors firing, having priority over the token driven firing.

Finally, the case structure is a structure comprised of
multiple frames with a selector input. According to the token
that arrived in the selector input, only one frame is executed.
The only caveat for the case structure is that all frames
have to produce the same outputs to the remaining program
outside the structure. This means that the frame selection can
only change the value of the token, but not their type nor the
number of tokens outputted.

Feedback loops are not allowed in G, so no actor can be
part of a feedback loop without a delay. Even if the output of

a local variable is connected to the input of a local variable,
the data firing rule imposes an implicit ordering.

2.2. Properties of G

A comprehensive characterization of G is presented in [2]
using formal terminology of dataflow languages [3]. In this
section, we summarize and expand on that. G can be char-
acterized as a homogeneous, dynamic, multidimensional
structured dataflow based language.

G can be categorized as a structured dataflow language
since the semantics are expressed using a combination of
constructs from imperative and functional languages.

G is homogeneous because every actor consumes or
produces a single token for a given edge in the graph. The
token can be a complex structure whose size can change
during execution, as long as the dimensionality remains
constant.

G is multidimensional since tokens can have multiple
dimensions and dynamic since there are constructs that allow
part of the program graph to be conditionally executed based
on data.

The complete model of G cannot be statically sched-
uled because it has several structures and actors whose
behavior depends on input data. Examples of this include
case structures and loops controlled by inputs from the user
interface.

G is Turing complete [2, 4] and local/global variables
allow nondeterminism [5] to arise. One example of non-
determinism is shown in Figure 1(b), where the value
of Display Double depends on Input Variable 2. If
the value of Input Variable 2 is changed in the user
interface while the loop executes, the output value of
Display Double will depend on whether the change was
read in the current or the next iteration. This point is
elaborated in Section 3.

A very important property is that G is always compos-
able. Several VIs in a diagram can be gathered into a single
one, as long as there are no feedback loops, without affecting
the behavior of the program. This can be done because the
graph is homogeneous and delay-less feedback loops are
not allowed. Another consequence is that every G graph is
directed and has a multiple source, multiple sink structure.

2.3. G and othermodels of computation

Although G does not fit exactly into any of the presented
models, it shares characteristics with several of them as
described below.

(i) Process Networks (PN): By definition a Process
Network (PN) is a very generic model of computation, where
concurrent processes communicate through unidirectional
FIFO channels [6]. In G, processes (actors) can also com-
municate through global and local variables. These variables
are not FIFO and cannot write an infinite amount of data on
inputs/outputs [2]. Therefore, the complete G model cannot
be classified as a PN. But G keeps some resemblance to PN, as
every VI is a small process that generates tokens of arbitrary
size with fixed dimension.

4 EURASIP Journal on Embedded Systems

(ii) Integer Dataflow (IDF): The homogeneous IDF
model [7] is a model that resembles G by restricting the use
of global and local variables. The main differences are that in
G tokens can be multidimensional and flow control is done
through case structures and while loops. A complete G graph
can be quasi-statically scheduled [2].

(iii) Synchronous Dataflow (SDF): A restricted version
of G, in which switch actors, case structures, while loops,
global and local variables, and data dependent for loops
are not allowed, can be modeled as a homogeneous SDF
[8] and thus statically scheduled. Multidimensional SDF
(MSDF) [9] is an extension to SDF, where actors produce
and consume n-dimensional rectangles of data. G cannot be
well characterized by MSDF because any array data exchange
in G is done through a single multidimensional token.
Also another important difference is that every actor in G
consumes (produces) a single token from each of its inputs
(outputs).

(iv) Finite State Machines (FSM): G can be used to
express Finite State Machines [10]. A standard FSM template
can be easily constructed for G (e.g., [1]). Note that it
is possible to integrate the FSM concept into a dataflow
framework. Local and global variables could be used to share
data between such state machine and a normal dataflow
program.

3. EMBEDDED DESIGN IN LabVIEW ANDG

There are many different definitions for embedded software.
A popularly accepted definition is that it is a software system
with extremely restricted user interface that acts on infinite
streams of data. The desired requirements for specifying and
executing an embedded program can be listed as follows [5].

(i) Requirement 1. The program specification should
preferably be determinate, and therefore the outputs should
be consistent with the inputs, regardless of execution details.
Also the program specification should be sample rate
consistent and causal. In a sample rate consistent program,
actors consume and produce tokens in a balanced way, that
is, we can find integer firing rates such that the dataflow can
be executed repeatedly. In a causal specification, outputs of
each actor depend only on current and past inputs.

(ii) Requirement 2. The scheduler should implement
a complete execution of the program so that a non-
terminating program does not deadlock.

(iii) Requirement 3. The scheduler should execute a
bounded program in bounded memory. A bounded program
is a program where the number of tokens at every edge is
bounded by some finite constant in a complete execution of
the program. In the G context, since each edge can only have
one token, but tokens can grow in size, a bounded program
is a program whose memory requirements are bounded.

These requirements ensure that a well-behaved program
operates properly in embedded environments. Notice that
Requirement 1 refers directly to the specification language,
whereas Requirements 2 and 3 refer to how the compilation
environment and the scheduler are able to handle the
specification language. In some situations, the specification

language is such that the scheduler requirements are enforced
directly by constraints in the language itself. For example,
in homogeneous synchronous dataflow systems, there is no
possibility of deadlocks.

In this section we will present algorithms and program-
ming guidelines that guarantee that the main requirements
are met, thus allowing LabVIEW RT and G to be trans-
parently used in embedded software design, while loosing
minimal expression power. We then proceed to compare
LabVIEW-RT and G with other standard popular embedded
programming languages.

We assume that the standard compiler and scheduler in
LabVIEW-RT is used. In order to derive our algorithms and
restrictions, we will also assume that for every execution of
the G program the front panel input values are fixed. In
typical industrial situations, the values are indeed fixed, and
the program is autonomously run such as in the motion
control example in this section.

