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Abstract (122 words): Epistatic interactions play a fundamental role in molecular evolution, but 

little is known about the spatial distribution of these interactions within genes. To systematically 

survey a model landscape of intragenic epistasis, we quantified the fitness of ~60,000 

Saccharomyces cerevisiae strains expressing randomly mutated variants of the 333-nt long U3 

snoRNA. The fitness effects of individual mutations were correlated with evolutionary 

conservation and structural stability. Many mutations had small individual effects, but large 

effects in the context of additional mutations, indicating negative epistasis. Clusters of negative 

interactions were explained by local thermodynamic threshold effects, whereas positive 

interactions were enriched among large-effect sites and between base-paired nucleotides. We 

conclude that high-throughput mapping of intragenic epistasis can identify key structural and 

functional features of macromolecules. 

 

One Sentence Summary: A high-throughput fitness assay identifies the complete network of 

epistatic interactions within a yeast RNA, and reveals mechanisms of epistasis. 

  



Main Text: The effect of a mutation on phenotype may depend on the presence of additional 

mutations. This phenomenon, known as epistasis, explains synthetic lethal interactions, where a 

combination of two individually viable mutations causes death, and compensatory interactions, 

where the fitness cost of a mutation is reduced by a second mutation (1, 2). Epistasis plays a 

major role in evolution; it determines the accessibility of mutational pathways (3), thereby 

influencing the rate of adaptation and the diversity and robustness of genetic variants (4, 5). 

Although genome-wide studies have revealed a network of intergenic epistasis (6), it has been 

suggested that interactions within genes may be even more common (7-11). However, previous 

studies focused on relatively small networks of interactions, and the comprehensive pattern of 

epistasis has not yet been determined for any gene. 

We used “doped” oligonucleotides to synthesize ~130,000 randomly mutated variants of the 

333-nucleotide Saccharomyces cerevisiae gene SNR17A, which encodes the U3 small nucleolar 

RNA (snoRNA). U3 basepairs to the primary rRNA transcript (pre-rRNA) and this interaction is 

required for pre-rRNA cleavage and 18S rRNA biogenesis. Our mutagenesis approach ensures 

uniform coverage of mutations among positions 7-333, encompassing 98% of the gene, and 

prevents bias towards specific types of mutations (Figs. 1A, S1). We generated two independent 

mutant libraries, which contained on average 3 and 10 single nucleotide polymorphisms (SNPs) 

per allele, respectively. In addition to the SNPs, 43.6% of variants also contained short deletions 

(median length 1 nt) or insertions (median length 1 nt). All 981 (3*327) possible point mutations 

were represented in the library, and 99.4% of the 53,301 (327*326/2) possible pairs of sites were 

jointly mutated, most of them in alleles that contained additional mutations. To facilitate 

unambiguous identification of variants by high-throughput sequencing, we tagged each variant 



with a unique 20-nt barcode (Fig. 1A) placed in a non-transcribed region downstream of the U3 

gene to minimize interference with function. 

To measure fitness, we used the D343 yeast strain, which contains a single copy of the wild-type 

U3 gene under control of a galactose-inducible promoter (12). D343 cells can grow in galactose-

containing medium, but shifting to glucose results in downregulation of U3 and growth arrest. 

Transformation of wild-type U3 on a plasmid allows the cells to survive on glucose, but non-

functional U3 mutants do not support growth (Fig. S2). We transformed D343 cells with 

centromeric plasmids carrying the U3 mutant libraries, and measured the frequency of each 

mutant during competitive growth on glucose (Fig. 1B). As expected, non-functional variants 

decreased in frequency during the competition, whereas the wild-type gene increased (Fig. 1C). 

Growth patterns were reproducible between four replicate experiments and across replicate U3 

variants within an experiment (Figs. 1D, S3). 

We measured the logarithm of relative fitness (log fitness) of ~60,000 variants that passed 

quality filters, by fitting exponential decay curves to the barcode count data (13). Log fitness of 

wild-type U3 was set to 0. We first focused on the effects of single mutations in an otherwise 

wild-type gene (13). In most positions, mutations were tolerated with minimal effect on fitness 

(Fig. 2A). The exceptions were the conserved protein binding sites known as Box B, C, C’ and 

D, mutations in which are lethal or highly deleterious. In addition, a moderate fitness decrease 

was observed for mutations within stems I, II, III and VI, particularly in G-C base pairs located 

at the base of stems, suggesting a role in structural stability. Folding predictions confirmed that 

destabilizing mutations in individual stems reduced fitness (Fig. S4). The 5nt 3’-terminal stem of 

U3 confers protection from degradation by 3’-5’ exonucleases (12). Mutations in this stem 

reduced fitness proportionally to their predicted effect on RNA folding strength (Figs. S4, S5). 



U->C mutations in positions 178 and 191 were highly deleterious (Fig. S5), possibly because 

they created consensus binding motifs (UCUUG) for the RNA degradation factor Nab3 (14). The 

fitness effects of mutations were slightly larger at 37C compared to 30C, consistent with the 

destabilizing effect of temperature on U3 structure (Fig. S6). We found no mutations that 

consistently increased fitness, suggesting that wild-type U3 is optimally adapted for function. In 

conditions where the genomic copy of U3 was coexpressed with the mutant library, the 

mutations had no effect, indicating lack of dominant negative or gain of function effects (Fig. 

1D). Overall, these results show the expected pattern of single-site fitness effects and support the 

reliability of the measurements. 

We then calculated pi, the aggregate log fitness effect of position i across all genetic backgrounds 

represented in the library (13). In contrast to the single mutants (Fig. 2A), most positions showed 

substantial effects on fitness in combination with other mutations (Fig. 2B). The variation in pi 

across the gene was reproducible between replicate experiments, was observed in both mutant 

libraries, was robust to the exclusion of outlier variants, and did not reflect the co-occurrence of 

mutations with large-effect mutations in other sites (Figs. S6,7). Most positions with very 

negative pi map to the conserved core of the U3 gene (stems I-III, 5’ hinge, 3’ hinge, Fig. 2B). In 

contrast, sites with near-zero pi were located in the fungal- or yeast-specific regions of the 

molecule (stems IV-VI, Fig. 2B). The pi values were correlated with fitness effects in wild-type 

background (Fig. 2C, Spearman rho=0.57, pval<2*10-16). However, the relationship was 

markedly non-linear, indicating that many mutations had small effects in an otherwise wild-type 

U3 but large effects in the context of additional mutations. 

