
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CloudMirror: Application-Aware Bandwidth Reservations in the
Cloud

Citation for published version:
Lee, J, Lee, M, Popa, L, Turner, Y, Banerjee, S, Sharma, P & Stephenson, B 2013, CloudMirror:
Application-Aware Bandwidth Reservations in the Cloud. in Presented as part of the 5th USENIX Workshop
on Hot Topics in Cloud Computing. Usenix, Berkeley, CA, pp. 1-6.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Presented as part of the 5th USENIX Workshop on Hot Topics in Cloud Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43718712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/cloudmirror-applicationaware-bandwidth-reservations-in-the-cloud(2ae384e2-ebc8-400b-8357-f4ab9901807b).html


CloudMirror: Application-Aware Bandwidth Reservations in the Cloud

Jeongkeun Lee+, Myungjin Lee∗, Lucian Popa+, Yoshio Turner+, Sujata Banerjee+,
Puneet Sharma+, Bryan Stephenson!

+HP Labs,∗University of Edinburgh,!HP Enterprise Services

Abstract
Cloud computing providers today do not offer guaran-
tees for the network bandwidth available in the cloud,
preventing tenants from running their applications
predictably. To provide guarantees, several recent
research proposals offer tenants a virtual cluster abstrac-
tion, emulating physical networks. Whereas offering
dedicated virtual network abstractions is a significant
step in the right direction, in this paper we argue that
the abstractions exposed to tenants should aim to model
tenant application structures rather than aiming to mimic
physical network topologies. The fundamental problem
in providing users with dedicated network abstractions
is that the communication patterns of real applications
do not typically resemble the rigid physical network
topologies. Thus, the virtual network abstractions often
poorly represent the actual communication patterns,
resulting in overprovisioned/wasted network resources
and underutilized computational resources.

We propose a new abstraction for specifying band-
width guarantees, which is easy to use because it closely
follows application models; our abstraction specifies
guarantees as a graph between application components.
We then propose an algorithm to efficiently deploy this
abstraction on physical clusters. Through simulations,
we show that our approach is significantly more efficient
than prior work for offering bandwidth guarantees.

1 Introduction
Today, cloud computing providers guarantee CPU, mem-
ory and storage resources to tenant virtual machines
(VMs), but do not offer guarantees for the network
bandwidth available in the cloud.1 The lack of network
bandwidth guarantees prevents tenants from achieving
predictable performance for their applications [2].
Predictability, however, is a key requirement for the
ability to migrate applications to the cloud. For example,
many user-facing applications have strict response-time
requirements [3], and may also require high network
bandwidths,e.g., [4].2 When these applications share

1Amazon EC2 has very weak network SLAs; its Cluster Network-
ing promises ‘high-bandwidth’ but there is no guarantee and no way to
specify a custom bandwidth demand [1].

2Twitter’s real-time big-data computation system, Storm, can
process over 106 tuples/second per VM [4]; this requires 240 Mbps

a cloud datacenter network with bandwidth-intensive
batch applications (e.g., MapReduce), this interaction
can severely hurt the performance of the user-facing
applications.

A key challenge in providing bandwidth guaran-
tees is to offer an effectiveabstraction to tenants for
expressing the bandwidth guarantees required for an
application. The research community has recently
recognized the need for bandwidth guarantees in the
cloud, and several projects have proposed various
abstractions and connectivity models for bandwidth
guarantees [6, 2, 7, 8, 9, 10, 11]. Most of these proposals
aim to model a dedicated virtual network topology,
resembling a physical topology, for each tenant. A
tree-shaped cluster abstraction,e.g.,either a single-level
tree, known as the hose model, or a multi-level tree
(see [2]), is most commonly used [6, 2, 8, 9, 10, 11].
This abstraction directly maps to today’s tree-shaped
physical network topologies, and is easy to understand.