3.1. Determinism and consistency

A G graph is always sample rate consistent because it
is homogeneous. Also causality is guaranteed because the
semantics do not allow for delay-less feedback loops.

Due to the semantics, non-determinism only arises in G
when local or global (storage) variables are used as part of
a diagram. Due to the fact that G allows multiple reads and
writes to local and global variables, race conditions may arise.
For example, a simple program where two instantiations of
a single local variable are connected to different constants is
nondeterministic.

A polynomial algorithm to identify nondeterminate
programs in G is given in Algorithm 1. This algorithm is
of complexity O(A3), where A is the number of elementary
actors in the graph, and is based on Claims 1 and 2 given
below.

A flattened graph refers to graph representing a VI
where all higher-level actors are decomposed into basic G
actors and embedded in a single diagram. Each actor is a
node in the graph. For the case structure and loops, two
virtual nodes are added: a virtual input node and a virtual
output node. The virtual input node receives connections
from all actors whose outputs where incoming into the loop
structure. This node has as outputs the same values as the
inputs. The outputs are connected to the nodes inside the
structure, matching the way they are originally connected
in the diagram. Similarly, a virtual output node receives as
inputs all the outputs that were coming out of the structure.
This node then outputs to nodes representing the actors
that received information from the structure. These virtual
nodes are just a way to represent the synchronism that a
structure imposes. The sequence structure includes one
extra synchronization node for each frame. The proposed
construction is always possible since G does not allow
feedback loops without delays.

Claim 1. If all actors in a flattened G diagram only read from
storage variables, the program is determinate.

Ram Rajagopal et al. 5

Find non-deterministic diagram:
(a) Create flattened G graph corresponding to original diagram;
(b) If (no storage variable write in program) {

program is determinate;
return;
}

(c) Run All Pairs Shortest Path algorithm on graph;
Denote by dist(V1,V2) distance between nodes V1 and V2;

(d) For each storage variable S in the original diagram {
Determine the corresponding set VS of vertices in the graph.
Determine the set Vi(S) of all vertices Vi such that (Vi,VS) is

an edge in the graph for some VS ∈ VS.
Determine the set Vo(S) of all vertices Vo such that (VS,Vo) is

an edge in the graph for some VS ∈ VS.
For each node Vi ∈ Vi {

For each node Vo ∈ Vo {
If (dist(Vi,Vo) = ∞ or dist(Vo,Vi) = ∞) {

Program is nondeterminate;
return;
}
}

}
(e) Program is determinate;

Algorithm 1: Algorithm for finding non-determinism in a G diagram. For creating flattened graph see Section 3.

The proof of the claim is direct since there are no write
operations to storage variables, so they are constants. By
virtue of this fact, theprogram is determinate.

Claim 2. If an actor A writes to a storage variable, and an
actor B reads or writes to the same storage variable, then this
program can be determinate if and only if there is a directed
path from actor A to actor B or vice versa.

The claim is proved by the following observation: a
directed path (A,B) or (B,A) implies that there is a data
dependency between A and B (also data dependency implies
a directed path, due to G syntax). Therefore, in any valid G
schedule, actor A will be strictly fired, respectively, before
or after actor B. So these operations do not create a race
condition and the program can be determinate.

The algorithm in Algorithm 1 exploits the fact that
nondeterminism in G only arises when edge dependencies
in the diagram do not prevent race conditions. Based on
the observations in this subsection, we can propose a first
principle as follows.

Design Principle 1

Multiple copies of the same local or global variable should
only be used inside sequence structures and will always
reside on different frames. In the case of the global variable
this means the sub VIs that use the globals, and are at the
same aggregation level (e.g., subVI versus sub-subVI) should
be on different frames of a sequence structure.

3.2. Boundedmemory programs

Differently from PN and SDF, a scheduler that operates in
G does not need to be concerned about bounded memory
scheduling as long as Design Principle 1 is followed, enforcing
determinism.G programs can only be either strictly bounded
or unbounded in memory. This is due to homogeneity of
the G graph and the syntactical restrictions imposed by the
language.

Claim 3. G programs are either strictly bounded or
unbounded in memory [9].

Unbounded memory G programs are defined by the use
of build array actors inside while loops or having indexing
enabled for tunnels in such loops. A simple requirement
that would force every G program to be strictly bounded
in memory is to force every while loop to have a maximum
count.

In G, there is no possibility of token accumulation,
due to the data driven paradigm and homogeneity (the
balancing equations of SDF are automatically satisfied [3]).
However, token sizes can increase, thus creating the possi-
bility of unbounded memory usage. Using the build array
VI generates increased token sizes. The only way unbounded
memory usage could be achieved is by having an infinite
stream of linked build array actors. Finally, this is only
possible if such actors are used inside while loops that run
indefinitely.

Also enabling “indexing” in output tunnels of a VI
generates tokens with increasing size. Indexed output tunnels

6 EURASIP Journal on Embedded Systems

are just a graphical representation for a build array combined
with a shift register structure.

Real-time performance degrades in programs where
memory usage is increasing or unpredictable, making it
attractive to keep G programs bounded in memory. We can
state the following.

Design Principle 2

While loops should always have a maximum iteration con-
dition. Furthermore, for efficiency, whenever possible, arrays
should be preinitialized using initialize array and filled up
using replace array subset actors, avoiding the memory
uncertainties of the build array actor.

3.3. Complete execution

Based on the semantics of G, and because it is homogeneous,
it is clear that any valid schedule guarantees complete
execution of a determinate program. There will be no
deadlocks unless they are induced by actor behavior (e.g.,
infinite while loop). Notice that Requirement 2 is again a
requirement in the scheduler in LabVIEW, but that due to the
structure of G, using Design Principle 1 and Design Principle
2 we are able to guarantee sound behavior for the system
independently of scheduling decisions. Thus we have the
following.

Claim 4. Given a determinate G diagram, there is always
a valid schedule that consists of a sequential Breadth First
Search [11] order firing of every actor on the diagram.
This implies that the G diagram can never deadlock. Any
scheduler for G will be able to satisfy Requirement 2.