This pattern suggests a high prevalence of negative epistatic interactions within U3. To confirm 

this, we analyzed the distribution of fitness effects as a function of the number of mutations in 



each allele (Fig. 2D). As expected, the average fitness of variants decreased with increasing 

numbers of mutations. Notably, measured fitness was consistently lower than expected under an 

additive model (Fig. 2E). This indicates overall enrichment of negative epistatic interactions 

relative to positive interactions. 

We estimated the strength of all pairwise interactions from measurements of single, double and 

multiple mutants (13) with a regression model (15-17) that explained approximately 86% of 

variance in measured fitness and produced similar patterns of interactions when applied to our 

replicate experiments (Fig. S9). We obtained a consensus set of epistatic interactions by 

averaging the interaction estimates from all four glucose competition experiments. Plotting these 

interactions resulted in a characteristic tartan pattern (Fig. 3A), in which several positions in the 

gene showed strong positive interactions with most other sites. These hubs of positive epistasis 

correspond to the C’, C and D boxes, which are highly conserved in evolution and show the 

largest individual effects on fitness. This observation indicates a saturation effect, whereby large-

effect mutations inactivate the gene to such an extent that additional mutations become 

irrelevant, resulting in positive epistasis. Consistently, sites with large individual effects showed 

a strong bias towards positive epistasis (Wilcoxon test, p<2*10-16; Fig. 3B,C), and the fitness of 

C’, C and D box mutants did not depend strongly on the presence of additional mutations in the 

gene. The saturation effect is the within-gene equivalent of positive epistasis between pairs of 

mutations that independently inactivate the same metabolic pathway (18, 19). 

We also expected positive interactions between base-paired positions, due to the presence of 

compensatory mutations, which are common in RNA evolution (5). Indeed, base-paired positions 

showed an enrichment of positive epistasis relative to all pairs of positions (Wilcoxon test, 

p=2*10-7; Fig. 3D). In particular, all positions within the essential terminal stem formed strong 



positive interactions with their corresponding base-paired residues (Fig. 3E). To test whether 

positive epistasis can be used to predict RNA folding, we intersected the set of positive 

interactions with a list of all potentially interacting triplets of nucleotides (13). In this analysis, 5 

of 6 of the strongest positive interactions corresponded to known basepairs. When we used these 

interactions as constraints in RNA folding prediction, the accuracy of predicted secondary 

structure was improved (Fig. S10). 

Despite the enrichment of positive interactions among large-effect or base-paired sites, negative 

interactions were more common overall (Fig. 3A,B). Whereas the strongest positive interactions 

typically involved at least one large-effect position (Fig. 4A), negative interactions were 

common among low- and intermediate-effect sites, and were distributed throughout the 

molecule, with enrichment in the conserved core (Fig. 4B). The strength of negative epistasis 

was inversely correlated with the distance along the primary sequence: 8 out of 10 strongest 

negative interactions were between pairs of adjacent nucleotides, and the median distance 

between the 100 most strongly interacting pairs was 18 nt. We thus focused on a hotspot of 

interactions encompassing the 3' hinge (Fig. S11A) that mediates base-pairing between U3 and 

the pre-ribosomal RNA (pre-rRNA), and is necessary for the pre-rRNA cleavage step of 

ribosome biogenesis (20). Our results suggest that the 3’ hinge can tolerate a single SNP, but that 

multiple mutations within this region reduce fitness, probably because they disrupt U3-rRNA 

binding. A similar, but less pronounced pattern was found in the 5’ hinge area. Our analysis 

shows that the thermodynamic threshold model, wherein fitness decreases abruptly when 

molecule stability falls below a certain level (9), also operates at the level of interactions between 

distinct molecules (Figure S11B). 



In genome-wide studies, epistatic interactions between genes correlate with physical contacts, 

coevolution, and co-occurrence within biochemical pathways (6). Mapping genetic interaction 

networks therefore provides information about cellular organization. We postulate that intragenic 

interaction maps will similarly illuminate patterns of molecular organization. This and other 

studies (8, 17, 21, 22) suggest that within-gene epistatic interactions are enriched among residues 

in physical proximity. Were this correlation sufficiently strong, intra-gene epistasis would 

identify secondary and tertiary structures of macromolecules. Notably, recent studies have 

successfully predicted the 3D structures of proteins and complexes by measuring coevolution 

between residues within protein alignments, a phenomenon intimately linked to epistasis (23, 

24). Improved methods to extract structurally relevant interactions from the dense network of 

intramolecular epistasis should allow macromolecular structures to be derived from maps of 

within-gene epistasis. 
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Figure 1. Experimental mapping of the U3 fitness landscape. 

A. To perform saturation mutagenesis of U3 we used PCR to assemble overlapping “97:1:1:1-
doped” and non-doped oligonucleotides covering the whole length of the gene (13) and attached 
a unique 20-nt barcode to each variant. B. We cloned the U3 mutant library into centromeric 
plasmids and transformed the plasmids into the D343 yeast strain. C. Normalized read-counts 
from barcode sequencing for 7 randomly chosen wild type U3 variants (red) and 7 variants 
carrying a single mutation in box D (blue), in control (galactose) and competitive (glucose) 
conditions. Fitness was approximated by fitting exponential decay curves to the barcode count 
data. D. Rows indicate positions along U3 and columns indicate substitution to one of 4 bases: 
A, C, G and T. Log fitness effects are shown in blue for deleterious effects, red for positive 
effects and white for no effect on galactose in 30C (Gal), and glucose (Glu) in 30C and 37C. 
Genetic variants with one or two mutations were included in the analysis (13). Positions for 
which no data were obtained are shown in grey. 

Figure 2. Distribution of fitness effects mapped to secondary structure. 