In this paper, we argue that the abstractions exposed
to tenants shouldaim to model tenant application
structures rather than aiming to model physical network
topologies. The fundamental problem in providing
users with dedicated network abstractions is that the
communication patterns of real applications do not
typically resemble the rigid physical network topologies.
Thus, the virtual network abstractions often poorly
represent the actual communication patterns, resulting
in overprovisioned/wasted network resources and un-
derutilized computational resources (see§2 and §5).
Offering more complex virtual network abstractions
(such as multi-layered trees) in an attempt to reduce this
inefficiency is only partially effective, and significantly
complicates the job of tenants to map their applications
onto the virtual network topologies.

Our solution to this problem isCloudMirror, a frame-
work that comprises a novel abstraction for expressing
guarantees and an efficient VM placement algorithm
that takes advantage of this abstraction. CloudMirror’s
abstraction, calledTenant Application Graph (TAG),
aims to mirror the structure of the application being
deployed by the tenant. Specifically, with a TAG
abstraction, a tenant specifies agraph of bandwidth

network bandwidth per VM, assuming 30 byte tuples [5]).
1



guarantees between the application tiers. Since TAG
models directly capture the application structure, they
are both easy to use and accurately represent the com-
munication patterns of applications. Furthermore, TAG
models naturally accommodate load balancing between
application tiers, dynamic “flexing” of the application
size based on load [12], and middleboxes (see§3).

CloudMirror’s VM placement algorithm leverages the
TAG model to efficiently place VMs on tree-shaped dat-
acenter topologies (§4). Our evaluation (§5) shows that
compared to our model and placement algorithm, Okto-
pus [2] requires 60% more bandwidth for the same ap-
plication set. In turn, this results in hosting more tenants
on the same network or deploying a smaller network for
the same workload.

2 Shortcomings of Prior Models
Most prior research efforts on cloud networking have fo-
cused on batch processing applications like MapReduce
and Pregel. These data and network-intensive applica-
tions typically employ a simple communication pattern,
e.g.,all mappers send data to all reducers. Still, the cloud
hosts a wide range of applications beyond batch jobs,
with different communication patterns. For instance,
cloud datacenters host many user-facing applications and
sophisticated enterprise applications composed of many
tiers with complex traffic interactions [13]. Consider the
following two illustrative example applications.

Fig. 1(a) shows a simple example of a three-tiered
application with a frontend web tier, a business logic tier,
and a backend database tier. Each tier contains multiple
VMs and the edges of the communication graph are an-
notated with the bandwidth requirements between tiers.

The second example is a real-time data analytic
application shown in Fig. 2(a), implemented using
Storm [4]. Storm is a platform used by many companies
for online machine learning, continuous computation on
data streams,etc.Storm applications have two types of
components: “spouts”, which are similar to mappers in
MapReduce, and “bolts”, which represent both a mapper
and a reducer.3

As cloud datacenters aggressively consolidate diverse
workloads onto a shared fabric to maximize resource
efficiency, it is critical to adequately represent all the
different types of communication patterns (such as the
above examples), and not only the batch processing jobs.

Next, we discuss the three most commonly used
abstractions: hose model, VOC model and pipe model.

• Hose Model: In the hose model [6, 2, 8, 10, 11],
all VMs are connected to a central (virtual) switch by

3Storm components use java threads rather than VMs. The TAG
model and our placement algorithm can also be applied to such
scenarios,e.g.,for Platform-as-a-Service (PaaS) providers.

a dedicated link (hose) having a minimum bandwidth
guarantee. To better match application requirements, we
consider a generalized hose model [6] where each VM
can have a different bandwidth guarantee (unlike Okto-
pus [2]).

While this model is simple to derive, it can be
severely inefficient. Consider the example in Fig. 1(a)
and assume thatB1 represents the typical bandwidth
demand between one VM from the web tier and one VM
for the business logic tier.B2 is defined similarly, while
B3 is the bandwidth demand between two database VMs
(e.g., used to ensure the consistency of the database).
For simplicity we assume an equal number of VMs
in each tier and equal bandwidth requirements in both
directions. Also, we ignore the Internet bandwidth
requirement to the web tier.