Claim 4 states that every determinate diagram has a valid
execution schedule that satisfies Requirement 3. In fact, if the
maximum count requirement is satisfied, then no G program
will ever deadlock due to program specification.

To prove the claim true, using the composability princi-
ple, we can construct a diagram where every structure (while
loops, for loops, case and sequence structures) is inside a
separate SubVI. We also add a virtual source that is connected
to every other source in the graph. In this diagram the valid
schedule consists of firing all actors in a breadth first search
(BFS) order, starting at the virtual source. The BFS search
order guarantees that all actors (including switches) will be
appropriately fired, as all inputs to every actor will already
be available when it is its turn to be executed. The subVIs
that include case structures can also be fired on the BFS
order, except that a specific path will be chosen depending
on the control input. But still a path should exist due to G
syntax restrictions. The diagram of composed subVIs that
contain while loops or for loops can be looped and fired
repeatedly. In fact if we are dealing with a G program with
maximum loop counts, then all loops can be replaced by their
decomposed versions. Now we have the original situation
again and thus the BFS search can be applied.

3.4. LabVIEW-RT/G and other tools

In many applications it may be required that a certain
periodic schedule be executed within a hard-timed loop.
For example, in a digital control application hard timing is
extremely important to ensure system stability [12].

LabVIEW-RT was developed to allow a hard timed
execution of a G diagram. It consists of an execution kernel
(RT Engine) that runs the G diagram on the RTOS real-
time operating system. The execution kernel is supported by
a standard industrial PC (based on a PXI chassis) equipped
with a National Instruments data acquisition board. In this
work, development was done on a host desktop computer
using a LabVIEW-RT interface. The host computer is linked
to the RT embedded controller system, to download the
program and update the user interface.

We can compare LabVIEW and G to some popular
embedded system development languages and tools. We
focus on hybrid languages [13], since they seem to be the
most adopted in current real-time system development.

One feature of LabVIEW and G is that the real-time
runtime environment, and the simulation environment use
the same compiler and scheduler, which facilitates embedded
control systems development, since usually in this domain
extensive simulations are performed, including hardware in
the loop tests, before a first prototype.

(i) Esterel [14] is a hybrid language that combines
constructs of imperative languages with some facilities of
data flow languages, such as concurrency and preemption.
The language has a synchronous model of time. Signals can
be present or absent, and in each clock cycle the program
awakens reads inputs and produces outputs. The language
is determinate in that signal checks are always performed
before block execution. Compared to Esterel, LabVIEW and
G offer two main differences: signals are always present
and programs are represented as diagrams. Furthermore,
causality violations are easily avoided in G if proposed design
principles are followed.

(ii) SDL is a graphical language defined by the ITU [15].
A program consists of concurrent FSMs, each with a single
input queue and communication channels to communicate
among them. Execution might be nondeterministic since the
order of arrival of tokens to the different queues depends
on execution speed of each FSM. An SDL program can
be emulated in G using the concurrency available in the
language, but this sacrifices determinism. A better approach
is to design a sequenced parallel FSM implementation using
the sequence structure. The main advantages of LabVIEW
and G are imperative constructs, efficient compilation, and
ease of implementation of dataflows, which are crucial in
control and signal processing applications.

(iii) SystemC is a C++ based language for system
modeling, that implements a discrete-event computation
model. The language provides libraries that specify pro-
cessing modules and specify input-output ports for com-
munication. The language is both a description language
and a simulation kernel, making it easier to transition
from specification to executable implementation. LabVIEW
offers some important advantages compared to System

Ram Rajagopal et al. 7

Table 1: Hybrid language features compared. Full support •, and partial support ◦. Part of the table in [13]. CCSS refers to CoCentric System
Studio, imp. to implementation and mgmt. to management. ∗Support in LabVIEW through timed loops.

Features Esterel SDL SystemC CCSS G

Concurrent • • • • •
Hierarchy • • • • •
Preemption • • • •
Deterministic • ◦ • •
Synchronous commn. • • • •
Buffered commn. • • • •
FIFO commn. • ◦ • •
Procedural • ◦ • ◦ ◦
Finite-State-Machines • • ◦ • •
Dataflow • • • •
Multi-rate dataflow ◦ • •∗
Software imp. • • • • •
Hardware imp. • • • •
Memory mgmt. ◦ • •

C: automated and efficient memory management, which
prevent memory leaks, and a dataflow-based environment.

(iv) CoCentric System Studio [16] is a hierarchical
specification language that combines PNs, FSMs, and gated
models. Dataflow block primitives can be written in C++.
The development environment offers a simple simulation
and debugging mode, as well as support for code generation.
Compared to CoCentric modeling, the main advantage of
LabVIEW is that the simulation and execution platforms
are the same, and automated memory management. Signal
processing and control libraries are available to both.

(v) Simulink is a system level description environment
[17], based on the computational algebra tool Matlab.
Simulink has a real-time code generation module Real-Time
Workshop, that allows described systems to be downloaded
to specific real-time boards. Interactivity and online exper-
imentation are very complicated in this environment since
each time a real-time program is to be run, it needs to be
recompiled. The user interfaces are also not easy to create and
modify as compared to LabVIEW.

(vi) Some other languages that are used, but are much
less popular, are PMC and Forth [18]. PMC is based on
a mathematical abstraction called process algebra. It does
not support object orientation nor dynamic allocation of
memory, but has primitives for synchronization. Forth is an
imperative interpreted language, which supports a variety of
processors.

4. EMBEDDEDMOTION CONTROL

Modern motion systems, such as robots, involve a variety of
different elements that come together in a complex system.
On the one hand, they are constructed from electrome-
chanical components that combine mechanical elements
such as wheels and gearboxes with electrical components
such as power converters, digital circuits, and solid-state
sensors. The operation of these electromechanical systems

is choreographed by embedded software programs that
abstract the dynamics of these interacting elements and
provide a basis for higher level programs that perform
reasoning and deliberation. For instance, the mechanical
components are subject to physical constraints, the electrical
components involve a variety of transient dynamics and the
communication channels between low-level elements involve
significant uncertainty. The role of the low-level embedded
software programs is to hide this complexity and provide
simpler symbolic or logical variables with which to deliberate
at the higher level.