A. The log fitness of single mutants at each position of U3 (fi) is represented according to the 
colour scale, from blue for no effect, to red for effects -1 and stronger; non-mutagenized 
positions are white. B. The population-average log fitness effect for each position in the 
background of multiple mutations (pi) (13). Evolutionarily conserved motifs are indicated on the 
secondary structure. C. Non-linear relationship between the fitness effects of single mutations in 
wild-type background (fi) and in mutated backgrounds (pi). D. Cumulative distributions of log 
fitness for mutants grouped by number of mutations per variant. E. Mean measured log fitness 
(white boxes) is always lower than expected in the absence of epistasis (grey boxes). Inclusion of 
epistasis improves the fit between the model and the data (dark grey boxes). The boxes show the 
median and inter-quartile ranges. 

Figure 3. Localization of negative and positive epistasis. 

A. Estimated pairwise epistatic interactions (wij) between positions in U3 (13), averaged between 
all experiments in glucose media. Negative interactions are green and positive are red; 
evolutionarily conserved motifs are indicated on the right and positions in U3 on the bottom. 
Data for the first 6 positions are skipped due to lower coverage of mutations (see Fig. S1). B-D. 
Distribution of wij showing negative epistasis (green bars) and positive epistasis (red bars) for all 
interactions (B), for sites with large individual effects (effect size <-1 for at least one site in pair, 
C), and among pairs of base-paired positions (D). E. Distributions of wij for individual positions 
in the terminal stem (75-78, 330-333). Red asterisks indicate interactions between known 
basepairs. 

Figure 4. Network of epistatic interactions. 

Circos plots showing patterns of 200 strongest positive (A) and negative (B) interactions within 
U3. Evolutionarily conserved motifs are indicated. 
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Materials and Methods: 
 

U3 mutant library construction (saturation mutagenesis) 

The library of U3 mutants was constructed in a two-step PCR approach that included assembly 

and amplification PCR reactions. To generate the "Big" library we performed assembly PCR 

with 6 overlapping, “doped” oligonucleotides (IDT, all sequences in Table S2). In the doped 

oligonucleotides, each position contained the wild-type nucleotide at 97% frequency and a 

1%:1%:1% mix of the three other nucleotide types. This protocol resulted in a 3% mutation rate 

per position. To generate the "Small" library we performed 6 independent assembly reactions, 

each using 1 doped and 5 non-doped oligonucleotides, and we mixed the assembly PCR products 

in equimolar ratios. The Small library had an approximately 1% mutation rate per position. The 

assembly PCR products were used as a template for amplification PCR, to add 20-nucleotide 

random barcodes and restriction sites to each variant (primers: U3_start_SalI and 

U3_end_bar_EcoR, in Table S2). Nucleotides 1-6 of the U3 gene represent a SalI restriction site, 

and we did not introduce any mutations in this fragment. The product was cloned using SalI and 

EcoRI sites into the pU3-empty vector, under the control of native U3 promoter. Plasmid pU3-

empty was constructed by replacing wild-type U3 coding sequence and 70 downstream 

nucleotides with 40 nt double stranded oligonucleotide Sal_oligo_Eco (Table S2) in the ARS-

CEN vector pU3-wt, carrying an ADE2 marker (25), created on the backbone of pASZ11 (26). 



Ligation products were transformed into DH5a/TOP10 competent cells and plated on 450 plates 

(~400 colonies per plate), for a total of 180,000 colonies. Colonies were pooled in PBS and used 

directly for MIDIprep (18 columns) (Qiagen, UK) to generate the U3 mutant plasmid library. 

MiSeq 300-nt paired-end sequencing of the entire insert (U3 mutated sequence, non-mutated 

linker and barcode) was performed to check the complexity of library and to associate random 

barcode sequences with U3 sequences. 

 

Yeast strains 

The D343 yeast strain (leu2, ura3, ade2, can1, his1, his3, trp1, U3aΔ, UASGAL:U3A::URA3, 

U3B::LEU2), where the wild type genomic version of U3 is expressed under the control of 

galactose promoter, was transformed with 80 µg of U3 mutant plasmid library using LiAc/SS-

DNA/PEG High Efficiency Transformation Protocol (27). The whole transformation mix was 

transferred to 1l of liquid synthetic medium without adenine, supplemented with 2% galactose. 

To estimate the efficiency of transformation, 100ul of this liquid culture was plated just after 

inoculation and incubated for 2 days in 30C (based on this, the efficiency of the main 

transformation was usually 6250 colonies / 1 µg DNA). The liquid culture was grown in 30C 

until it reached OD600=2.0, diluted to OD600=0.2 (at least 5x108 cells were transferred) and 

grown again to OD=1.0. This stage we called population G0 and performed HiSeq Illumina 

sequencing of barcodes (Edinburgh Genomics, UK) to check the complexity of the library. 

 

Assigning U3 sequences to random barcodes 

To identify the sequences of U3 variants associated with random barcodes, we used the plasmid 

library to amplify a ~400nt fragment containing the U3 mutated sequence, non-mutated linker 



and random 20-nt barcode (primers: IndexX_PCR_U3_seq and R_PCR_U3bar_seq) and used 

this as a template for 300-nt paired-end MiSeq Illumina sequencing (Edinburgh Genomics, UK), 

using the Custom_Read1_seq_primer_U3 and Illumina Read2_sequencing_primer (Table S2). 

Candidate barcode sequences were extracted from between flanking sequences using blastall and 

bedtools programs. A large proportion of these candidate barcodes represented Illumina 

sequencing errors and were only present at very low frequency in the sequencing. To identify 

bona-fide barcodes associated with the U3 variants, we filtered the list of candidate barcodes 

according to their frequency in several sequencing runs (the original U3 mutant plasmid library 

and the G0 yeast population). To avoid errors in barcode assignment, we also filtered barcodes 

by similarity to other barcode sequences. We then used bowtie2 (28) and samtools (29) to map 

all reads to wild type U3 and to identify the consensus U3 sequence corresponding to each 

random barcode. We called a mutation if the same change at a given position appeared in at least 

80% of reads with a given barcode. To avoid ambiguous assignments of barcodes to the U3 

sequence, we discarded all barcodes for which we found any mutation in U3 present in between 

20-79% of reads. We also discarded barcodes for which the linker sequence between U3 and the 

barcode was mutated, and barcodes for which the U3 sequence was not fully covered by reads. 