Fig. 1(b) presents the hose model guarantees for the
example in Fig. 1(a). The fundamental problem is that
the hose model does not accurately capture the traffic
pattern between application tiers. More concretely,
suppose that each server tier is deployed on a separate
sub-tree of the physical network as shown in Fig. 1(c).
To satisfy the hose model, the bandwidth that must be re-
served on linkL3 for each database VM would beB2+B3.
(We assume here thatB2+B3 < B1+B1+B2, and so the
minimum that needs to be reserved on linkL3 is B2+B3

rather than 2B1+B2.) However, the hose model hides the
fact thatB3 is used solely for the communication within
the DB tier rather than for communication with other
tiers. Thus, the application does not actually need the
full guarantees (B2+B3) indicated by the hose model and
reserving the bandwidthB3 on link L3 is wasteful.

• Virtual Oversubscribed Cluster (VOC): This model
was proposed in [2] as a finer grained version of the hose
model. In the VOC model, VMs are organized into clus-
ters and have a hose model guarantee inside each clus-
ter. Clusters are then connected together with per-cluster
hoses. The capacity of the per-cluster hose isB ·S/O,
whereB is the guarantee of each VM inside the cluster,
S is the size of the cluster (number of VMs) andO is the
oversubscription factor [2]. Again, to better suit applica-
tions, we consider a generalized VOC model that accom-
modates different guarantees, sizes and oversubscription
factors for each cluster, unlike the homogeneous model
in [2] that is much more constraining for applications.

The VOC model is also not well suited to represent
most applications. Consider the Storm based application
of Fig. 2(a), where for the sake of simplicity, we assume
that each component consists of the same number of
VMs S, and the outgoing bandwidth of each VM to a
communicating component isB. Even for this simple
example, there can be many possible VOC model
representations, and it is non-trivial to derive a good

2



Web Logic DB
B1 B2

B3

(a) Simple application

B2+B3

Web

B1

… … …

Logic DB

B1+B2

(b) Hose modeling

L3

Web

L1

Logic DB

L2

(c) Physical deployment example

Figure 1: Three tiered application example deployed using the hose model.

Spout1

B

B
Bolt2 Bolt3

Bolt1B

(a) Storm example

Spout1

…

Bolt2 Bolt3

… …

2B B B

S 2B S B S B

Bolt1

…

B

S B

(b) VOC Modeling

L2

Spout1 + Bolt1

L1

Bolt2 + Bolt3

(c) Physical deployment example

Figure 2: Storm [4] application example deployed using the VOC model.

one. Fig. 2(b) presents one possible mapping, where we
simply represent each application component as a VOC
cluster. The resulting model is a degenerate (or relaxed)
VOC model, since the clusters are not oversubscribed.
Moreover, the model does not accurately capture the
communication pattern of the application, since the
components do not communicate internally using that
bandwidth. The goal behind the VOC model is to isolate
higher connected application tiers and place them in
better connected topology sub-trees. Having clusters
that are not oversubscribed and that do not communicate
between their VMs defeats the purpose of the VOC
model, and, in fact, has an adverse effect. The placement
algorithm may try to place the VMs of each component
in separate sub-trees, as Oktopus [2] does, although
these VMs communicate only inter-component rather
than intra-component, wasting core bandwidth.

Fig. 2(c) shows a potential deployment where two
components are placed in one branch of the physical tree
while the other two are in a different branch. In this case,
the bandwidth reservation on linksL1 andL2 should beS·
B given the communication pattern (since only “Spout1”
communicates with “Bolt2” between the two branches).
However, VOC will reserve twice this bandwidth (since
VOC reserves min(3S·B,2S·B) = 2S·B). Thus, it is easy
to see from this example how VOC can be very ineffi-
cient in capturing the bandwidth guarantees. The hose
model would be similarly wasteful for this application.

While existing virtual cluster abstractions for express-
ing guarantees do not efficiently capture even the traffic
pattern of our simple examples, real applications can be
far more complex. Applications can comprise tens of
distinct tiers [13] and use middleboxes (offered by the

provider, or implemented through VMs, by companies
like F5 or Vyatta). These requirements further strain the
virtual cluster models (as we show in§5 for a real trace
of datacenter applications).