These notions of hierarchy and modularity represent one
of the best ways to overcome system-level complexity, in a
variety of different domains [19]. However, the way these
notions have been brought to bear on typical motion systems
has involved difficult tradeoffs.

In many robots, including some fairly modern examples
such as Sony’s AIBO and its many clones, the joint-
level control modules handle all of the above mentioned
complexity and expose a limited set of parameters to the
higher level programs. So, even though the joints are
equipped with servo motors and sophisticated circuity that
could—in principle—support many different model-based
and adaptive control strategies, what the user actually gets
is a PID controller with limited control over setpoint, rise
time, and such variables. This has the important implication
that task-level control algorithms are now restricted to
only dealing with kinematic variables and not with the
true dynamics of the robot. Moreover, this approach leads
to algorithmic limitations at the higher level (e.g., in the
expressiveness of the planning and control strategy) that have
little to do with the task at hand and much more to do
with architectural decisions regarding the embedded system
implementation.

In response to these limitations, there is growing interest
in developing tools and techniques that can span the entire
space from high-level specification (such as “go from A

8 EURASIP Journal on Embedded Systems

Desired
trajectory

Analyze/store
Host (PC)

Shared memory interface

Motion board

RT trajectory
Splining

PID control

Mechanical device

(a)

Qualitative
optimal design

Trajectory Learn
system

Host program

PC

Send
data

Command

Home
ControlSysid

Get
data

Embedded controller
Real plant

Simulated
plant

RT(PXI)

(b)

Figure 2: (a) Commercial motion control solutions and (b) novel hierarchical solution with hardware-in-the-loop components and true
plant.

to B without bumping into trees and vehicles”) to low-
level specifications (such as limits on response time of an
actuator). Researchers have begun to actively explore the
deliberative and algorithmic aspects of this problems, for
example, [20]. However, the execution and implementation
side of this problem is not well explored.

In this section, we outline an architecture for a motion
control system that addresses these issues. We will begin with
a general discussion on hierarchical architecture of motion
control components—of sufficient complexity to handle the
sorts of difficult requirements mentioned above. Then, we
identify a problem instance that captures the essence of
this problem and we discuss how our proposed framework
can address them. We will show that it is possible to map
the hierarchical nature of the algorithmic problem-solving
process onto corresponding components in an embedded
system tool chain.

We have already showed that following simple design
principles, LabVIEW and G are a competitive and sound lan-
guage for embedded system development, simulation, and
implementation. The availability of LabVIEW, LabVIEW-
RT, and the hardware support for sensing and control with
platform-independent execution, makes this environment
ideal to map the hierarchical components of our problem.
Components that require real-time response are mapped
into G programs compiled by LabVIEW-RT and downloaded
to a real-time board. Components that require user interface
and are not real-time critical are run in a standard com-
puter, in LabVIEW. From the developers standpoint though,
program development and deployment are transparent since
no complicated compilation procedures, nor a different
environment for development and deployment are required.

4.1. A flexible architecture for embedded
motion control

Embedded motion control as implemented in the industry
today is primarily based on the Proportional Integral Deriva-
tive (PID) control algorithm. Well over ninety percent of

existing controllers involve PID controllers that control each
axis of the system independently [21].

A typical motion control system is presented in
Figure 2(a). The host machine handles the user interface
and higher-level executive routines. The trajectory generator
outputs position versus time data on the fly. This data is
used by a PID control loop to drive the plant, which could
be composed of several motors (typically, one for each axis).
In existing systems, the control loop is programmed on the
board and can only be changed by rewriting embedded code.
The key limitation of this approach is the lack of flexibility in
terms of algorithm and parameter ranges.

Commercially available motion control systems push the
limits of currently available real-time boards and software.
Yet, they are sometimes inadequate for applications in areas
such as robotics, aerospace, and other high-performance
systems. The limitation of existing systems is that their
architecture makes it hard to offer control strategies that
require dynamic adaptation [21]. For example, deployment
of sophisticated control strategies for high accuracy, such
as multiple axis multiple-input multiple-output (MIMO)
control, requires a precise identification of the system
under control. In many cases, optimal implementation lacks
flexibility and tends to require fairly sophisticated hardware
design techniques.

We propose a different approach to the problem,
enabled by the availability of LabVIEW-RT and G. Con-
sider the hierarchical motion control system described
in Figure 3. The key elements in this architecture are as
follows:

(i) System adaptation: the structure contains an online
system identification component that allows the whole
structure to adapt to the motors currently being used. It
also includes control design calculations for the current
system. This requires a two-way communication between the
hierarchical levels.

(ii) Task level Planning: this block represents all the
deliberation that goes into defining a concrete trajectory
from the domain-specific requirements of the task. The

Ram Rajagopal et al. 9

Task-level planner

Open-loop multi-
axis trajectory

planner

Finite-horizon
trajectory encoder

Local controller
(single-axis or

multi-axis)

Local controller
(single-axis or

multi-axis)

Local controller
(single-axis or

multi-axis)

Figure 3: A hierarchical motion control architecture.

Guaranteed
bounded-time loop

Mechanical
system (e.g.,
robot arm)

Feedback
controller

Generate setpoint
from encoding

function

Joint-angle
trajectory

Encoded finite-
horizon trajectory

Figure 4: Architecture of the local control module—which could
be a single axis or a set of local axes.

output of this block might take the form of specific way
points that the motion system must achieve, for example,
a set of points, x̂i, or a time-indexed set of points {(x̂i, ti)}.
The process of implementing this deliberation often requires
discrete models of computation such as finite state machines
and other discrete-event structures (e.g., petri nets).