 

Competition experiments 

The competition experiments were performed in synthetic medium without adenine (Formedium, 

UK), supplemented with 2% glucose (Sigma-Aldrich, UK) (or 2% galactose (Sigma-Aldrich, 

UK) for control conditions) inoculated with ~5x108 cells from population G0. Cells were grown 

in 500 ml of liquid medium at 30C (or 37C) and 230 RPM for 4 days. To keep the culture 

between OD600=0.1 and OD600=1.0, ~5x108 cells were transferred into fresh medium every 12 



hours. Five competition experiments were performed, and samples were collected as shown in 

Table S1. Throughout the manuscript, unless otherwise noted, we show the results of experiment 

"Small_1_30C_Glu", but the results and conclusions were reproducible between experiments. 

During competitive growth, selection could in principle increase the copy number of U3-

containing plasmids. This would lead to unreliable fitness estimates, and to overestimation of 

fitness, particularly for variants whose fitness can be compensated by increased plasmid copy 

numbers. We estimated the magnitude of these effects by examining variation in fitness 

estimates among replicate measurements of the same U3 variant, both within and between 

experiments. Fitness measurements were reproducible, even among low-fitness variants (Figs 

1C,D; S3C; S6), suggesting that random effects, such as changes in plasmid copy number, do not 

play a major role. In addition, copy number changes would lead to overestimation of low fitness 

effects, and in consequence, a positive bias in epistasis estimates. Thus, selection for copy 

number cannot explain the observed overall enrichment of negative interactions, nor can it 

explain any of the other major conclusions of the study. 

 

Sequencing sample preparation 

Yeast cells collected at each time point were treated with zymolyase in 3 ml of 20mM KPi 

pH=7.4 for 1 hour in 37C to remove the cell wall, and plasmid DNA was isolated from 

remaining spheroplasts using Qiagen MAXIprep, omitting the steps prior to addition of P2 

buffer. We amplified 16 ng of template per sample, corresponding to ~ 1.5 x 109 plasmid 

molecules. Illumina (or Ion Torrent) adapters were added in a 25-cycles PCR reaction, 

performed with Phusion® High-Fidelity PCR Master Mix with HF Buffer (Fisher Scientific, 

UK) in 50 µl in each of 8 reaction tubes (HiSeq primers: IndexX_PCR_bar_seq with 



R_PCR_U3bar_seq; Ion Torrent Proton primers: Proton_trP1_PCR_bar_seq_F with 

Proton_A_PCR_bar_seq_R and Proton_A_PCR_bar_seq_F with Proton_trP1_PCR_bar_seq_R 

Table S2). PCR products from all reaction tubes were pooled into 50 µl using a PCR Cleanup 

column (Qiagen). The appropriate PCR band was isolated by 2% E-Gel SizeSelect agarose gel 

electrophoresis (Life Technologies, UK) and quantitated by Bioanalyzer (Agilent, IGMM 

technical support/Edinburgh Clinical Research Facility, UK). For Illumina high-throughput 

sequencing, we usually pooled 6 samples (for HiSeq) or 2 samples (for MiSeq) mixed in 

equimolar ratios. In the case of Ion Torrent Proton (IGMM technical support/Edinburgh Clinical 

Research Facility, UK) we sequenced 1 sample per chip. 

 

Counting of barcodes 

FASTQ files from 50 bp Illumina HiSeq (or Ion Torrent) sequencing were demultiplexed. The 

template for deep sequencing of barcodes contained 25 nt fragments flanking the 20 nt barcode 

sequence of interest. The HiSeq sequencing was performed so that the first position in the read 

corresponds to the first nucleotide of the barcode and the 3' flanking sequence was found at the 3' 

end of reads (in the case of Ion Torrent sequencing both flanks were present in the read). We 

used blast (30) and bedtools (31) to locate and remove the 3' flanking sequence (or both flanking 

sequences) from reads and we counted unique barcodes. We recovered barcode sequences that 

could be uniquely matched to exactly one of the barcode sequences from the filtered list (see 

"Associating U3 sequences with random barcodes" above), allowing at most two sequencing 

errors per barcode. 

 



Fitness estimation 

In laboratory experiments with continuous growth and overlapping generations, the population 

size can be represented by the formula Nt=N0 exp(m t), where Nt is the number of individuals at 

time t, N0 is the initial number of individuals, and m is the exponential growth rate, also known 

as "Malthusian parameter" (32, 33). When two or more populations compete with each other, the 

Malthusian parameter of each population is equivalent to the logarithm of fitness (log fitness), 

and the difference in Malthusian parameters is equivalent to the difference of log fitness. 

Throughout this manuscript, we define the relative "log fitness" of a genotype as the Malthusian 

parameter of that genotype minus the median Malthusian parameter of the wild-type genotypes 

in the same experiment. 

To obtain log fitness estimates from data, we used a Poisson regression approach (34) with 

exponentially decaying mean. Count numbers of barcode l at time t were modeled as Poisson 

random variables 

nl (t) ~ Po(ml
t )  

ml
t =
exp(λlt + bl0 )

bt
 

Here λl represents the unknown (un-normalized) log fitness of barcode l, and bt and bl0 are 

normalization factors accounting for different library sizes and different initial counts. We placed 

Gaussian priors over the λl, bt and bl0 variables and obtained Bayesian posterior estimates using 

the Expectation-Propagation approximation (35). Log fitness estimates were then adjusted by 

subtracting the median log fitness estimate of barcodes corresponding to wild type U3 to produce 

normalized log fitness estimates. 



Reproducibility of fitness measurements for over 2,000 wild-type variants of U3 with different 

barcodes was used to set the minimal number of reads at G0 which assure reliable results, and we 

filtered the rest of the barcodes accordingly. 