• Pipe Model: An alternative to virtual clusters is to
specify pipe guarantees between pairs of VMs [7, 14].
While this model has the ability to capture exactly the
traffic needs of the application at a given point in time, it
has two major drawbacks. First, it is too rigid and lacks
statistical multiplexing. Typically, the VMs belonging to
different tiers that exchange data are selected by run-time
load balancers, which do not guarantee perfect uniform
load distribution to every destination. Thus, even when
the aggregate load is constant, the load to each destina-
tion varies over time. Users can not update each pipe
every minute or second to tightly track the time-varying
bandwidth demand of each pipe and will most likely re-
serve the worst case bandwidth of the peak load for each
pipe [6]. For example, a benchmark report on Amazon
Elastic Load Balancer shows the sum of the peak loads
to each destination is at least double the peak aggregate
traffic [15]; thus, the pipe model would lead to a 2X over-
provisioning of the bandwidth.

Second, the pipe model is tedious to use. The tenant’s
request can have hundreds and even thousands of VMs,
which, in turn, could result in tens of thousands of
pairwise guarantees. Due to this complexity, placing the
tenant VMs can also take a long time (§5).

3 Tenant Application Graph (TAG)
We propose the Tenant Application Graph (TAG), a
new model that tenants can use to describe bandwidth
requirements for applications. Unlike conventional hose

3



C1 C2
B1 B2

B2
in

Figure 3: TAG model example.

B2

C1

B1

… …

C2

B2
in

T1 2 S2

Figure 4: TAG model example explained.

and VOC abstractions, which model physical networks,
the TAG abstraction aims to model the actual com-
munication patterns of applications. The TAG model
leverages the tenant’s knowledge of an application’s
structure to yield a concise yet flexible representation of
the application’s communication pattern.

A TAG model is a graph, where each vertex rep-
resents an application component(or tier, we use the
two terms interchangeably to indicate the set of VMs
performing the same function). Since most applications
are conceptually composed of multiple tiers [13], a
tenant can simply map each of these tiers onto a TAG
vertex. For example, for the application in Fig. 1(a) the
tenant would identify three tiers: web, business logic,
and database. A special component is used to model all
nodes situated outside the datacenter (the Internet).

Tenants request bandwidth guarantees between tiers
by placing directed edges between the corresponding
vertices in the TAG model. Each directed edgee= (u,v)
from tier u to tier v is labeled with an ordered pair
< Se,Re > that represents per-VM bandwidth guaran-
tees for the traffic. Specifically, each VM in tieru is
guaranteed bandwidthSe for sending traffic to VMs in
tier v, and each VM in tierv is guaranteed bandwidthRe

to receive traffic from VMs in tieru.
Having two values (sending and receiving) instead

of a single bandwidth guarantee for each edge is useful
when the size (i.e., number of VMs) of the two tiers is
different. In this way, the total bandwidth outgoing from
one tier and incoming to the other tier can be equalized
(such that bandwidth is not wasted). If tiersu andv have
sizesNu andNv, respectively, then the total bandwidth
guarantee that the tenant achieves for traffic sent from
tier u to tierv is Bu→v = min(Se ·Nu,Re ·Nv).

To model communication among VMs within tier
u, the TAG model allows a self-loop edge of the form
e = (u,u) that is labeled with a single bandwidth
guarantee< SRe >. In this case,SRe represents both

the sending and the receiving guarantee of one VM in
that tier (or vertex). A self-loop edge is equivalent to a
conventional hose model,i.e., each VM in tieru can be
considered to be attached to a virtual switch via a trans-
mission hose of rateSRe and a receive hose of rateSRe.

Fig. 3 shows a TAG model for a simple example
application with two tiersC1 andC2. In this example,
a directed edge fromC1 to C2 is labeled< B1,B2 >.
Thus, each VM inC1 is guaranteed to be able to send at
rateB1 to the set of VMs inC2. Similarly, each VM in
C2 is guaranteed to be able to receive at rateB2 from the
set of VMs inC1.