(iii) Open-loop trajectory planing: a motion system will
need a concrete specification of where it should be at all
times. So, the nonuniformly spaced (time-indexed) points
must be interpolated in an appropriate way in order to obtain
a uniformly spaced sequence, {(xi, ti)}. One way to achieve

this interpolation is to use multidimensional splines (see
below).

(iv) Finite-horizon trajectory encoder: it is typically
easier to deal with disturbances when the trajectory is
specified in an intrinsic spatial way rather than extrinsically
in terms of a time index. With this in mind, one might wish
to describe the desired trajectory in terms of some functional
form, such as a polynomial. Also, in order to permit higher-
level replanning if significant errors are detected, this is done
only over some finite horizon.

(v) Low-level control: with the above setup, it becomes
possible to pose the low-level problem in such a way that a
feedback controller can take in a finite-horizon specification
for a subset of the available axes of motion and ensure stable
execution in the face of sensor noise and other disturbances.
The structure of this block is depicted in Figure 4.

In order to be flexible, such an architecture must support
the following features:

(i) ability to incorporate constraints at any level in
the hierarchy, without significantly restricting the
degrees of freedom of other levels;

(ii) clear characterization of the region of operation for
each level;

(iii) the ability to go from the specification of each level
to executable code running on the corresponding
embedded platform.

These requirements imply a number of things for both
planning and control algorithms and the embedded system
implementation. Considering that the low-level control
modules do not have direct access to the global state, hence
the state of many other parts of the system, it is desirable
to have online algorithms for model identification and
control design. At the higher level, the task requirements
may continually change. So, it would be desirable to have
mechanisms for tuning the dynamic properties of lower-level
modules based on high-level requirements. Correspondingly,
lower-level components need the ability to modulate the
operation of higher-level planning operations. Although this
is conceptually simple, few embedded system implementa-
tion frameworks support this upward flow in a seamless
manner.

In the remainder of this paper, we will illustrate such a
motion control system—explaining the design and imple-
mentation of these various components in the context of
a two-axis system. Having already described the properties
of our basic programming language models, we will show
here that it is indeed possible to map these algorithmic
components onto suitable data-flow programs. In this sense,
we will outline a novel framework for interactive motion
control. Among other things, this framework can also
support the hardware-in-the-loop paradigm.

10 EURASIP Journal on Embedded Systems

4.2. Online implementation of system identification
and control components

4.2.1. System identification

Model-based control design begins with the definition and
identification of a suitable model of the dynamics of the
system. Often, there is insufficient information available to
derive these models form first principles. Instead, the pre-
ferred approach is to observe the behavior of the system, in
terms of input-output data, and infer the underlying model
through the algorithmic process of system identification. For
DC motors, the system model in Laplace s-domain

P(s) = Km

s2 + Tms
(1)

captures the physical behavior appropriately, where the
parameters can be physically interpreted as a signal gain,
Km, and time constant, Tm. The parameters can be identified
following a procedure that minimizes the error between the
observed output y and the estimated output ŷ for a given
input x [22, 23]:

J∗ = min
Tm ,Km

N
∑

k=1

[

ŷ(k)− y(k)
]2
. (2)

The model derived for a single axis can be naturally
generalized to multiple axes. For most usual systems, axis
transfer functions can be identified independently.

The optimization in (2) can only be solved if the system
being identified is stable. In our approach, we use a simple
stabilizing controller for each axis. For the single axis, a
simple proportional gain controller can always stabilize it,
albeit inefficiently. The plant can be identified using this
controller. Mathematical details can be derived following
techniques in [12].

4.2.2. Control design

A controller architecture that satisfies our requirements of
flexibility and interactivity is the linear quadratic regulator
(LQR). This controller can be used for a single-axis or for
a local channel of multiple axes, and is compatible with the
scheme depicted in Figure 4. In this section, we will briefly
describe this controller and we will specifically point out
how this structure supports interlevel communication: (a)
in allowing a higher-level module to adjust the dynamic
properties and (b) in indicating that the system has exited
its region of applicability and higher-level replanning is
necessary. We build our multiple axis system model from the
identified parameters using a linear state space system model

ẋ(t) = Ax(t) + Bu(t), (3)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control
actions , respectively. The control task, that of executing a
given finite-horizon trajectory segment, can be defined by
a cost function that specifies costs on deviation from this
desired trajectory,

J = x′(T)QTx(T) +
∫ T

0

(

x′(t)Qx(t) + u′(t)Ru(t)
)

dt, (4)

where QT , Q and R are symmetric positive definite matrices
representing costs. A higher level module is free to set these
matrices separately for each trajectory segment—and in this
sense, the problem is flexible. Using optimal control [12],
the above problem can be solved by using an input u(t) =
−R−1B′K(t)x(t), where x(t) is the observed state. The gain
function K(t) is calculated solving a nontrivial optimization
problem, and depends on the choice of the matrices Q, QT ,
and R.

In particular, the gain matrices can be parameterized
in simple ways such that intuitive concepts such as stiff of
smooth response may be mapped onto them. For instance,
consider the matrix form Q = diag(a1, a1, a2, a2) where all
off-diagonal elements are zero. The parameters a1, a2 can
now control the relative importance of trajectory following
and minimum effort. This is appealing to a typical user of
industrial motion systems.

The LQR controller represents an “automatic” design
procedure that is only valid within a specific region of
applicability, which can be computed using sophisticated
approximation methods [24]. So, for instance, if we know
the maximum energy that can be applied by an actuator,
then we can restrict the region of operation and the lowest
level module is now in a position to influence a higher-level
planning module by indicating an exit from the safe region.
This is a desirable aspect of the flexible architecture.

4.3. Integration of design components

In this section, we map the proposed hierarchical system
model and online algorithms to an actual embedded system
for generic motion control. When compared with existing
motion control architectures, the LabVIEW RT-based system
provides an easy way to use, flexible control environment.