Because mutations known to completely inactivate U3 (in C' and D boxes) all had average log 

fitness estimates between -2 and -2.5, we reasoned that barcode log fitness estimates below -3 

were unreliable. Such estimates showed the largest variation between replicate experiments and 

were typically based on low numbers of reads. Overall, about 700/22,000 variants in each of the 

Small library datasets, and 5,000/37,000 variants in the Big library dataset, have log fitness 

estimates below -3. We therefore replaced these values by -3. Omitting this step increased the 

noise associated with the data, but did not change any of the conclusions. Replacing this step 

with a smooth tanh transformation of log fitness estimates, λ'=3*tanh(λ/3), with parameters 

chosen so that the transformation is approximately linear in the [-2,0] range and maps values 

below -3 to values close to -3, led to the same conclusions. 

 

Positional fitness effects 

fi, the average log fitness effect of mutations in position i in an otherwise wild-type background, 

was defined as the mean log fitness of variants that had a single substitution or deletion at 

position i, and no other mutations elsewhere. 

pi, the aggregate log fitness effect of position i across all genetic backgrounds, was defined as the 

mean log fitness of variants that had a substitution or deletion at position i (and possibly other 

mutations elsewhere) minus the mean log fitness of variants that had no mutation at position i. 

 



Explaining fitness from mutation patterns 

In order to attribute the fitness changes to the underlying mutation pattern, we used a regression-

based approach. We associate each mutant i with a feature vector zi, a binary vector whose 

individual entries correspond to all positions and pairs of positions in the U3 gene. Thus zi is a 

vector with 333+(333x332)/2= 55,611 dimensions. zi will have 1 at entry j<334 if and only if the 

corresponding U3 variant is mutated in that position. Notice that this is a redundant 

representation: the binary code in the first 333 entries of zi uniquely determines the remaining 

55,278 entries, nevertheless this redundancy is necessary to disentangle the effects of single 

mutations from epistatic effects of pairs of mutations. 

We then modeled the response variable (log fitness) as a linear function of the corresponding 

feature vector: 

λi = w ⋅ zi +ε           (1) 

where w is a weight vector to be learnt from the data and ε is an error term. The weight vector 

has the same dimensions as the feature vectors z. The weight vector encodes the effect on fitness 

of the mutations: the first 333 entries code for the effect of single point mutations, while the 

remaining 55,278 capture the epistatic effects of having a mutation in two different locations.  

One can highlight the different type of terms (single point and epistatic terms) by reformulating 

the response equation (1) in terms of features zl and zlm, and corresponding weights wl and wlm. A 

barcode j would have a non-zero feature l if it was mutated in position l and a nonzero feature lm 

if it was mutated in both positions l and m. Consequently, the coefficients wl and wlm would 

represent the single point and epistatic effects learned by the model. To extract the single point 



and epistatic effect terms from the measured fitness values, we solve the following regularized 

least squares problem 

w = argmin λ j
j
∑ −wzj

2
− L(w)

#

$
%%

&

'
((  

where L(w) is a regularization term which is needed since the number of parameters which must 

be estimated exceeds or is comparable to the number of barcodes in each library. We consider 

two types of regularizers: 

L(w) = a wj
2

j
∑  

so called Tikhonov regularization or ridge regression (RR), avoids overfitting by penalizing large 

coefficients; 

L(w) = a wj
j
∑  

L1 penalty giving rise to the Lasso regression (36), a popular choice (16) as it returns sparse 

estimates where irrelevant coefficients are set to zero. In both cases, the regularization 

coefficient was chosen by five-fold cross-validation on a grid of values. Out of sample 

predictions at the optimal regularization value (a=5) indicated a good predictive power, with on 

average 55% of total test variance explained by the model across the cross-validation runs. These 

values indicate that the model achieves a good fit without overfitting to the training data. To 

quantitatively measure the performance of the trained model, we measured the explained 

variance, i.e. the difference between the initial sample variance and the sum of the squared model 

residuals, relative to the initial variance. As the distributions of fitnesses and residuals are 

strongly non-Gaussian, we removed the top and bottom 5% of data to eliminate outliers which 



may dominate the estimated variances. Using this procedure, the optimal epistatic model 

explained 86% of the initial variance, while a nonepistatic model, which used only log fitness 

effects associated with single mutants, explained 49% of the variance. It should be remarked that 

using the measured effects of single mutations is not necessarily optimal from the point of view 

of explained variance. To ensure a fair comparison, we also repeated the fitting procedure using 

solely features associated with single mutations. This optimal nonepistatic model explained 

approximately 55% of variance, in line with previous reports (16) and considerably below the 

variance explained by an epistatic model. 

We found in our experiments that both Lasso and RR were able to compute reproducible 

estimates of single-site coefficients, which were in good agreement with the experimentally 

measured values (Pearson R=0.87, p<0.05). Estimation of pairwise effects with Lasso was 

however less successful, as Lasso consistently retained almost exclusively the large epistatic 

effects associated with pairs of positions with large single-site effects. By contrast, RR captured 

both positive and negative epistatic effects. Comparisons with directly measured pairwise effects 

on a subset of mutants with only two mutations reveals that the empirical distribution of pairwise 

effects appears to encompass both large positive epistatic effects, and smaller (but still 

important) negative epistatic effects. It therefore appears that Lasso, in the limited data regime 

we operate, is not well suited to estimate relevant coefficients of highly heterogeneous size, and 

effectively eliminates most of the negative epistasis by shrinking such coefficients to zero. 

Further analysis of the RR results revealed a bias in the estimation of single-site effects (see Fig. 

S8), which is more pronounced for the Big library (where few single-site mutants were present). 

This is possibly due to the redundant encoding of mutants, which creates correlated features 

where explaining away is possible. We therefore further modified the RR model by directly 



inputting the wj coefficients as measured on single-site mutants, and estimated the remaining 

entries of the wj vector from the data. The results shown in the manuscript come from this 

modified model. 

The code used in our numerical experiments is available on github: 

https://github.com/terembura/EpistaticInteractionsYeastU3. 

 

Resolution of fitness estimates 

The standard deviation of log fitness estimates of wild-type variants ranges from 0.11 to 0.18 in 

the small library experiments in glucose. As a result, very small effects, both negative and 

positive, could not be detected experimentally even if they did play some role in evolution. 