To better understand the TAG model, Fig. 4 shows an
alternative way of visualizing the guarantees expressed
in Fig. 3. To model the guarantee betweenC1 andC2,
each VM inC1 is connected to avirtual trunk T1→2 by
a dedicated directional link of capacityB1. Similarly,
virtual trunk T1→2 is connected through a directional
link of capacityB2 to each VM inC2. Thus, an inter-tier
edge can be seen as a directional hose model between
the VMs of the two tiers.

The TAG model example in Fig. 3 has a self edge for
tier C2, describing the bandwidth guarantees for traffic
where both source and destination are inC2 (e.g., the
traffic between database servers in Fig. 1(a)). A self
edge is equivalent to a hose model between the VMs
of that tier. For example, in Fig. 4, each VM inC2 is
connected through a bidirectional link of capacityBin

2 to
a virtual switchS2.

Benefits: the TAG abstraction is intuitive, descriptive
and easy to use. Moreover, since the guarantees specified
in the TAG model are from any VM of one tier to any
set of VMs of another tier, the TAG model naturally
accommodates dynamic load balancing between tiers
and dynamic re-sizing of tiers (known as “flexing” [12]);
per-VM bandwidth guarantees Se and Re do not need to
change while tier sizes change by flexing.This is unlike
a pipe model between VMs [7, 14] whereper-pipe
bandwidth guarantees need to be recomputed while
load-balancing and flexing, or otherwise the bandwidth
must be heavily overprovisioned. Furthermore, with
TAG tenants need to specify much smaller number of
values than with the pipe model.4

We also note that the directional edge definition of
TAG naturally accommodates middleboxes, which often
impact only one direction of the flow. For example,
many load balancers and security services examine
only queries to servers but not the reverse traffic from
servers; moreover, queries often consume significantly

4To be even simpler for users, two edges in opposite directions
between two tiers can be combined into a single undirected edge
when the incoming/outgoing values for each tiers are the same
(i.e., S(u,v) = R(v,u) andR(u,v) = S(v,u)).

4



less bandwidth than responses. The ability to specify
directional bandwidths allows TAG to accommodate up
to 2× more guarantees than a unidirectional model. For
example VMX with a high outgoing guarantee request
can be collocated on the same server with VMY with a
high incoming guarantee request.

Model generation: tenants can identify the per VM
guarantees to use in the TAG model through mea-
surements [13] or compute them using the processing
capacity of the VMs and a workload model. Also, PaaS
cloud providers can offer pre-defined service VMs (or
JVMs) with pre-computed guarantee requirements.

Previous graph models: we note that graph models
are widely used to model components and their connec-
tivity in a variety of fields. One of the closest modeling
to our field is in the area of Service-Oriented Computing,
in which graph models are used to specify how web or
cloud services can be composed from multiple service
components with QoS specification [16, 17]. However,
none of them tried to capture the bandwidth demand
between VMs of a pair of communicating service
components and to provide the bandwidth guarantee.

4 TAG Deployment
Deploying the TAG model requires (a) optimizing the
placement of VMs on physical servers while reserving
needed bandwidth on physical links and (b) enforcing the
reserved bandwidths. In this paper, we present a sketch
of the placement algorithm and rely on prior proposals
(and on-going work) for enforcement [2, 9, 10].

The CloudMirror placement algorithm (CM) tries to
maximize tenant placements in a tree-shaped physical
topology while meeting all guarantees. For each tenant,
CM strives to minimize bandwidth usage of the (over-
subscribed) network core by identifying the smallest
subtree of the physical topology that may accommodate
all VMs of the tenant (similar to Oktopus [2]).

To place VMs in the chosen subtree, CM and Oktopus
take different approaches. Oktopus placement relies on
the main assumption of the VOC model, that the band-
width needed within each cluster exceeds the bandwidth
needed for inter-cluster communication. Thus, Oktopus
places VMs of the same cluster close together in the
topology, and places different clusters independently.