Our system encapsulates a mechanism for the user to
start with unknown plant parameters, identify the parame-
ters experimentally, design a control algorithm, and run it
on real-time hardware in one seamless system. Furthermore,
control design can be executed in real time with effects
of varying cost choices observed immediately in system
response. This level of design integration is new in embedded
motion control.

The software-hardware mapping of the new architecture
is shown in Figure 2(b). Compare this to existing commercial
architectures shown in Figure 2(a). The host program runs
in a desktop PC. The real-time embedded controller runs in
a commercial PXI computer system, with LabVIEW RT and
RTOS installed. The embedded controller and host program
are completely implemented in G. The host computer and
the PXI system communicate via a TCP/IP-based protocol.
This enables the RT subsystem to be used anywhere in a
distributed system and still be controlled by the host.

We start by describing the host software. A straightfor-
ward user interface has been implemented for the system
(Figures 5(a) and 5(b)). It allows the user to start with a
qualitative plant model (in fact can be more general than
the DC motor), identity unknown plant parameters, design
and implement a control strategy. Furthermore, a high-level
desired trajectory can be specified for a designed system.

Ram Rajagopal et al. 11

User set points

Axis B
10

8
6
4
2
0

Axis A
10

7

3

0

Desired trajectory

User set points

Reset plot

Done
Control setting

Leahn off

AccurateSmooth Axis B

0 500 1000

Axis A

0 500 1000

0
1
2
3
4
5
6
7
8
9
Axis B versus time

0
1

2
3

4
5

6
7

8

9
Axis A versus time

4

6

8
10

12
14
Desired path

Desired
Executed

Axis A

10
8
6
4
2
0

Axis B

10
8
6
4
2

0

User set points
Desired trajectory

User set points

Reset plot

Done

Control setting

Axis A

0 2500 5000
AccurateSmooth

Axis B

0 2500 5000

(a)

0 10 20 30 40 50 60 70 80 90
0

10
20
30
40
50
60
70
80
90

100
110
120
130
Path

Desired

Executed

0 4940
0

10
20
30
40
50
60
70
80
90

100
110
120
130
Axis B versus time

Desired

Executed

0 4939
0

10
20

30
40

50

60

70
80

90
Axis A versus time

Desired

Executed

(b)

Figure 5: Interface of the real-time adaptive motion control system showing (a) host system control panel and details and (b) a running
system after learning the controller.

The host PC handles the interpolation and trajectory
generation. This structure allows uninterrupted operation
of the controller while still allowing complete flexibility in
operation. Notice that the expensive trajectory generation
and refinement operations could disrupt the real-time
operation of a system. The information that is sent to the RT
board is the array of set points.

There are two methods of specifying the desired trajec-
tory. It is possible to specify a few points in the path and
allow the program to complete the path, based on cubic
spline interpolation. The other method is to use a slider on
the screen to directly specify the set point. This could be
used to interactively observe system response to arbitrarily
chosen set point changes. Trajectory generation also accepts
specification of upper limits on velocity and acceleration.
Once the trajectory has been specified and converted to
an array of set points, the next step is to identify plant
parameters. The user can allow the program to do this for
him or specify plant parameters to be used in the control.

In order to identify the plant parameters, the trajectory
is sent to the RT system and the embedded controller is
commanded to begin system identification. The RT system
runs an assumed proportional gain algorithm to make the
system follow the desired trajectory, using the previously
defined points as set points. The actual path followed by
the system and the desired trajectory is returned by the RT
system, and used by the host system identification program
to determine plant model parameters.

Once the plant parameters have been identified, the user
can choose to control the motors at any time for desired
regular operation. The choice is made at the host program
and communicated to the embedded system.

We can now describe the embedded controller. The
controller is implemented in G using a combination of finite
state machines (FSMs) and dataflow programs [25]. The
FSM implements the state machine as in Figure 2(b). For
the end user, such an implementation allows for adaptability.
Different control strategies could be programmed and easily

12 EURASIP Journal on Embedded Systems

added as a new state in the controller. The communi-
cation and input/output infrastructure would remain the
same.

Currently, the FSM in the controller can be directed to
run either a simple gain algorithm for system identification
or a MIMO feedback algorithm, with gains chosen by the
interactive control design program in the host PC. The
choice is dictated by a command from the host program.
The FSM responds to requests that arrive via a TCP/IP
queue from the host program. The FSM architecture allows
multiple control algorithms to be stored in the embedded
controllers allowing any one to be immediately invoked when
commanded.

In our hierarchical approach, the desktop PC handles
all user interface-oriented functions and the embedded
controller handles the stringent real-time control loop. The
two processes are capable of communicating with each other.
However, the absence of the communication link does not
affect the operation of the control loop. This brings an
element of fault tolerance to the system.

A major feature of the proposed interface and system
is that the user can dynamically modify control parameters
and experiment with the plant response. This allows multiple
control strategies to be compared in a “what-if” simulation
or even in real-time execution. The host program also
implements a simulation of the estimated plant, so that
the system response can be simulated before being sent to
motor control. When the user changes to control parameter
seem satisfactory in simulation, this data can be immediately
relayed to the embedded controller.

We have implemented an intuitive slider-based control
design. The slider ranges from smooth to accurate. In
smooth mode, the control response is slower, but there are
no overshoots when following trajectories. In the accurate
mode, response is faster, and depending on the choice,
overshoot can happen. The interesting feature here is that the
response of the whole system is fast enough that moving the
slider, one can immediately see the effects on a real system, if
this is desired.

Another important characteristic of the system is that
the structure allows the real plant to be replaced by a
simulated plant in software without requiring significant
modifications. This technique (called “Hardware in the
loop” abbreviated HIL) [26] is a popular system verification
and simulation tool. Traditional systems do not have such
a well-defined and easy-to-use interface to support HIL
experiments, especially for user-defined algorithms.

Currently a two-axis controller running at frequencies up
to 10 KHz is supported by the system. It is expected that such
high frequencies are attainable even with more sophisticated
control structures and algorithms.