There were no single mutants with a fitness estimate greater than 2 standard deviations above 

wild-type in any experiment. Although 17 single mutants had fitness estimates greater than 1 

standard deviation above wild-type, none of these mutants were reproducibly fitter than wild-

type in all three replicate experiments. Thus, no mutations increased fitness to a degree 

detectable with our technology.  

 

Visualization of fitness effects and epistatic interactions 

To visualize the fitness effects of individual mutations and their epistatic interactions, we used 

JavaTreeView (37) to generate 2D heatmap plots, VARNA (38) to display the effects of 

mutations along the secondary structure, and Circos (39) to generate circular interaction plots. To 

generate the heatmap shown in Fig. 1D, the fitness effect of each mutation was calculated as the 

median fitness of single mutant variants that contained the focal mutation, and of the subset of 



double mutants that contained the focal mutation plus a low-effect second mutation (|log fitness 

effect| of the second mutation <0.01). Inclusion of double mutants significantly improved the 

coverage and reduced noise, without altering the conclusions. 

 

Prediction of U3 secondary structure using epistatic coefficients 

To obtain folding constraints for secondary structure prediction, we averaged the epistatic 

coefficients wij from four glucose competition experiments, and we filtered these coefficients in 

two ways. First, we identified all pairs of residues that could potentially interact within 

uninterrupted stems of 3 or more nucleotides (allowing Watson-Crick and G-U interactions). 

This retained 7,637 of the 55,278 epistatic interactions. Second, we removed interactions 

involving at least one large-effect site (defined as regions 80-87 (Box C’), 252-257 (Box C) and 

325-329 (Box D). This further reduced the dataset to 6,639 interactions between potentially 

basepaired sites. We then computed epistatic support scores for each 3-nt stem by averaging the 

relevant wij values, as in (40). In the resulting set, known interactions had significantly larger 

support scores than noninteracting pairs (Wilcoxon test, p<2*10-16), and in particular, 5 out of 6 

top scores corresponded to known basepairing interactions. These 5 scores were used as 

constraints in RNA structure prediction by the Vienna program (41). 

  



Supplementary Figure 1. Mutant library design. 

A, B. Uniform coverage of mutations along synthetic genes in the small library (A) and big 

library (B).  

C. Distributions of the number of single nucleotide substitutions per gene (upper panels) and of 

substitutions+deletions+insertions per gene (lower panels) in the two mutant libraries. 

 

Supplementary Figure 2. Complementation of D343 strain with U3. 

Growth of D343 cells supplemented with wild-type U3 (top panels), empty plasmid (middle 

panels) or a non-functional mutant of U3 (mutation list: C43T, C75G, A169C, G202T, G248C, 

C252T, C259T, G282T, A293T, T302A, G302A, G305del; bottom panels) on glucose and 

galactose media without adenine. 

 

Supplementary Figure 3. Reproducibility of fitness measurements. 

A. Reproducibility of fitness measurements for individual barcodes in experiments 

Small_1_30C_Glu (X axis) and Small_3_30C_Glu (Y axis). R= 0.78. 

B. Reproducibility of mean fitness per site (fi) in experiments Small_1_30C_Glu (X axis) and 

Small_3_30C_Glu (Y axis). R=0.92. 

C. Reproducibility of fitness measurements among high-coverage variants. The mean and 

standard deviation of log fitness are shown for 824 variants with at least two measurements with 

1000 or more reads in population G0 among datasets Small_1_30C_Glu and Small_3_30C_Glu. 

 

Supplementary Figure 4. Effects of mutations on folding energy. 

A. Nomenclature of stems in the secondary structure of U3. Yeast-specific regions are shown in 

blue, regions conserved among Eukaryotes are in red. 

B. The mean fitness of U3 variants binned by ascending minimal folding energy, calculated 

separately for each stem and for hinge–pre-rRNA hybrids. Bin ranges (from left to right, for 

stems I, II and VI): bin 1, ΔΔG<0; bin 2, ΔΔG=0; bin 3, 0<ΔΔG<1; bin 4, 1<ΔΔG<2; bin 5, 



2<ΔΔG<3; bin 6, ΔΔG>3; for stems III, IV, V, 5' hinge and 3' hinge: bin 1, ΔΔG<0; bin 2, 

ΔΔG=0; bin 3, 0<ΔΔG<2; bin 4, 2<ΔΔG<4; bin 5, 4<ΔΔG<6; bin 6, ΔΔG>6. ΔΔG is the folding 

energy of the focal mutant minus the folding energy of the wild-type variant. 

 

Supplementary Figure 5. Examples of fitness effects at specific sites. 

Fitness effects of each type of mutation (substitutions to A, C, G, T and deletion) at position 

U191 (A) and positions in terminal stem (B- D). 

 

Supplementary Figure 6. Comparison of fitness effects in 30C and 37C. 

A-C, Distribution of pi, the aggregate log fitness effect of position i across all genetic 

backgrounds, mapped to the U3 structure for individual experiments: Small_1_30C_Glu (A), 

Small_3_30C_Glu (B), and Small_2_37C_Glu (C). Arrows indicate positions in which the 

fitness effects were most different between 30C and 37C.  

D-F, Scatter plots of pi values between pairs of individual experiments. 

 

Supplementary Figure 7. Alternative calculation of the fitness effects of mutations. 

The aggregate log fitness effect of each position in experiment Small_1_30C_Glu was calculated 

as in Fig. S6, except that the median fitness effect of mutations was used instead of the mean, to 

correct for effects of outliers. 

 

Supplementary Figure 8. Systematic bias of wi estimated by ridge regression. 

A-C, Comparison of single-site effects estimated directly from single mutants (X axis, fi) and 

estimated by ridge regression (Y axis, wi). (A,D), mean of Small_1_30C_Glu and 

Small_3_30C_Glu; (B,E), Small_2_37C_Glu; (C,F) Big_1_30C_Glu. 

D-F, Bias in single-site effects estimated by ridge regression. Regression overestimates fi for 

low-effect sites, and underestimates fi for large-effect sites. To estimate the epistatic effects wij 



by ridge regression, we therefore used empirical estimates of single-site effects from variants 

mutated at one position only (fi). 