In contrast, CM leverages the explicit specification in
the TAG model of the bandwidth requirements within
and between components to find more efficient VM
placements than Oktopus in most cases. CM solves
a problem similar to the classic min-cut problem to
identify components that are connected in the TAG
model with high bandwidth edges (including self-loop
edges), and then places the VMs of these heavily
communicating components under the same child of

 0

 0.5

 1

 1.5

 2

 2.5

N
or

m
al

iz
ed

 r
es

er
ve

d 
B

W TAG
VOC
Hose

Figure 5: Total bandwidth
usage, normalized by that
of TAG.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4X 16X 64X 256X

S
lo

t u
til

iz
at

io
n

Oversubscription ratio

TAG
VOC

Figure 6: VM slot uti-
lization vs. network core
oversubscription ratio.

the subtree to reduce bandwidth usage at the root of the
subtree. The complexity of this min-cut phase isO(c2)
wherec is the number of components in a TAG.

Components that are too large to fit under a single
child must be spread across multiple child nodes, and
their bandwidth consumption at the subtree root is
often less sensitive to their precise placement within the
subtree. For such components, CM shifts to the goal
of maximizing server consolidation, by fully utilizing
both link bandwidth and other resources (# of VM slots)
under individual child nodes:e.g., by placing VMs
from a high bandwidth component together with VMs
from a low bandwidth component. This is accomplished
by solving a problem similar to the classic Knapsack
problem; its asymptotic complexity isO(n), n is the
number of VMs in a TAG.

The algorithm recursively repeats the two phases
(min-cut and Knapsack) for each child sub-tree under
the sub-tree chosen for the entire tenant at the beginning
of the algorithm, until all the VMs of the tenant are
deployed without violating link capacity limits.

5 Evaluation
We use simulation to quantify the efficiency of the
proposed TAG model and CM placement algorithm
compared to the hose and VOC models placed using Ok-
topus [2]. We leave assessing the ease of use of the TAG
model compared to VOC and pipe models to future work.

We test our algorithms using a workload derived
from Microsoft’sbing.com datacenter, provided by the
authors of [18]. Microsoft’s workload is formed by a set
of services, the service size ranging from one to a few
hundred VMs. We consider a tenant job as a set of ser-
vices that only communicate between themselves (i.e.,a
connected component in the communication graph
containing all services). (As the authors of [18] did, we
ignore the management services, to which all other ser-
vices communicate with.) These connected components

5



exhibit various shapes (e.g.,star, linear, mesh), and some
services have large intra-service demands (similar to
MapReduce) [18]. We assume tenants are sampled uni-
formly from this distribution in a randomized order. We
consider each service as corresponding to a component
in the TAG model and to a cluster in the VOC model.

We simulate a tree-shaped 3-level network topology
inspired by a real datacenter, with 1024 servers. For
simplicity, we assume all VMs have identical CPU and
memory requirements, and each server can host 50 VMs.

Fig. 5 compares the total bandwidth reserved through-
out the network for the TAG model deployed by the
CM placement algorithm to the hose and VOC models
deployed by the Oktopus [2] placement algorithm;
in fact we added a substantial improvement to the
algorithm presented in [2], not described for brevity. We
use reserved bandwidth as a comparison metric in order
to decouple the efficiency of the models/placements
from the capacity constraints of the physical network.
For this purpose, we simply assume the network is never
a bottleneck and ignore link capacity constraints when
placing VMs. In this way, all models and placement
algorithms are able to deploy the same set of tenants.
We evaluate the impact for different network capacities
shortly (in Fig. 6).

Fig. 5 demonstrates the benefits of the TAG model and
CM placement algorithm. Oktopus+VOC requires 60%
more network resources than CM+TAG, for the same
set of tenants (saturating all host VM slots). We have
also experimented with synthetic workloads, formed by
artificially mixing different application types (e.g.,three
tier web services and MapReduce jobs), and we obtained
similar or better results (2× increase instead of 60%,
results omitted for brevity).