5. EMBEDDED CONTROL DESIGN USING LabVIEW RT

Some important requirements for successful development
environment for embedded programs in control are as fol-
lows:

(i) facilitate development of reliable programs;

(ii) simplify integration of different levels of a hierarchy,
making it easy to map into different platforms (e.g.,
real time, FPGA);

(iii) availability of standard control design and signal
processing routines;

(iv) source code needs to be easy to maintain;

(v) code should be easy to read and interpret;

(vi) parallelism and concurrency are easy to represent.

The proposed system description language and design
environment address all these issues as shown in earlier
sections, as long as simple design principles are followed.

Previous works in COSSAP [27], GRAPE [28], Simulink
[17], and Ptolemy [29] have shown the importance of
using higher-level representation constructs to build real-
time functionality. The applications there have focused on
multirate signal processing, with online adaptation and
learning for a variety of tasks such as channel equalization
and echo cancelation [30]. The transparent transition from
a simulation environment to a real deployment has been
studied for such problems.

Control programs on the other hand are typically
hierarchical as explained in Section 4. The motion control
application developed in this paper demonstrates two novel
possibilities: the mapping of hierarchical control structures
into an embedded execution platform, and the handling of
a variety of different problem time scales in a transparent
manner. The later capability in fact shows an interesting
new direction for control systems design, where even more
complicated design optimizations are done in real time,
based on observation of current system performance, in
a typical hierarchical feedback loop. The design of the
G language and the integration level of the LabVIEW-RT
environment were helpful to achieve these goals.

5.1. Design process

In Figure 6, we compare the traditional design process with
the new design process that becomes possible as a result of
our system architecture. We show this comparison in terms
of the example application developed in this paper.

In the traditional design process a model of the system
is used to devise a possible control strategy. This is tested
with a computer-based simulation and then ported to a
prototype hardware test rig. This process is iterative and each
iteration leads closer to the final product. The key issue here
is that the design, simulation, testing, and integration are
done using an array of loosely coupled tools. There are no
tightly integrated system design environments that allow the
designer to simulate and test the design iteratively without
having to move between multiple programs, maybe even
multiple platforms. Recent advances in hardware software
codesign address the problem of optimum design of a
subsystem. They do not address the larger issue of integrating
dissimilar subsystems in a time and cost optimal manner.

A design generated in the LabVIEW RT environment
is directly used for hardware-in-the-loop simulations where

Ram Rajagopal et al. 13

Download
embedded

algorithm (VI)

Hardware in
the loop tests

Control
algorithm

design

Control model
of system

Physical model
of system

Specify system
interface

LabVIEW RT

LabVIEW

Control
algorithm

design

Prototype
development

Simulation

Embedded
system

development

Actual hardware

Final
implementation

Figure 6: Hierarchical real-time control design flow.

the controller is tested in the environment where it might
eventually be used. The design, simulation, and test envi-
ronments are very tightly coupled and in many cases are
transparent to the user. This reduces the need for compro-
mises based on compatibility considerations and provides
the designer with many more degrees of freedom, leading
to significant reductions in the development time and in the
cost of the test cycle.

From the design of the motion control solution, we
also notice that an important principle is that lower levels
in the control hierarchy are implemented in real-time
environments, and higher levels are implemented in systems
with intensive and intuitive user interfaces. Usability is an
important and overlooked issue in most control systems, due
to the difficulty of achieving it without hierarchical design
and implementation.

Furthermore, easy integration of the different hierar-
chical components allows for data and control flow in
both directions in the hierarchy: from top to bottom,
carrying design specifications and high-level commands,
and from bottom to top, providing information that can
be used for interactive tuning of the system and system
identification.

Another important characteristic that is useful in embed-
ded control design is that the control design algorithm itself
should be supported by the embedded environment. This
enables high performance adaptive control, but also implies
that the embedded description language and environment
should have a certain level of sophistication for such
implementations to be easily developed and deployed.

6. CONCLUSIONS

In this paper we explored the application of LabVIEW RT
for embedded software development. We showed that G, the
underlying model of computation, satisfies the requirements
for specifying embedded systems and with certain simple
design principles it becomes a sound language for embedded
development.

We developed an embedded motion control system as
an application of LabVIEW RT for embedded design. The
main advantage that LabVIEW RT presents is a reduction
in development time because of the combined simulation
and execution environments. Another important advantage
is that G allows us to easily combine different models of
computation.

The implemented motion control system includes auto-
matic plant modeling (system identification), MIMO control
capabilities, and an innovative qualitative optimal control
design program. Moreover, our architecture implements HIL
techniques for replacing real plants with software simulated
plants. The system is also very flexible, allowing the end user
to access and replace control routines.

This work can be extended to include improvements in
the qualitative control design methodology that will allow
for more generic control algorithm specifications. Moreover,
the current system identification can be extended to identify
systems with coupled axes.

We showed how a hierarchical system design can be
directly mapped to a real-system implementation, with novel
results in terms of capabilities. The processing performance

14 EURASIP Journal on Embedded Systems

of the system is on par with many current commercial
systems, but with much increased flexibility and control
performance.

The hierarchical approach addressed in this paper will
become even more important with current and future
embedded applications. The hierarchical embedded control
systems design should be supported for development and
deployment from a host system running a standard operating
system (OS), to a real time OS, to an FPGA.

We are currently exploring the development an applica-
tion that has three layers: one in the host computer system,
one in a real-time system, and a third layer in an FPGA
system. We plan to use LabVIEW FPGA to deploy the FPGA
system.

ACKNOWLEDGMENTS

The authors would like to acknowledge the significant
improvements to the paper thanks to the suggestions of the
reviewers.

REFERENCES

[1] ITU-T recommendation Z.100, “Specification and description
language,” International Telecommunication Union, 1999.

[2] H. Andrade and S. Kovner, “Software synthesis from dataflow
models for G and LabVIEWTM,” in Proceedings of the 32nd
Asilomar Conference on Signals, Systems, and Computers, vol.
2, pp. 1705–1709, Pacific Grove, Calif, USA, November 1998.