 

Supplementary Figure 9. Maps of epistatic interactions calculated for individual datasets.  

A, mean of Small_1_30C_Glu and Small_3_30C_Glu;  

B, Small_2_37C_Glu 

C, Big_1_30C_Glu 

 

Supplementary Figure 10. Prediction of U3 secondary structure using constraints from 

positive epistasis. 

A, Map of known basepairing contacts (top left), and of contacts inferred from filtered positive 

epistatic interactions (bottom right, see Methods). Known contacts are circled. 

B, Minimum Folding Energy (MFE) secondary structure predicted by Vienna using U3 sequence 

data alone. 

C, MFE structure predicted by Vienna using U3 sequence and the following basepairing 

constraints: 330-77 (epistasis score=0.30, epistasis rank=2), 331-76 (score=0.30, rank=3), 332-75 

(score=0.23, rank=4), 50-60 (score=0.23, rank=5), 49-61 (score=0.22, rank=6). This structure is 

markedly more similar to the known structure than structure predicted from sequence alone. In 

particular, the terminal stem and Stem 2 are now correctly folded. Using centroid instead of MFE 

structures led to similar results. 

 

Supplementary Figure 11. Cluster of negative epistatic interactions sis in the 3’ hinge. 

A, Enrichment in negative epistatic interactions in the “3’ hinge” (positions 62-73), which 

mediates basepairing of U3 with pre-rRNA.  

B, The mean fitness (left axis) and U3-pre-rRNA interaction energy (right axis) of mutants 

binned by numbers of mutations in the 3’ hinge. 

  



Supplementary Table 1. List of experiments. 
Experiment name Sample 

ID* 
Time (h)† Number of 

reads used 
Number of 
barcodes 
recognised 

Number of 
mutants 
accepted 

Small_1_30C_Glu total  76505765 41617 22372 
G0 0 14233050 
D1.25 36 14051955 
D2.25 60 11881307 
D3.25 84 15850703 
D4.25 108 20488750 

Small_2_37C_Glu total  88384609 40250 23915 
G0 0 14013114 
D1.25 36 14338456 
D2.25 60 14277184 
D3.25 84 14327688 
D4.25 108 14365043 
D5.25 132 2699207 
D6.25 156 14363917 

Small_3_30C_Glu total  201446365 41266 23163 
G0 0 28745264 
D0.25 12 28843586 
D0.75 24 28537727 
D1.25 36 29034201 
D2.25 60 28822264 
D3.25 84 28646717 
D4.25 108 28816606 

Small_3_30C_Gal total  165773130 41509 23167 
G0 0 28745264 
G0.25 12 21662238 
G1.25 36 28813189 
G2.25 60 28856414 
G3.25 84 28866443 
G4.25 108 28829582 

Big_1_30C_Glu total  13622683 67069 36692 
G0 0 3488092 
D0.25 12 2629826 
D0.75 24 3083151 
D1.25 36 4421614 

*The Sample ID represents the growth medium (G for galactose, D for glucose), and the duration 
of selection (in days) that was assumed for that sample in the fitness estimation. For example 
D1.25 represents a sample that was under selection on glucose for 1.25 days (30 hours). There is 
a 6-hour difference between the selection time and wall-clock time, because it took 
approximately 6 hours for genomically encoded U3 to be depleted after addition of glucose. 
†Wall-clock time when sample was taken. 
  



Supplementary Table 2. Sequences of oligonucleotides. 

Name Sequence 

U3_1F_wt CTTAAAATCTGTGTCGACGTACTTCATAGGATCATTTCTATAG
GAATCGTCACTCTTTGACTCTTCAAAAGAGCCACTGAATCCA
ACTTGGTTGATGAGT 

U3_1R_wt ATTGCGGACCAAGCTAATTTAGATTCAATTTCGGTTTCTCACT
CTGGGGTACAAAGGTTATGGGACTCATCAACCAAGTTGGA 

U3_2F_wt AAATTAGCTTGGTCCGCAATCCTTAGCGGTTCGGCCATCTATA
ATTTTGAATAAAAATTTTGCTTTGCCGTTGCATTTGTAGT 

U3_2R_wt AGTACATAGGATGGGTCAAGATCATCGCGCCATAAAATATTG
TAATTACTTCCAAAGGAAAAAACTACAAATGCAACGGCAAA 

U3_3F_wt CTTGACCCATCCTATGTACTTCTTTTTTGAAGGGATAGGGCTC
TATGGGTGGGTACAAATGGCAGTCTGACAAGTTAACCAC 

U3_3R_wt TAATCCAATTTCTTAACTGAAAACCAAACCTTTGGTTTTAAAC
AATTTAGAAAAGGAAAAAAGTGGTTAACTTGTCAGACT 

U3_1F_mut CTTAAAATCTGTGTCGACG(01019701)(01010197)(97010101)(019
70101)(01010197)(01010197)(01970101)(97010101)(01010197)(97010
101)(01019701)(01019701)(97010101)(01010197)(01970101)(9701010
1)(01010197)(01010197)(01010197)(01970101)(01010197)(97010101)
(01010197)(97010101)(01019701)(01019701)(97010101)(97010101)(0
1010197)(01970101)(01019701)(01010197)(01970101)(97010101)(019
70101)(01010197)(01970101)(01010197)(01010197)(01010197)(01019
701)(97010101)(01970101)(01010197)(01970101)(01010197)(0101019
7)(01970101)(97010101)(97010101)(97010101)(97010101)(01019701)
(97010101)(01019701)(01970101)(01970101)(97010101)(01970101)(0
1010197)(01019701)(97010101)(97010101)(01010197)(01970101)(019
70101)(97010101)(97010101)(01970101)(01010197)(01010197)(01019
701)(01019701)(01010197)(01010197)(01019701)(97010101)(0101019
7)(01019701)(97010101)(01019701)(01010197) 