In Fig. 6 we consider the network capacity constraint,
and evaluate the impact for different network capacities
on VM slot utilization. We assume that each link
between server and ToR switch supports 10Gbps while
capacities of other links are adjusted in order to control
oversubscription ratio. We deploy tenants one by one,
and we plot the utilization of the datacenter VM slots
reached when the first tenant is rejected,i.e., tenant can-
not be deployed due to insufficient available bandwidth
or CPU/memory resources. We can see that for some
oversubscribed networks, CM+TAG can deploy 15×

more VMs than Oktopus+VOC before rejecting the first
tenant.5

The runtime of CM is typically below 100 msec for

5The bandwidth values in Microsoft’s workload data are relative
not absolute. We scale the bandwidth values in a way such thatboth
TAG and VOC achieve 100% slot utilization when the network is
not oversubscribed. Note that the bandwidth scaling did notaffect
Fig. 5 as we ignored network capacity constraints and normalized the
bandwidth consumptions in Fig. 5.

tenants of up to 100s of VMs and less than 1 second for
tenants up to 1000 VMs. This result is promising if we
compare it to runtimes of more than 10 mins reported
for placing pipe models (for a 1024 VM tenant and a
topology with 1024 VM slots) [14]. CM and Oktopus
have similar runtimes.

6 Future Work
We are currently collecting and analyzing traffic traces
from production datacenters to verify the TAG model
and placement algorithm with more real scenarios,
for example, tenant churn and flexing (auto-scaling).
We plan for OpenStack based implementation and
integration with ElasticSwitch bandwidth guaranteeing
system [10]. Other future work opportunities include:
developing pricing models that benefit both cloud users
and operators and extending TAG and its placement
algorithm to support anti-affinity rules for resilience to
host and rack failures.

Acknowledgments
We thank Peter Bodik and the other authors of [18] for
providing us with the data we used in the presented
experiments. We also thank Ramana R. Kompella for
his input on the earlier stages of the work.

References
[1] “Amazon EC2 Instances - Cluster Networking.”http://aws.amazon.

com/ec2/instance-types/.
[2] H. Ballani et al., “Towards Predictable Datacenter Networks,” inACM

SIGCOMM, 2011.
[3] “Amazon - Every 100ms delay costs 1% of sales.”http:

//sites.google.com/site/glinden/Home/StanfordDataMining.
2006-11-28.ppt.

[4] “Storm: Distributed and fault-tolerant realtime computation.”
http://storm-project.net/.

[5] D. Lynn, “Storm: The Real-Time Layer Your Big Data’s Been Missing,”
in Glue Conference, 2012.

[6] N. G. Duffield, P. Goyal, A. G. Greenberg,et al., “A flexible model for re-
source management in virtual private networks,” inACM SIGCOMM, 1999.

[7] T. Bensonet al., “Cloudnaas: A cloud networking platform for enterprise
applications,” inACM Symposium on Cloud Computing (SOCC), 2011.

[8] H. Rodrigueset al., “Gatekeeper: Supporting bandwidth guarantees for
multi-tenant datacenter networks,” inUSENIX WIOV, 2011.

[9] L. Popaet al., “FairCloud: Sharing the Network in Cloud Computing,” in
ACM SIGCOMM, 2012.

[10] L. Popa et al., “ElasticSwitch: Practical and Efficient Bandwidth
Guarantees,” inACM SIGCOMM, 2013.

[11] V. Jeyakumaret al., “EyeQ: Practical Network Performance Isolation at
the Edge,” inUSENIX NSDI, 2013.

[12] “Amazon Web Services - Auto Scaling.”http://aws.amazon.com/
autoscaling/.

[13] M. Hajjat et al., “Cloudward bound: planning for beneficial migration of
enterprise applications to the cloud,” inACM SIGCOMM, 2010.

[14] X. Meng et al., “Improving the scalability of data center networks with
traffic-aware virtual machine placement,” inIEEE INFOCOM, 2010.

[15] Brian Adler, “Load Balancing in the Cloud: Tools, Tips, and Techniques.”
RightScale Technical Whitepaper.

[16] A. Klein et al., “Towards network-aware service composition in the cloud,”
in ACM WWW, 2012.

[17] Z. Ye et al., “Genetic algorithm based qos-aware service compositions in
cloud computing,”LNCS, vol. 6588, pp. 321–334, 2011.

[18] P. Bodik et al., “Surviving Failures in Bandwidth-Constrained Datacen-
ters,” inACM SIGCOMM, 2012.

6