[3] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins,
and G. J. Pappas, “Symbolic planning and control of robot
motion [Grand Challenges of Robotics],” IEEE Robotics &
Automation Magazine, vol. 14, no. 1, pp. 61–70, 2007.

[4] G. Berry and G. Gonthier, “The ESTEREL synchronous pro-
gramming language: design, semantics, implementation,” Sci-
ence of Computer Programming, vol. 19, no. 2, pp. 87–152,
1992.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software
Synthesis from Dataflow Graphs, Kluwer Academic Publishers,
Norwell, Mass, USA, 1996.

[6] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel, Robust Con-
trol: The Parametric Approach, Prentice-Hall, Upper Saddle
River, NJ, USA, 1995.

[7] J. Buck and R. Vaidyanathan, “Heterogeneous modeling and
simulation of embedded systems in El Greco,” in Proceedings of
the 8th InternationalWorkshop on Hardware/Software Codesign
(CODES ’00), pp. 142–146, San Diego, Calif, USA, May 2000.

[8] J. T. Buck, “Static scheduling and code generation from
dynamic dataflow graphs with integer valued control signals,”
in Proceedings of the 28th Asilomar Conference on Signals,
Systems, and Computers, vol. 1, pp. 508–513, Pacific Grove,
Calif, USA, October-November 1994.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms, McGraw-Hill, New York, NY, USA, 1990.

[10] A. Datta, M.-T. Ho, and S. P. Bhattacharyya, Structure and
Synthesis of PID Controllers, Springer, London, UK, 2000.

[11] K. Dutton, S. Thompson, and B. Barraclough, The Art of
Control Engineering, Addison-Wesley Longman, Boston, Mass,
USA, 1997.

[12] S. A. Edwards, “Design languages for embedded systems,”
Tech. Rep. CUCS-009-03, Columbia University, New York, NY,
USA, 2003.

[13] A. Girault, B. Lee, and E. A. Lee, “Hierarchical finite state
machines with multiple concurrency models,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 6, pp. 742–760, 1999.

[14] S.-H. Han, M.-H. Lee, and R. R. Mohler, “Real-time imple-
mentation of a robust adaptive controller for a robotic manip-
ulator based on digital signal processors,” IEEE Transactions on
Systems, Man, and Cybernetics, Part A, vol. 29, no. 2, pp. 194–
204, 1999.

[15] National Instruments, LabVIEW 7 Software Reference and User
Manual, 2002.

[16] D. E. Knuth, The Art of Computer Programming: Fundamental
Algorithms, Addison-Wesley, Reading, Mass, USA, 1997.

[17] H. N. Koivo and J. T. Tanttu, “Tuning of PID controllers:
survey of SISO and MIMO techniques,” in Proceedings of
the IFAC International Symposium on Intelligent Tuning and
Adaptive Control (ITAC ’91), pp. 75–80, Singapore, January
1991.

[18] J. Kunkel, “Cossap: a stream driven simulator,” in Proceedings
of the IEEE International Workshop on Microelectronics in
Communications, Interlaken, Switzerland, March 1991.

[19] R. Lauwereins, M. Engels, M. Ade, and J. A. Peperstraete,
“Grape-II: a system-level prototyping environment for DSP
applications,” Computer, vol. 28, no. 2, pp. 35–43, 1995.

[20] B. Lee and E. A. Lee, “Hierarchical concurrent finite state
machines in ptolemy,” in Proceedings of the 1st International
Conference on Application of Concurrency to System Design
(ACSD ’98), pp. 34–40, Fukushima, Japan, March 1998.

[21] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous dataflow programs for digital signal processing,”
IEEE Transactions on Computers, vol. 36, no. 2, pp. 24–35,
1987.

[22] E. A. Lee and T. M. Parks, “Dataflow process networks,”
Proceedings of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[23] W. S. Levine, The Control Handbook, CRC Press, Boca Raton,
Fla, USA, 1996.

[24] Mathworks, Simulink User Manual and Online Help, 2001.
[25] S. S. Maurer, “A survey of embedded system programming

languages,” IEEE Potentials, vol. 21, no. 2, pp. 30–34, 2002.
[26] P. K. Murthy, “Scheduling techniques for synchronous

and multidimensional synchronous dataflow,” Tech. Rep.
UCB/ERL M96/79, University of California at Berkeley, Berke-
ley, Calif, USA, 1996.

[27] S. Note, P. van Lierop, and J. van Ginderdeuren, “Rapid
prototyping of DSP systems: requirements and solutions,” in
Proceedings of the 6th IEEE International Workshop on Rapid
System Prototyping (RSP ’95), pp. 88–96, Chapel Hill, NC,
USA, June 1995.

[28] T. M. Parks, “Bounded scheduling of process networks,” Tech.
Rep. UCB/ERL-95-105, University of California at Berkeley,
Berkeley, Calif, USA, 1995.

[29] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software synthesis
for DSP using ptolemy,” The Journal of VLSI Signal Processing,
vol. 9, no. 1-2, pp. 7–21, 1995.

[30] H. Simon, The Sciences of the Artificial, MIT Press, Cambridge,
Mass, USA, 3rd edition, 1996.

	1. INTRODUCTION
	2. THE G LANGUAGE
	2.1. Specification of G
	2.2. Properties of G
	2.3. G and othermodels of computation

	3. EMBEDDED DESIGN IN LabVIEWAND G
	3.1. Determinism and consistency
	3.2. Boundedmemory programs
	3.3. Complete execution
	3.4. LabVIEW-RT/G and other tools

	4. EMBEDDEDMOTION CONTROL
	4.1. A flexible architecture for embedded motion control
	4.2. Online implementation of system identification and control components
	4.2.1. System identification
	4.2.2. Control design

	4.3. Integration of design components

	5. EMBEDDED CONTROL DESIGN USING LabVIEWRT
	5.1. Design process

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