U3_1R_mut (97010101)(01010197)(01010197)(01019701)(01970101)(01019701)(0
1019701)(97010101)(01970101)(01970101)(97010101)(97010101)(010
19701)(01970101)(01010197)(97010101)(97010101)(01010197)(01010
197)(01010197)(97010101)(01019701)(97010101)(01010197)(0101019
7)(01970101)(97010101)(97010101)(01010197)(01010197)(01010197)
(01970101)(01019701)(01019701)(01010197)(01010197)(01010197)(0
1970101)(01010197)(01970101)(97010101)(01970101)(01010197)(019
70101)(01010197)(01019701)(01019701)(01019701)(01019701)(01010
197)(97010101)(01970101)(97010101)(97010101)(97010101)(0101970



1)(01019701)(01010197)(01010197)(97010101)(01010197)(01019701)
(01019701)(01019701)(97010101)(01970101)(01010197)(01970101)(9
7010101)(01010197)(01970101)(97010101)(97010101)(01970101)(019
70101)(97010101)(97010101)(01019701)(01010197)(01010197)(01019
701)(01019701)(97010101) 

U3_2F_mut (97010101)(97010101)(97010101)(01010197)(01010197)(97010101)(0
1019701)(01970101)(01010197)(01010197)(01019701)(01019701)(010
10197)(01970101)(01970101)(01019701)(01970101)(97010101)(97010
101)(01010197)(01970101)(01970101)(01010197)(01010197)(9701010
1)(01019701)(01970101)(01019701)(01019701)(01010197)(01010197)
(01970101)(01019701)(01019701)(01970101)(01970101)(97010101)(0
1010197)(01970101)(01010197)(97010101)(01010197)(97010101)(970
10101)(01010197)(01010197)(01010197)(01010197)(01019701)(97010
101)(97010101)(01010197)(97010101)(97010101)(97010101)(9701010
1)(97010101)(01010197)(01010197)(01010197)(01010197)(01019701)
(01970101)(01010197)(01010197)(01010197)(01019701)(01970101)(0
1970101)(01019701)(01010197)(01010197)(01019701)(01970101)(970
10101)(01010197)(01010197)(01010197)(01019701)(01010197)(97010
101)(01019701)(01010197) 

U3_2R_mut (97010101)(01019701)(01010197)(97010101)(01970101)(97010101)(0
1010197)(97010101)(01019701)(01019701)(97010101)(01010197)(010
19701)(01019701)(01019701)(01010197)(01970101)(97010101)(97010
101)(01019701)(97010101)(01010197)(01970101)(97010101)(0101019
7)(01970101)(01019701)(01970101)(01019701)(01970101)(01970101)
(97010101)(01010197)(97010101)(97010101)(97010101)(97010101)(0
1010197)(97010101)(01010197)(01010197)(01019701)(01010197)(970
10101)(97010101)(01010197)(01010197)(97010101)(01970101)(01010
197)(01010197)(01970101)(01970101)(97010101)(97010101)(9701010
1)(01019701)(01019701)(97010101)(97010101)(97010101)(97010101)
(97010101)(97010101)(01970101)(01010197)(97010101)(01970101)(9
7010101)(97010101)(97010101)(01010197)(01019701)(01970101)(970
10101)(97010101)(01970101)(01019701)(01019701)(01970101)(97010
101)(97010101)(97010101) 

U3_3F_mut (01970101)(01010197)(01010197)(01019701)(97010101)(01970101)(0
1970101)(01970101)(97010101)(01010197)(01970101)(01970101)(010
10197)(97010101)(01010197)(01019701)(01010197)(97010101)(01970
101)(01010197)(01010197)(01970101)(01010197)(01010197)(0101019
7)(01010197)(01010197)(01010197)(01019701)(97010101)(97010101)
(01019701)(01019701)(01019701)(97010101)(01010197)(97010101)(0
1019701)(01019701)(01019701)(01970101)(01010197)(01970101)(010
10197)(97010101)(01010197)(01019701)(01019701)(01019701)(01010
197)(01019701)(01019701)(01019701)(01010197)(97010101)(0197010
1)(97010101)(97010101)(97010101)(01010197)(01019701)(01019701)
(01970101)(97010101)(01019701)(01010197)(01970101)(01010197)(0



1019701)(97010101)(01970101)(97010101)(97010101)(01019701)(010
10197)(01010197)(97010101)(97010101)(01970101)(01970101)(97010
101)(01970101) 

U3_3R_mut TAATCCAATTTCTTAACTGAAAACCAAACCTTTGGTTTTAAAC
AATTTAGAAAAGGAAAAAAGTGGTTA(97010101)(01970101)(01
010197)(01010197)(01019701)(01010197)(01970101)(97010101)(0101
9701)(97010101)(01970101)(01010197) 

U3_end_bar_EcoR1 ACGTACGNNNNNNNNNNNNNNNNNNNNTAATCCAATTTCTT
AACTGA 

U3_start_SalI TTAAAATCTGTGTCGACG 

EcoRI_oligo_SalI ACGTACGTGAATTCACGTACGTACGTACGTGTCGACACGTAC
GT 

SalI_oligo_EcoRI ACGTACGTGTCGACACGTACGTACGTACGTGAATTCACGTAC
GT 

Index1_PCR_U3_seq CAAGCAGAAGACGGCATACGAGATATCATGAGTCAGTCAGC
CTGTTTCTACTTAAAATCTGT 

Index2_PCR_U3_seq CAAGCAGAAGACGGCATACGAGATCAAGTTAGTCAGTCAGC
CTGTTTCTACTTAAAATCTGT 

R_PCR_U3bar_seq AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTA
AACGACGGCCAGTGAATTC 

Index1_PCR_bar_seq CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTTTTCAGTTAAGAAATTGG   

Index2_PCR_bar_seq CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGT
TCAGACGTGTGCTCTTCCGATCTTTTCAGTTAAGAAATTGG  

Index3_PCR_bar_seq CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGT
TCAGACGTGTGCTCTTCCGATCTTTTCAGTTAAGAAATTGG  

Index4_PCR_bar_seq CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTTTTCAGTTAAGAAATTGG  

Index5_PCR_bar_seq CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTTTTCAGTTAAGAAATTGG  

Index6_PCR_bar_seq CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCTTTTCAGTTAAGAAATTGG  

Custom_Read1_seq_p TATGGTAATTGTAAACGACGGCCAGTGAATTC 
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